胚胎期肉鸡肝脏脂类代谢关键因子的筛选及DHEA的调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以脂肪型AA肉鸡和瘦肉型三黄肉鸡为实验对象,以比较蛋白组学为主要研究手段,揭示其在胚胎发育过程中肝脏蛋白组的表达谱,并在差异比较的基础上,筛选出了影响两种肉鸡脂类代谢的关键蛋白和酶;接着利用生理调节剂——脱氢表雄酮(DHEA)在孵化前导入AA肉鸡种蛋,探索其对胚胎期肉鸡肝脏脂类代谢的影响;并结合构建肝脏蛋白质的酪氨酸磷酸化修饰谱,更加深入地揭示DHEA调控肉鸡脂类代谢的机制。
     1胚胎期肉鸡肝脏蛋白质表达谱的发育性变化
     鸡胚是脊椎动物胚体发育研究的主要模式材料,在发育生物学中具有较高的地位。肝脏在鸡胚生长发育过程中具有重要的作用,尤其是在糖代谢、脂代谢、胆汁酸的产生及造血器官的形成中发挥重大作用.本实验以生长速度快,腹部脂肪沉积较多的Arbor Acres肉鸡(简称AA肉鸡)和生长速度慢,脂肪沉积较少的三黄肉鸡(简称SH肉鸡)为实验动物,从蛋白水平探索肉鸡胚肝发育相关蛋白质的动态变化,为深入研究鸡胚肝脏的发育奠定基础。分别取9、14、19胚龄和出壳时的肝脏,经2D-PAGE分离后,对经胶体考马斯亮蓝G-250染色的图像用PDquest7.3软件进行差示分析,取差异表达的蛋白质点进行胶内酶切和MALDI-TOF-MS分析,肽指纹图谱数据检索NCBInr蛋白质数据库进行差异表达蛋白质的身份鉴定。在AA鸡和三黄鸡胚肝发育蛋白谱中,分别发现32和25个表达水平具有显著性差异变化的蛋白质点,其中26个和21个得到了鉴定。在这些被鉴定的蛋白中,大多涉及到机体内基础代谢的酶、细胞生长分化、胚胎形成及信号传导等,尤其是不同形式的硫酸基转移酶同工酶的表达呈明显的发育性变化,提示其与肉鸡胚胎的正常生长发育和肝脏功能密切相关.
     2两种肉鸡胚胎期肝脏脂类代谢相关蛋白表达的差异比较
     挑选40周龄体况良好的产蛋的脂肪型AA肉鸡和瘦肉型SH肉鸡,饲喂AA肉种鸡日粮,散养。收集种蛋孵化,分别取9、14、19胚龄和出壳时的肝脏.经2D-PAGE分离及MALDI-TOF-MS分析,确定了其中37个蛋白点的身份.结果表明,脂肪型AA肉鸡胚重、肝重均显著大于瘦肉型SH肉鸡。此外,机体内重要代谢的关键因子如磷酸烯醇式丙酮酸羧激酶、烯醇化酶、载脂蛋白A-I、脂肪酸结合蛋白、HMGCoA合成酶及硫酸基转移酶,其表达存在明显的品种差异。磷酸烯醇式丙酮酸羧激酶、载脂蛋白A-I、脂肪酸结合蛋白、HMGCoA合成酶在瘦肉型的三黄肉鸡上调表达;提示瘦肉型三黄肉鸡的糖异生作用、胆固醇代谢及脂肪酸氧化能力均强于脂肪型AA肉鸡,因而脂肪沉积减少.结果表明胚胎期肉鸡脂类代谢相关蛋白和酶的表达存在品种差异。
     3 DHEA对胚胎期肉鸡肝脏脂类代谢相关蛋白表达的影响
     DHEA是动物体内包括禽类的类固醇激素的前体.挑选蛋重相近的AA肉鸡种蛋,随机分为两组,实验组按50mg/kg蛋重导入DHEA,其溶解于50μL DMSO溶剂中,对照组则导入50μL溶剂.分别取9、14、19胚龄和刚出壳时的肝脏.经2D-PAGE分离及MALDI-TOF-MS分析,确定了其中37个蛋白点的身份。结果表明,DHEA显著降低胚胎中后期肉鸡胚重和绝对肝重。DHEA上调肝脏载脂蛋白A-I的表达,促进胆固醇转变成胆固醇酯;上调具有抗氧化作用的肝硫氧还蛋白过氧化物酶6的表达;上调肝脏硫酸基转移酶(pH5.9)的表达以促进其底物DHEA本身的生物转化;尤其重要的是,DHEA下调肝脏糖代谢中重要关键酶——丙酮酸脱氢酶的表达,减少肝细胞中合成脂肪酸的前体分子乙酰辅酶A的数量,从而有效降低肝脏脂肪的合成和转出。结果提示,DHEA可能通过对其自身的靶酶发生影响实现降脂功能.
     4 DHEA对胚胎期肉鸡肝脏脂类代谢相关磷酸化的研究
     挑选蛋重相近的AA肉鸡种蛋,随机分为两组,实验组按50mg/kg蛋重导入DHEA,其溶解于50μL DMSO溶剂中,对照组则导入50μL溶剂。分别取9、14、19胚龄和刚出壳时的肝脏.经2D-PAGE分离并结合磷酸化氨基酸抗体检测及MALDI-TOF-MS分析,确定了其中32个磷酸化蛋白点的身份,其中的22个蛋白点的磷酸化状态或磷酸化信号强度明显受DHEA的影响。结果表明,DHEA作为物质代谢调节的信号分子,通过对其自身靶酶的磷酸化/去磷酸化作用进行调节以影响其活性;DHEA增强肝脏硫氧还蛋白过氧化物酶6的磷酸化水平以提增该酶的抗氧化活性;通过提高硫酸基转移酶(pH5.9)磷酸化程度促进DHEA在肝脏中的生物转化;更重要的是揭示了DHEA减少肝脏中乙酰辅酶A的生成机制,即在下调肝脏丙酮酸脱氢酶的表达的同时增强其磷酸化程度,从而减少从糖的分解代谢向脂肪合成代谢提供乙酰辅酶A原料,进而减少脂肪的合成。
In order to research the changes of proteins profiles and the differences of lipids metabolism in the embryonic broiler chickens liver,a comparative proteomics strategy was applied and AA broiler and Sanhuang broiler with different growth and fat deposition were employed in present study.At the same time,in the comparison of expressions of proteins related to lipids metabolism in two broiler chickens liver,we had sieved the key proteins and enzymes which resulted in the differences of lipids metabolism in two broiler chickens liver.Subsequently,as a physiological regulator,DHEA was injected to AA fertilized eggs before incubation to explore the lipids metabolism-regulating mechanism of it.In order to identify phosphoproteins and investigate their alteration in phosphorylation status associated with DHEA function,AA chicken embryo' liver phosphoproteome was analyzed using 2-DE in combination with western blotting of specific anti-phosphotyrosine.This result of this study provided a new rode for the lipids metabolism-regulating mechanism in broiler chickens.
     1 Developmental Change of Proteins Profiles in the Embryonic Broiler Chickens Liver
     The chicken embryo has been used widely as an experimental model for studying development.The embryonic liver plays a crucial role in metabolism and provides many essential functions.The most common and best-characterized functions include bile production,lipid metabolism,hematopoietic organogenesis and glucose metabolism.In order to research the development pattern,AA broiler and SH broiler were employed in present study.AA chickens are the fat meat-type ones,which have been used to perform the genetic analysis and investigate the development of embryonic chicken liver.SH broiler chicken is a famous Chinese indigenous breed,with uniform fat in body,high intramuscle fat and delicious meat.Proteomic analysis was used to study the molecular mechanism of chicken embryonic liver development.We collected embryonic livers from AA and SH chicken embryos on 9,14,19 days of incubation and hatching.Proteins were extracted and fractionated by 2-DE.Neuhoff's colloidal Coomassie Blue G-250 stain was carried out. Stained gels were scanned and analyzed using PDQuest 7.3 software(Bio-Rad).In-gel trypsin digestion of the differential protein spots,MALDI-TOF-MS was analyzed. Twenty-one and Twenty-six proteins of AA and SH chicken embryonic liver were identified to participate in such processes,including carbohydrate metabolism,cell division, lipid metabolism and signal transduction,especially,two kinds of isozymes of sulfotransferase were detected and their expression patterns exhibited obvious changes among the developmental stages of the liver of broiler chicken embryo.This suggested that sulfotransferase had an important role in the liver function,growth and development of broiler chicken embryo.Our results provide insight into biochemical events taking place during the development of AA and SH chicken embryonic liver.
     2 Comparison of Expressions of Proteins Related to Lipids Metabolism in Two Broiler Chickens Liver with Different Fat Deposition at Embryonic Stage
