三维旋转磁场定位仪磁场空间分布研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤靶向定位治疗是目前医学界研究的热点和难点问题。靶向定位的载体目前主要有抗体载体、配体载体、活性多肽载体等,定位原理都是基于生物学特性进行组织的,每一种载体对药物定向带有很大的选择性,都只针对特定的肿瘤治疗有效。本文提出利用纳米铁作为载体,在三维旋转磁场的作用下定位到肿瘤病灶部位进行靶向治疗,对三维旋转磁场定位仪的磁场空间分布作了详细的研究。
     将纳米铁有效地定位到病灶部位,关键是要在病灶部位形成一个强磁场区域,达到纳米铁汇集的条件。针对上述难点,本文主要作了以下几方面的工作:
     (1)对目前肿瘤靶向治疗国内外研究现状进行了叙述,并提出利用纳米铁作为肿瘤靶向治疗的载体。
     (2)介绍了电磁场的基本理论,并设计出三维旋转磁场定位仪的模型,阐述了三维旋转磁场定位原理。
     (3)利用MathCAD软件计算各种条件下磁场的大小及其变化规律,应用ANSYS软件建立有限元模型进行磁场模拟,并探讨出三维旋转磁场定位仪设计的工艺参数。
     (4)研制三维旋转磁场定位仪微缩模型,以此验证模拟结果。
     三维旋转磁场的模拟结果以及微缩模型的实际结果,均取得了良好的效果,为三维旋转定位治疗仪投入工业化生产提供了理论依据。
Tumor target oriented therapy is medicinal research hotspot and difficulty at present. Target oriented carrier at present primary contains antibody carrier, conjugant and active amylase carrier. Oriented principle is based on biology specialty. Every carrier is selective for drug orientation. It is effective for specifically tumor therapy. This paper puts forward nanometer-iron particles as drug carriers. These carriers can orientate to tumor focus by effect of the 3D rotated magnetic field. This paper is absorbed in studying of the distributing of the rotated 3D magnetic field.
     In order to orientate the drug carrier to tumor focus, it need form insensitive magnetic field, satisfies the condition of the nanometer-iron particles influx. In order to solve the problem this paper sets forth following study:
     (1) This paper depicts the study of tumor target orientated therapy at domestic and overseas at present, and then brings forward nanometer-iron particles as drug carrier.
     (2) This paper introduces the principle of the electromagnetic field, then designs out the model of the 3D rotated magnetic field and explains the orientated theory of the 3D rotated magnetic field.
     (3) This paper achieves the magnetic field intensity and the variety law at various conditions by the MathCAD soft, builds the model of finite element and simulates magnetic field, educes the appropriate technique parameter.
     (4) This paper manufactures the tiny model apparatus of the 3D rotated magnetic field in order to prove the simulated result.
     The simulated result and tiny model apparatus result are all perfect. These results provide the theory for the therapy apparatus manufacture.
引文
[1] 熊平,郭萍,袁亚莉,等.顺磁纳米铁核素的研制及性能分析[J].中国生物医学工程学报,2005,24(2):154-156.
    [2] 房元章.浅谈癌症及其治疗方法[J].生物学教学,2005,30(1):61-62.
    [3] DevitaVT. Dose-vesponse in alive andwell[J]. J Clint Oncol, 1986, (4): 1157-1159.
    [4] 盛延兴,于书增,隋振忠,等.放疗多功能尺的研制及临床应用[J].肿瘤防治杂志,2002,9(6):634-635.
    [5] Calo JM, Gpat PK, Hung CT, et al. Evaluation of drug delivery following the administration of magnetic albumin micro spheres containing adrianmycin to the rat[J]. J Pharm Sci, 1989, 78(30): 190.
    [6] Fundaro A, Cavalli R, Bargoni A, et al. Non-stealth and stealth solid lipid nanoparticles(SLN) carrying doxorubicin: pharmacokinetics and tissue distribution after i.v. administration to rats[J]. Pharmacol Res, 2000,42(4):337.
    [7] Kneuer C. Sameti M. Bakowsdy U. et al. A nonviral DNA delivery system based on surface modified silica-nanopartic]es can efficiently transfect cells in vitro[J]. Bioconjug Chem, 2000,11(6):926-932.
    [8] Xiang JJ, et al. Use of Magnetic Iron Oxide Nanoparticles as Gene Carrier[J]. Cancer, 2001.