     In order to investigate the difference of fat metabolism during embryonic development, AA broiler and Sanhuang broiler chickens with different growth and fat deposition were employed in present study.They were fed with the same diet and fioor-reared.The liver were gained on days 9,14 and 19 of embryonic development as well as at hatching. Proteins were extracted and fractionated by 2-DE and identified by MALDI-TOF-MS. Peptide mass fingerprinting of the differentially-expressed proteins was performed using the server of MASCOT or Prosperctor or ProFound.Thirty-seven proteins were identified. This study showed that embryonic weight,liver weight increased with development proceeding.Of the identified 37 differential proteins,phosphoenolpyruvate carboxykinase, apolipoprotein A-I,Fatty acid-binding protein(L-FABP), 3-hydroxy-3-methylglutaryl-Coenzyme A synthase were up-regulated in SH chickens.This suggested that the gluconeogenesis,cholesterol metabolism and fatty acids oxidation in the livers of SH chickens were higher than that in the livers of AA chickens.So the differential expression of the L-FABP could have an effect on fat deposition in the chicken.This suggested that some proteins and enzymes of lipids metabolism existed breed character.
     3 Effect of DHEA on the Expressions of the Proteins Related to Lipids Metabolism in Broiler Chickens Embryo' Liver during Embryonic Development
     Dehydroepiandrosterone is a precursor of steroid secreted by the adrenal cortex in animal including poultry.In order to explore the possible fat-reducing mechanism of DHEA,this study was to investigate the effect of in ovo administration of DHEA on lipids metabolism and the regulating mechanism of DHEA on lipids metabolism in broiler chickens during embryonic development.The treatment was injected 50μL DMSO cotained 50 mg DHEA per kilogram eggs and the control was only injected 50μL DMSO to fertilized eggs.The livers were gained on days 9,14 and 19 of embryonic development as well as at hatching.The extracted proteins were analyzed using 2-DE.The differential spots were identified by MALDI-TOF-MS.Peptide mass fingerprinting of the differentially-expressed proteins was performed using the server of MASCOT or Prosperctor or ProFound.Thirty-seven proteins were identified.This result showed that embryonic weight and liver weight in DHEA group was significantly lower than that in control group.The expression of apolipoproteinA-I was increased in DHEA group,which facilitated cholesterol to cholesterol esters;the expression of peroxiredoxin 6 which had antioxidative activity was increased in DHEA group;at the same time,sulfotransferase (according to pH5.9) was increased in DHEA group,this demonstrated that DHEA was the best substrate for sulfotransferase(according to pH5.9) in broilers.Above all,the expression of pyruvate dehydrogenase was decreased in DHEA group.This suggested that DHEA reduced the supply of acyl coenzyme A by decreasing the activity of pyruvate dehydrogenase so as to decline the deposition of fat in broiler chicken during embryonic development.
     4 Study of DHEA on the Expressions of Tyrosine Phosphorylation Proteins Related to Lipids Metabolism in Broiler Chickens Embryo' Liver
     In order to explore the possible fat-reducing mechanism of DHEA,this study was to investigate the effect of DHEA on lipids metabolism and the regulating mechanism of DHEA on lipids metabolism in broiler chickens during embryonic development.The treatment was injected 50μL DMSO cotained 50 mg DHEA per kilogram eggs and the control was only injected 50μL DMSO to fertilized eggs.The livers were gained on days 9, 14 and 19 of embryonic development as well as at hatching.The extracted proteins were analyzed using 2-DE in combination with Western blotting of specific anti-phosphotyrosine. The differential spots were identified by MALDI-TOF-MS or MALDI-TOF-TOF-MS. Peptide mass fingerprinting of the differentially-expressed proteins was performed using the server of MASCOT or Prosperctor or ProFound.Thirty-two tyrosine phosphorylation proteins were identified.Of which,22 tyrosine phosphorylation proteins showed significantly difference in volume between the control and the treatment.This result showed that DHEA,as the signaling molecule of substance metabolism,had regulated the activity of its target enzyme by the phosphorylation/dephosphorylation;DHEA increased the tyrosine phosphorylation proteins of peroxiredoxin 6 so as to enhanced its antioxidative activity;DHEA increased the tyrosine phosphorylation proteins of sulfotransferase (according to pH5.9) so as to promote the biotransformation of DHEA;what's more, DHEA reduced the supply of acyl coenzyme A by decreasing the activity of pyruvate dehydrogenase so as to decline the deposition of fat in broiler chicken during embryonic development.This could be one of the fat-reducing mechanisms of DHEA.
引文
1. Abadie J M, Wright B, Correa G, et al. Effect of dehydroepiandrosterone on neurotransmitter levels and appetite regulation of the obese Zucker rat[J]. The Obesity Research Program. Diabetes, 1993,42:662-669.
    
    2. Abbott A. And now for the proteome[J]. Nature, 2001, 409:747.
    
    3. Ahima R S, Flier J S. Adipose tissue as an endocrine organ[J]. Trends Endocrinol Metab, 2000,11:327-332.
    
    4. Ajuyah A O, Cherian G, Wang Y, et al. Maternal dietary FA modulate the long-chain n-3 PUFA status of chick cardiac tissue[J]. Lipids, 2003, 38:1257-1261.
    
    5. Alonso A, Sasin J, Bottini N, et al. Protein tyrosine phosphatases in the human genome[J]. Cell,2004, 117:699-711.
    
    6. Apweiler R, Attwood T K, Bairoch A, et al. The InterPro database, an integrated documentation resource for protein families, domains and functional sites[J]. Nucleic Acids Res, 2001, 29:37-40.
    
    7. Araghiniknam M, Chung S, Nelson-White T, et al. Antioxidant activity of dioscorea and dehydroepiandrosterone (DHEA) in older humans[J]. Life Sci, 1996, 59:PL147-157.
    
    8. Aragno M, Tamagno E, Poli G, et al. Prevention of carbon tetrachloride-induced lipid peroxidation in liver microsomes from dehydroepiandrosterone-pretreated rats[J]. Free Radic Res, 1994,21:427-435.
    
    9. Arlt W. Dehydroepiandrosterone replacement therapy[J]. Semin Reprod Med, 2004, 22:379-388.
    
    10. Baek I J, Yon J M, Lee B J, et al. Expression pattern of cytosolic glutathione peroxidase (cGPx) mRNA during mouse embryogenesis[J]. Anat Embryol (Berl), 2005, 209:315-321.
    
    11. Bagnato C, Thumar J, Mayya V, et al. Proteomics analysis of human coronary atherosclerotic plaque: a feasibility study of direct tissue proteomics by liquid chromatography and tandem mass spectrometry[J]. Mol Cell Proteomics, 2007, 6:1088-1102.
    
    12. Baker M E. Co-evolution of steroidogenic and steroid-inactivating enzymes and adrenal and sex steroid receptors[J]. Mol Cell Endocrinol, 2004, 215:55-62.
    
    13. Banaszak L, Winter N, Xu Z, et al. Lipid-binding proteins: a family of fatty acid and retinoid transport proteins[J]. Advances in protein chemistry, 1994, 45:89-151.
    
    14. Bateman A, Birney E, Cerruti L, et al. The Pfam protein families database[J]. Nucleic Acids Res,2002,30:276-280.
    15. Bellei M, Battelli D, Fornieri C, et al. Changes in liver structure and function after short-term and long-term treatment of rats with dehydroepiandrosterone[J]. J Nutr, 1992, 122:967-976.
    
    16. Bensadoun A, and Rothfeld A. The form of absorption of lipids in the chicken, Gallus domesticus[J]. Proc Soc Exp Biol Med, 1972, 141:814-817.
    
    17. Berdanier C D, McIntosh M K. Further studies on the effects of dehydroepiandrosterone on hepatic metabolism in BHE rats[J]. Proc Soc Exp Biol Med, 1989, 192:242-247.
    
    18. Bevan M, Bancroft I, Bent E, et al. Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana[J]. Nature, 1998, 391:485-488.
    
    19. Beyer A, Hollunder J, Nasheuer H P, et al. Post-transcriptional expression regulation in the yeast Saccharomyces cerevisiae on a genomic scale[J]. Mol Cell Proteomics, 2004, 3:1083-1092.
    
    20. Blanchard R L, Freimuth R R, Buck J, et al. A proposed nomenclature system for the cytosolic sulfotransferase (SULT) superfamily[J]. Pharmacogenetics, 2004, 14:199-211.
    
    21. Blau N, Thony B, Spada M, et al. Tetrahydrobiopterin and inherited hyperphenylalaninemias[J].Turk JPediatr, 1996,38:19-35.
    
    22. Bobyleva V, Kneer N, Bellei M, et al. Comparative studies of effects of dehydroepiandrosterone on rat and chicken liver[J]. Comp Biochem Physiol B, 1993, 105:643-647.
    