    [9] HofmanMA, Purba JS, Swaab DF. Annual variations in the VBSO—pressin neuron population of the human suprachiasmatic nucleus[J]. Neuroscience, 1999, 53(4): 1103—12.
    [10] Bross PF, Beitz J, Chen G, et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia[J]. Clin Cancer Res, 2001, 7(6): 1490-1496.
    [11] 甄永苏.单克隆抗体药物治疗肿瘤的研究现状与展望[J].中国医学科学院学报,200,22(1):9-13.
    [12] Posey J A, Raspet R, Verma U, et al. A pilot trial of GM-CSF and MDXH210 in patients with erbB-2-positive advanced malignancies[J]. J Immunother, 1999, 22(4): 371-379.
    [13] David M S, George J W, Louis M W. Bispecific antibodies in cancer therapy[J]. Curr Opin Immunol, 1999, 11(6): 558-562.
    [14] Liu S C, Minton N P, Giaccia A J, et al. Anticancer efficacy of systemically delivered anaerobic bacteria as gene therapy vectors targeting tumor hyposia/necrosis[J]. Gene Ther, 2002, 9(4):291-296.
    [15] Schatzlein A G. Non-viral vectors in cancer gene therapy: priciples and progress[J]. Anticancer Drugs, 2001, 12(4): 275-304.
    [16] 傅伟,熊平,刘晓明,等.磁控纳米铁载药系统治疗肿瘤的研究[J].实用肿瘤 学,2006,21(5):479-481.
    [17] 许剑,马净.植磁控纳米载药系统在肿瘤治疗领域中的应用.临床口腔医学杂志[J],2004,20(10):638-639
    [18] 陈璨,吴华,熊伟.载药磁性纳米微粒靶向治疗肿瘤研究进展.中华核医学杂志[J],2003,23(6):381-382.
    [19] Galo JM, Gupta PK, Hung CT, et al. Evaluation drug delivery fol—lowing the admimstmtion of magenetic albumin microspheres containing adriamycin to the rat[J]. J Pharm Sci, 1998, 78(3): 190.
    [20] Elmi MM, Sarbiouki MN. A simple method for preparntion of immuno—rnagetic liposomes[J]. Int J Pham, 2001, 215(1-2): 45-55.
    [21] Shi K, Li C, He B. Magnetic drug delivery system—adramycin—car—boxymathyl dextran magnetic nanoparticles[J]. J Bioned Eng, 2000,17(1): 21—24.
    [22] Lubbe AS, Bergecn-nn C, Huhut W, et al. Preclinical expenenceswigh magnetic brug targeting; tolesance and efficacy[J]. Cancer Res, 1996, 56(20): 4694—701.
    [23] Lubbe AS, bergemann C, Riess H, et al. Clinical experiences with magnetic drug targeting:a phase Ⅰ study with4' epidoxorubicingin14 patienst with advanced solid tumors[J]. Cancer Res, 1996, 56(20): 4686—4693.
    [24] Widder K J. Magnetic micorspheres:a vehicle for selective targeting of drugs[J]. Pharmacol Ther, 1983, 20(3): 337-338.
    [25] Lubbe AS, Bergemann C, Riess H, et al. Clinical experiences with magnetic drug targeting:a Phase Ⅰ study with 4' -epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res, 1996,56(20): 686-693.
    [26] Aexiou C, Amold W, Klein RJ, et al. Locoregional Cancer Treatment with Magnetic Drug Targeting. Cancer Res, 2000, 60(23): 6641-6648.
    [27] BabincovaM, SourivongP, LeszczynskaD, et al. Blood-specific whole-body electromagnetic hyperthermia[J]. MedHyptoth, 2000, 55(6): 459-460.
    [28] Bonnemain B. Superparamagnetic agents in magnetic resonance imaging: physiochemical characteristics and clinical applications-a review[J]. Drug Target, 1998, 6(3): 167-174.
    [29] Wang YX, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging[J]. Eur Radiol, 2001, 11(11): 2319-2331
    [30] 杨宪章.电磁场原理.北京:高等教育出版社.1985,298-299.
    [31] 夏玉珍,李帮军.对麦克斯韦电磁场理论的研究与实验探讨[J].中国科技术信息,2006,(3):142-143.