    23. Borchert A, Wang C C, Ufer C, et al. The role of phospholipid hydroperoxide glutathione peroxidase isoforms in murine embryogenesis[J]. J Biol Chem, 2006, 281:19655-19664.
    
    24. Borron D C, Jensen L S, McCartney M G, et al. Comparison of lipoprotein lipase activities in chickens and turkeys[J]. Poult Sci, 1979, 58:659-662.
    
    25. Bourneuf E, Herault F, Chicault C, et al. Microarray analysis of differential gene expression in the liver of lean and fat chickens[J]. Gene, 2006, 372:162-170.
    
    26. Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem, 1976, 72:248-254.
    
    27. Calabotta D F, Cherry J A, Siegel P B, et al. Lipogenesis and lipolysis in fed and fasted chicks from high and low body weight lines[J]. Poult Sci, 1985, 64:700-704.
    
    28. Callies F, Arlt W, Siekmann L, et al. Influence of oral dehydroepiandrosterone (DHEA) on urinary steroid metabolites in males and females[J]. Steroids, 2000, 65:98-102.
    
    29. Candiano G, Bruschi M, Musante L, et al. Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis[J]. Electrophoresis, 2004, 25:1327-1333.
    
    30. Carre W, Bourneuf E, Douaire M, et al. Differential expression and genetic variation of hepatic messenger RNAs from genetically lean and fat chickens[J]. Gene, 2002, 299:235-243.
    
    31. Catania R A, Angele M K, Ayala A, et al. Dehydroepiandrosterone restores immune function following trauma-haemorrhage by a direct effect on T lymphocytes[J]. Cytokine, 1999,11:443-450.
    
    32. Cherian G, Ai W, Goeger M P. Maternal dietary conjugated linoleic acid alters hepatic triacylglycerol and tissue fatty acids in hatched chicks[J]. Lipids, 2005, 40:131-136.
    
    33. Cherian G, Gopalakrishnan N, Akiba Y, et al. Effect of maternal dietary n-3 fatty acids on the accretion of long-chain polyunsaturated fatty acids in the tissues of developing chick embryo[J].Biol Neonate, 1997, 72:165-174.
    
    34. Cherian G, Sim J S. Maternal dietary alpha-linolenic acid (18:3n-3) alters n-3 polyunsaturated fatty acid metabolism and liver enzyme activity in hatched chicks[J]. Poult Sci, 2001, 80:901-905.
    
    35. Cleary M P, Billheimer J, Finan A, et al. Metabolic consequences of dehydroepiandrosterone in lean and obese adult Zucker rats[J]. Horm Metab Res, 1984, 16 Suppl 1:43-46.
    
    36. Cleary M P, Zisk J F. Anti-obesity effect of two different levels of dehydroepiandrosterone in lean and obese middle-aged female Zucker rats[J]. Int J Obes, 1986, 10:193-204.
    
    37. Cleary M P. Effect of dehydroepiandrosterone treatment on liver metabolism in rats[J]. Int J Biochem, 1990, 22:205-210.
    
    38. Cogburn L A, Wang X, Carre W, et al. Systems-wide chicken DNA microarrays, gene expression profiling, and discovery of functional genes[J]. Poultry science, 2003, 82:939-951.
    
    39. Cohen P. The origins of protein phosphorylation[J]. Nat Cell Biol, 2002, 4:E127-130.
    
    40. Cordwell S J, Basseal D J, Bjellqvist B, et al. Characterisation of basic proteins from Spiroplasma melliferum using novel immobilised pH gradients[J]. Electrophoresis, 1997, 18:1393-1398.
    
    41. Coughtrie M W. Sulfation through the looking glass-recent advances in sulfotransferase research for the curious[J]. Pharmacogenomics J, 2002, 2:297-308.
    
    42. Dalla Valle L, Couet J, Labrie Y, et al. Occurrence of cytochrome P450c17 mRNA and dehydroepiandrosterone biosynthesis in the rat gastrointestinal tract[J]. Mol Cell Endocrinol, 1995,111:83-92.
    
    43. Dana R, Kachhwaha V S. Comparison of oral and intravenous hydration and diuretic, choice for protecting cisplatin induced nephrotoxicity[J]. Indian J Cancer, 1996, 33:168-170.
    
    44. Davis R A, Boogaerts J R, Borchardt R A, et al. Intrahepatic assembly of very low density lipoproteins. Varied synthetic response of individual apolipoproteins to fasting[J]. J Biol Chem,1985,260:14137-14144.
    
    45. De Pergola G. The adipose tissue metabolism: role of testosterone and dehydroepiandrosterone[J].Int J Obes Relat Metab Disord, 2000, 24 Suppl 2:S59-63.
    
    46. Delom F, Chevet E. Phosphoprotein analysis: from proteins to proteomes[J]. Proteome Sci, 2006, 4:15.
    
    47. Donaldson W E. Lipogenesis and body fat in chicks: effects of calorie-protein ratio and dietary fat[J]. Poult Sci, 1985, 64:1199-1204.
    
    48. Douaire M, Le Fur N, el Khadir-Mounier C, et al. Identifying genes involved in the variability of genetic fatness in the growing chicken[J]. Poultry science, 1992, 71:1911-1920.
    
    49. Duanmu Z, Weckle A, Koukouritaki S B, et al. Developmental expression of aryl, estrogen, and hydroxysteroid sulfotransferases in pre- and postnatal human liver[J]. J Pharmacol Exp Ther, 2006,316:1310-1317.
    
    50. Dunshea F R, Harris D M, Bauman D E, et al. Effect of porcine somatotropin on in vivo glucose kinetics and lipogenesis in growing pigs[J]. J Anim Sci, 1992, 70:141-151.
    
    51. Dupont J, Chen J, Derouet M, et al. Metabolic differences between genetically lean and fat chickens are partly attributed to the alteration of insulin signaling in liver[J]. The Journal of nutrition, 1999, 129: 1937-1944.
    
    52. Ebeling P, Koivisto V A. Physiological importance of dehydroepiandrosterone[J]. Lancet, 1994,343:1479-1481.
    
    53. Etherton T D, Bauman D E. Biology of somatotropin in growth and lactation of domestic animals[J]. Physiol Rev, 1998, 78:745-761.
    
    54. Falany C N, He D, Dumas N, et al. Human cytosolic sulfotransferase 2B1: isoform expression, tissue specificity and subcellular localization[J]. J Steroid Biochem Mol Biol, 2006, 102:214-221.
    
    55. Feng L, Lin T, Uranishi H, et al. Functional analysis of the roles of posttranslational modifications at the p53 C terminus in regulating p53 stability and activity[J]. Mol Cell Biol, 2005,25:5389-5395.
    
    56. Fields S. Proteomics. Proteomics in genomeland[J]. Science, 2001, 291:1221-1224.
    
    57. Finset A, Overlie I, Holte A. Musculo-skeletal pain, psychological distress, and hormones during the menopausal transition[J]. Psychoneuroendocrinology, 2004, 29:49-64.
    
    58. Flier F J, de Vries Robbe P F, Zanstra P E. Three types of IS-A statement in diagnostic classifications: three types of knowledge needed for development and maintenance[J]. Methods Inf Med, 1998,37:453-459.
    
    59. Flier J S, Maratos-Flier E. Obesity and the hypothalamus: novel peptides for new pathways[J]. Cell,1998,92:437-440.
    
    60. Flier J S. Clinical review 94: What's in a name? In search of leptin's physiologic role[J]. J Clin Endocrinol Metab, 1998, 83:1407-1413.
    
    61. Flier J S. Lowered leptin slims immune response[J]. Nat Med, 1998, 4:1124-1125.
    62. Fliers E, Wiersinga W M, Swaab D F. Physiological and pathophysiological aspects of thyrotropin-releasing hormone gene expression in the human hypothalamus[J]. Thyroid, 1998,8:921-928.
    
    63. Fougerousse F, Edom-Vovard F, Merkulova T, et al. The muscle-specific enolase is an early marker of human myogenesis[J]. J Muscle Res Cell Motil, 2001,22:535-544.
    
    64. Frenkel R A, Slaughter C A, Orth K, et al. Peroxisome proliferation and induction of peroxisomal enzymes in mouse and rat liver by dehydroepiandrosterone feeding[J]. J Steroid Biochem, 1990,35:333-342.
    
    65. Garton A J, Campbell D G, Carling D, et al. Phosphorylation of bovine hormone-sensitive lipase by the AMP-activated protein kinase[J]. A possible antilipolytic mechanism. Eur J Biochem, 1989,179:249-254.
    
    66. Ghaemmaghami S, Huh W K, Bower K, et al. Global analysis of protein expression in yeast[J].Nature, 2003,425:737-741.
    
    67. Giavalisco P, Nordhoff E, Lehrach H, et al. Extraction of proteins from plant tissues for two-dimensional electrophoresis analysis[J]. Electrophoresis, 2003, 24:207-216.
    
    68. Goldberg I J. Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis[J]. J Lipid Res, 1996,37:693-707.
    
    69. Gorg A, Weiss W, Dunn M J. Current two-dimensional electrophoresis technology for proteomics[J]. Proteomics 2004,4:3665-3685.
    
    70. Griffin H, Acamovic F, Guo K, et al. Plasma lipoprotein metabolism in lean and in fat chickens produced by divergent selection for plasma very low density lipoprotein concentration[J]. Journal of lipid research, 1989, 30:1243-1250.
    
    71. Griffin H D, Whitehead C C. Plasma lipoprotein concentration as an indicator of fatness in broilers:development and use of a simple assay for plasma very low density lipoproteins[J]. Br Poult Sci,1982,23:307-313.
    
    72. Griffin H D, Guo K, Windsor D, et al. Adipose tissue lipogenesis and fat deposition in leaner broiler chickens[J]. The Journal of nutrition, 1992, 122:363-368.
    
    73. Gronborg M, Kristiansen T Z, Stensballe A, et al. A mass spectrometry-based proteomic approach for identification of serine/threonine-phosphorylated proteins by enrichment with phospho-specific antibodies: identification of a novel protein, Frigg, as a protein kinase A substrate[J]. Mol Cell Proteomics, 2002, 1:517-527.
    
    74. Gumell E M, Chatterjee V K. Dehydroepiandrosterone replacement therapy[J]. Eur J Endocrinol,2001, 145:103-106.
    75. Gygi S P, Corthals G L, Zhang Y, et al. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology[J]. Proc Natl Acad Sci U S A, 2000, 97:9390-9395.
    
    76. Gygi S P, Rochon Y, Franza B R, et al. Correlation between protein and mRNA abundance in yeast[J]. Mol Cell Biol, 1999, 19:1720-1730.
    
    77. Haden S T, Glowacki J, Hurwitz S, et al. Effects of age on serum dehydroepiandrosterone sulfate,IGF-I, and IL-6 levels in women[J]. Calcif Tissue Int, 2000, 66:414-418.
    
    78. Hajduch M, Ganapathy A, Stein J W, et al. A systematic proteomic study of seed filling in soybean. Establishment of high-resolution two-dimensional reference maps, expression profiles, and an interactive proteome database[J]. Plant Physiol, 2005, 137:1397-1419.
    
    79. Hamburger V, Hamilton H L. A series of normal stages in the development of the chick embryo[J].1951.Dev Dyn, 1992, 195:231-272.
    
    80. Hanson R W, Reshef L. Regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression[J]. Annu Rev Biochem, 1997, 66:581-611.
    
    81. Haraguchi K, Shimura H, Kawaguchi A, et al. Effects of thyrotropin on the proliferation and differentiation of cultured rat preadipocytes[J]. Thyroid, 1999, 9:613-619.
    