    [32] 汪昭义.平面电磁波传播的物理分析.黄山学院学报,2005,7(6):24-26.
    [33] 李翔,曾宪林.理想介质中均匀平面波方程.广西轻工业,2006,(5):86-88.
    [34] 刘万强,王艳萍.电路基本定律的分析研究.山东理工大学学报(自然科学版),2005,19(1):92-95.
    [35] 梅延玲.麦克斯韦方程组的一种推导方法[J].武汉科技学院学报,2005,18(10):54-58.
    [36] 张爽,郭欣,宋立军.利用贝塞尔函数的级数形式进行数值计算的误差分析[J].长春大学学报,2004,14(2):57-59.
    [37] 王少夫,朱义胜.基于贝塞尔带通滤波器精确设计和仿真[J].大连海事大学学报,2005,31(1):81-83
    [38] 李勇英,雏向东.对勒让德多项式母函数的研究[J].河西学院学报,2003,2(2):4-5.
    [39] 胡先权,廖海洋,王万录.导体球壳内的电偶极子的电荷禁闭[J].江西师范大学学报(自然科学版),2005,29(1):47-50.
    [40] 关海爽,马文阁.电磁场数值计算新方法的研究[J].辽宁工学院学报,2006,26(4):230-233.
    [41] 邵志强.关于拉普拉斯算子的第一、第二特征值的空隙的估计[J].福州大学学报(自然科学版),2002,30(2):153-156.
    [42] 谢金,傅克祥,麻健勇,等.求解电磁场边界问题时逆规则的物理意义[J].激光杂志,2004,25(6):34-36.
    [43] 纪哲锐.Mathcad 2001详解.北京:清华大学出版社.2002.5-9.
    [44] 曹江陵,杨波.载流圆形线圈的磁场[J].重庆教育学院学报 2006,19(3):10-12.
    [45] 王晓颖,李武军.载流圆环空间磁场分布的研究[J].西安工业学院学报, 2004,24(3):292-295.
    [46] 孟祥国,李丽华,史强.圆形载流导线的磁场[J].物理与工程,2004,14(4):16-17.
    [47] 王琴.导电线圈磁场计算理论及方法研究[J].太原师范学院学报(自然科学版),2006,5(2):83-85.
    [48] 朱平.圆电流空间磁场分布.大学物理[J].2005,24(9):13-17.
    [49] 李春明,刘承师,张俊峰.计算载流圆线圈空间磁场分布的方法[J].辽宁工学院学报,1999,19(1):62-65.
    [50] 罗兴垅.圆环电流及亥姆霍兹线圈磁场的一种数值解法[J].赣南师范学院学报,2006,3(3):91-93.
    [51] 张昌莘,席伟,何颖君.圆电流和亥姆霍兹线圈磁场的研究[J].安徽师范大学学报(自然科学版),2004,27(1):41-45.
    [52] 张榴晨,徐松.有限元法在电磁计算中的应用.北京:中国铁道出版社,1996.
    [53] 金建铭等.电磁场有限元方法,西安:西安电子科技大学出版社,1998.
    [54] 杨显清.电磁场与电磁波.北京:国防工业出版社,2003.
    [55] 叶先磊,史亚杰.ANSYS工程分析软件应用实例.北京:清华大学出版社,2003.1-5.
    [56] 邓凡平.ANSYS 10.0有限元分析自学手册.北京:人民邮电出版社,2007.1-10.
    [57] 王永新.ANSYS软件中耦合场分析方法及应用[J].云南水力发电,2006,22(4):32-34.
    [58] 王江涛,刘海琴.利用ANSYS软件计算开关磁阻电动机电磁场[J].电气技术与自动化,2006,168-172.
    [59] 徐建成,徐建民.矿粒所受磁力计算公式的几个问题探讨[J].有色金属,2005,57(1):77-79.
    [60] 陈贺中.微循环毛细血管迂回通路四种功能状态假说[J].医学理论与实践,2005,18(6):621-622.
    [61] 柏树令.人体皮肤微血管网络[J].中国微循环,2004,8(5):265-266.
    [62] Schaper W, Piek JJ, Munoz-Chap uli R, et al. Ito W: Collateral circulation of the heart. In: Ware JA, Simons, M, editors angiogenesis and cardiovascular disease New York[M]. NY: oxford University Press. 1999, 159-198.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700