    82. Harvey S, Scanes C G, Howe T. Growth hormone effects on in vitro metabolism of avian adipose and liver tissue[J]. Gen Comp Endocrinol, 1977, 33:322-328.
    
    83. Hausman G J, Jewell D E. The effect of insulin on primary cultures of rat preadipocytes grown in fetal or postnatal pig serum[J]. J Anim Sci, 1988, 66:3267-3278.
    
    84. Hermier D, Chapman M J. Plasma lipoproteins and fattening: description of a model in the domestic chicken, Gallus domesticus[J]. Reprod Nutr Dev, 1985, 25:235-241.
    
    85. Herrington D M, Gordon G B, Achuff S C, et al. Plasma dehydroepiandrosterone and dehydroepiandrosterone sulfate in patients undergoing diagnostic coronary angiography[J]. J Am Coll Cardiol, 1990, 16:862-870.
    
    86. Heyer B S, Kochanowski H, Solter D. Expression of Melk, a new protein kinase, during early mouse development[J]. Dev Dyn, 1999, 215:344-351.
    
    87. Heyer B S, Warsowe J, Solter D, et al. New member of the Snfl/AMPK kinase family, Melk, is expressed in the mouse egg and preimplantation embryo[J]. Mol Reprod Dev, 1997, 47:148-156.
    
    88. Higdon K, Scott A, Tucci M, et al. The use of estrogen, DHEA, and diosgenin in a sustained delivery setting as a novel treatment approach for osteoporosis in the ovariectomized adult rat model[J]. Biomed Sci Instrum, 2001, 37:281-286.
    
    89. Hinson JP, Brooke A, Raven PW. Therapeutic uses of dehydroepiandrosterone[J]. Curr Opin Investig Drugs, 2003, 4:1205-1208.
    90. Hunter T. Signaling-2000 and beyond[J]. Cell, 2000, 100:113-127.
    
    91. Iida A, Sekine A, Saito S, et al. Catalog of 320 single nucleotide polymorphisms (SNPs) in 20 quinone oxidoreductase and sulfotransferase genes[J]. J Hum Genet, 2001, 46:225-240.
    
    92. Izumi T, Yamaguchi M. Overexpression of regucalcin suppresses cell death and apoptosis in cloned rat hepatoma H4-II-E cells induced by lipopolysaccharide, PD 98059, dibucaine, or Bay K 8644[J].J Cell Biochem, 2004, 93:598-608.
    
    93. Jackson S, Summers J D, Leeson S. Effect of dietary protein and energy on broiler performance and production costs[J]. Poult Sci, 1982, 61:2232-2240.
    
    94. Jiang Z, Cherian G, Robinson F E, et al. Effect of feeding cholesterol to laying hens and chicks on cholesterol metabolism in pre- and posthatch chicks[J]. Poult Sci, 1990, 69:1694-1701.
    
    95. Kajita K, Ishizuka T, Mune T, et al. Dehydroepiandrosterone down-regulates the expression of peroxisome proliferator-activated receptor gamma in adipocytes[J]. Endocrinology, 2003,144:253-259.
    
    96. Kalume D E, Molina H, Pandey A. Tackling the phosphoproteome: tools and strategies[J]. Curr Opin Chem Biol, 2003, 7:64-69.
    
    97. Kaufmann H, Bailey J E, Fussenegger M. Use of antibodies for detection of phosphorylated proteins separated by two-dimensional gel electrophoresis[J]. Proteomics, 2001, 1.194-199.
    
    98. Keller A, Rouzeau J D, Farhadian F, et al. Differential expression of alpha- and beta-enolase genes during rat heart development and hypertrophy[J]. Am J Physiol, 1995, 269:H1843-1851.
    
    99. Keren S, Argaman E, Golan M Solid swallowing versus water swallowing: manometric study of dysphagia[J]. Dig Dis Sci, 1992, 37:603-608.
    
    100. Kester M H, Kaptein E, Roest T J, et al. Characterization of human iodothyronine sulfotransferases[J]. J Clin Endocrinol Metab, 1999, 84:1357-1364.
    
    101. Khalil A, Lehoux J G, Wagner R J, et al. Dehydroepiandrosterone protects low density lipoproteins against peroxidation by free radicals produced by gamma-radiolysis of ethanol-water mixtures[J].Atherosclerosis, 1998, 136:99-107.
    
    102. Kimura M, Tanaka S, Yamada Y, et al. Dehydroepiandrosterone decreases serum tumor necrosis factor-alpha and restores insulin sensitivity: independent effect from secondary weight reduction in genetically obese Zucker fatty rats[J]. Endocrinology, 1998, 139:3249-3253.
    
    103.Klose J, Kobalz U. Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome[J]. Electrophoresis, 1995, 16:1034-1059.
    
    104. Klose J. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals[J]. Humangenetik, 1975, 26:231-243.
    
    105. Koller A, Washburn M P, Lange B M, et al. Proteomic survey of metabolic pathways in rice[J].Proc Natl Acad Sci U S A, 2002, 99:11969-11974.
    
    106. Kouba M, Hermier D, Bernard-Griffiths M A. Comparative study of hepatic VLDL secretion in vivo in the growing turkey (Meleagris gallopavo) and chicken (Gallus domesticus) [J]. Comp Biochem Physiol B Biochem Mol Biol, 1995, 110:47-55.
    
    107. Kowaltowski A J, Netto L E, Vercesi A E. The thiol-specific antioxidant enzyme prevents mitochondrial permeability transition. Evidence for the participation of reactive oxygen species in this mechanism[J]. J Biol Chem, 1998, 273:12766-12769.
    
    108. Labrie F, Belanger A, Luu-The V, et al. DHEA and the intracrine formation of androgens and estrogens in peripheral target tissues: its role during aging[J]. Steroids, 1998, 63:322-328.
    
    109. Labrie F, Luu-The V, Belanger A, et al. Is dehydroepiandrosterone a hormone [J] ? J Endocrinol,2005, 187:169-196.
    
    110. Labrie F, Luu-The V, Labrie C, et al. Endocrine and intracrine sources of androgens in women: inhibition of breast cancer and other roles of androgens and their precursor dehydroepiandrosterone[J]. Endocr Rev, 2003, 24:152-182.
    
    111. Labrie F. Intracrinology[J]. Mol Cell Endocrinol, 1991, 78.C113-118.
    
    112. Larger E, Marre M, Corvol P, et al. Hyperglycemia-induced defects in angiogenesis in the chicken chorioallantoic membrane model[J]. Diabetes, 2004, 53:752-761.
    
    113. Latour M A, Devitt A A, Meunier RA, et al. Effects of conjugated linoleic acid. 1. Fatty acid modification of yolks and neonatal fatty acid metabolism[J]. Poult Sci, 2000, 79:817-821.
    
    114. Laurin D E, Cartwright A L. Factors affecting insulin responsiveness of triglyceride synthesis in incubated chicken hepatocytes[J]. Proc Soc Exp Biol Med, 1993, 202:476-481.
    
    115. Lea-Currie Y R, Wu S M, Mclntosh M K. Effects of acute administration of dehydroepiandrosterone-sulfate on adipose tissue mass and cellularity in male rats[J]. Int J Obes Relat Metab Disord, 1997, 21:147-154.
    
    116. Leclercq B. Adipose tissue metabolism and its control in birds[J]. Poult Sci, 1984, 63:2044-2054.
    
    117. Leclercq B, Hermier D, and Guy G. Metabolism of very low density lipoproteins in genetically lean or fat lines of chicken[J]. Reprod Nutr Dev, 1990, 30:701-715.
    
    118. Leenstra F R, Pit R. Fat deposition in a broiler sire strain. 3. Heritability of and genetic correlations among body weight, abdominal fat, and feed conversion[J]. Poult Sci, 1988, 67:1-9.
    
    119. Leenstra F R. Fat deposition in a broiler sire strain. 5. Comparisons of economic efficiency of direct and indirect selection against fatness[J]. Poult Sci, 1988, 67:16-24.
    120. Legrand P, Hermier D. Hepatic delta 9 desaturation and plasma VLDL level in genetically lean and fat chickens[J]. Int J Obes Relat Metab Disord, 1992,16:289-294.
    
    121. Leveille G A. In vitro hepatic lipogenesis in the hen and chick[J]. Comp Biochem Physiol, 1969,28:431-435.
    
    122. Lien T F, Horng Y M. The effect of supplementary dietary L-carnitine on the growth performance, serum components, carcase traits and enzyme activities in relation to fatty acid beta-oxidation of broiler chickens[J]. Br Poult Sci, 2001, 42:92-95.
    
    123. Mabrouk G M, Helmy I M, Thampy K G, et al. Acute hormonal control of acetyl-CoA carboxylase. The roles of insulin, glucagon, and epinephrine[J]. J Biol Chem, 1990, 265:6330-6338.
    
    124. MacKay V L, Li X, Flory M R, et al. Gene expression analyzed by high-resolution state array analysis and quantitative proteomics: response of yeast to mating pheromone[J]. Mol Cell Proteomics, 2004, 3:478-489.
    
    125. Mackey A J, Haystead T A, Pearson W R. Getting more from less: algorithms for rapid protein identification with multiple short peptide sequences[J]. Mol Cell Proteomics, 2002, 1:139-147.
    
    126. Magri K A, Adamo M, Leroith D, et al. The inhibition of insulin action and glucose metabolism by porcine growth hormone in porcine adipocytes is not the result of any decrease in insulin binding or insulin receptor kinase activity[J]. Biochem J, 1990, 266:107-113.
    
    127. Manning G, Whyte D B, Martinez R, et al. The protein kinase complement of the human genome[J].Science, 2002, 298:1912-1934.
    
    128. Martin K, Steinberg T H, Cooley L A, et al. Quantitative analysis of protein phosphorylation status and protein kinase activity on microarrays using a novel fluorescent phosphorylation sensor dye[J].Proteomics, 2003, 3:1244-1255.
    
    129. Mastrocola R, Aragno M, Bjetteto S, et al. Pro-oxidant effect of dehydroepiandrosterone in rats is mediated by PPAR activation[J]. Life Sci, 2003, 73:289-299.
    
    130. Mclntosh M, Bao H, Lee C. Opposing actions of dehydroepiandrosterone and corticosterone in rats[J]. Proc Soc Exp Biol Med, 1999, 221:198-206.
    
    131. Meyerhof P G, Haley L E. Initial expression of the genes for fructose 1,6-diphosphatase, malic enzyme, and aspartate aminotransferase in Japanese quail and chicken-quail hybrid embryos[J].Biochem Genet, 1975,13:457-470.
    
    132. Mildner A M, Clarke S D. Porcine fatty acid synthase: cloning of a complementary DNA, tissue distribution of its mRNA and suppression of expression by somatotropin and dietary protein[J]. J Nutr, 1991, 121:900-907.
    
    133. Miller W L. Androgen biosynthesis from cholesterol to DHEA[J]. Mol Cell Endocrinol, 2002,198:7-14.
    
    134. Mohan P F, Cleary M P. Comparison of dehydroepiandrosterone and clofibric acid treatments in obese Zucker rats[J]. J Nutr, 1989, 119:496-501.
    
    135. Molloy M P, Herbert B R, Walsh B J, et al. Extraction of membrane proteins by differential solubilization for separation using two-dimensional gel electrophoresis[J]. Electrophoresis, 1998,19:837-844.
    
    136. Monteil C, Fillastre J P, and Morin J P. Expression and subcellular distribution of phosphoenolpyruvate carboxykinase in primary cultures of rabbit kidney proximal tubule cells:comparative study with renal and hepatic PEPCK in vivo[J]. Biochimica et biophysica acta, 1995,1243:437-445.
    
    137. Mooney R A, Lane M D. Formation and turnover of triglyceride-rich vesicles in the chick liver cell. Effects of cAMP and carnitine on triglyceride mobilization and conversion to ketones[J]. J Biol Chem, 1981,256:11724-11733.
    
    138. Muzzin P, Eisensmith R C, Copeland K C, et al. Correction of obesity and diabetes in genetically obese mice by leptin gene therapy[J]. Proc Natl Acad Sci U S A, 1996, 93:14804-14808.
    
    139. Neuhoff V, Arold N, Taube D, et al. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250[J]. Electrophoresis, 1988, 9:255-262.
    
    140. Noble R C, Cocchi M. Lipid metabolism and the neonatal chicken[J]. Prog Lipid Res, 1990,29:107-140.
    
    141. Notenboom R G, van den Bergh Weerman M A, Dingemans K. P, et al. Timing and sequence of differentiation of embryonic rat hepatocytes along the biliary epithelial lineage[J]. Hepatology,2003,38:683-691.
    
    142. Noyan A, Lossow W J, Brot N, et al. Pathway and Form of Absorption of Palmitic Acid in the Chicken[J]. Journal of lipid research, 1964, 5:538-541.
    
    143. O'Farrell P H. High resolution two-dimensional electrophoresis of proteins[J]. J Biol Chem, 1975,250:4007-4021.
    
    144. Ogihara T, Isobe T, Ichimura T, et al. 14-3-3 protein binds to insulin receptor substrate-1, one of the binding sites of which is in the phosphotyrosine binding domain[J]. J Biol Chem, 1997,272:25267-25274.
    
    145. Opiteck G J, Lewis K C, Jorgenson J W, et al. Comprehensive on-line LC/LC/MS of proteins[J].Anal Chem, 1997, 69:1518-1524.
    
    146. Orentreich N, Brind J L, Rizer R L, et al. Age changes and sex differences in serum dehydroepiandrosterone sulfate concentrations throughout adulthood[J]. J Clin Endocrinol Metab,1984,59:551-555.
    
    147. Parker L N. Control of adrenal androgen secretion[J]. Endocrinol Metab Clin North Am, 1991,20:401-421.
    
    148. Paschen U, Muller M J. Liver blood flow measured by indocyanine green in conscious unrestrained miniature pigs[J]. Res Exp Med (Berl), 1987, 187:71-79.
    
    149. Piast M, Kustrzeba-Wojcicka I, Matusiewicz M, et al. Molecular evolution of enolase[J]. Acta Biochim Pol, 2005, 52:507-513.
    
    150. Piketty C, Jayle D, Gonzalez-Canali G, et al. Low plasma levels of dehydroepiandrosterone (DHEA) and incidence of lipodystrophy[J]. HIV Med, 2001, 2:136-138.
    
    151. Rabilloud T. Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains[J]. Proteomics, 2002, 2:3-10.
    
    152. Raggiaschi R, Lorenzetto C, Diodato E, et al. Detection of phosphorylation patterns in rat cortical neurons by combining phosphatase treatment and DIGE technology[J]. Proteomics, 2006,6:748-756.
    
    153.Reddy J K, Hashimoto T. Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: an adaptive metabolic system[J]. Annu Rev Nutr, 2001,21:193-230.
    
    154. Reinders J, Sickmann A. State-of-the-art in phosphoproteomics[J]. Proteomics, 2005, 5:4052-4061.
    
    155. Roberts S A, Schaefer A L, Murray A C, et al. Fall and winter hormone concentrations related to stress in pigs identified as normal and carrier for stress susceptibility [J]. Chronobiol Int, 1998,15:275-281.
    
    156. Saadoun A, Leclercq B. Comparison of in vivo fatty acid synthesis of the genetically lean and fat chickens[J]. Comp Biochem Physiol B, 1983, 75:641-644.
    
    157. Sato K, Akiba Y. Lipoprotein lipase mRNA expression in abdominal adipose tissue is little modified by age and nutritional state in broiler chickens[J]. Poult Sci, 2002, 81:846-852.
    
    158. Schad M, Lipton M S, Giavalisco P, et al. Evaluation of two-dimensional electrophoresis and liquid chromatography-tandem mass spectrometry for tissue-specific protein profiling of laser-microdissected plant samples[J]. Electrophoresis, 2005, 26:2729-2738.
    
    159. Schoonjans K, Staels B, Auwerx J. Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression[J]. J Lipid Res, 1996,37:907-925.
    
    160. Semenkovich C F, Wims M, Noe L, et al. Insulin regulation of lipoprotein lipase activity in 3T3-L1 adipocytes is mediated at posttranscriptional and posttranslational levels[J]. J Biol Chem, 1989, 264:9030-9038.
    
    161. Shaffer K L, Sharma A, Snapp E L, et al. Regulation of protein compartmentalization expands the diversity of protein function[J]. Dev Cell, 2005, 9:545-554.
    
    162. Shand J H, West D W, Noble R C, et al. The esterification of cholesterol in the liver of the chick embryo[J]. Biochim Biophys Acta, 1994, 1213:224-230.
    
    163. Shepherd A, Cleary M P. Metabolic alterations after dehydroepiandrosterone treatment in Zucker rats[J]. Am J Physiol, 1984, 246:E123-128.
    
    164. Shi J, Schulze S, Lardy H A. The effect of 7-oxo-DHEA acetate on memory in young and old C57BL/6 mice. Steroids, 2000, 65:124-129.
    
    165. Shintaku H. Disorders of tetrahydrobiopterin metabolism and their treatment[J]. Curr Drug Metab,2002,3:123-131.
    
    166. Simsolo R B, Ong J M, Kern P A. Characterization of lipoprotein lipase activity, secretion, and degradation at different sites of post-translational processing in primary cultures of rat adipocytes[J]. J Lipid Res, 1992, 33:1777-1784.
    
    167. Sirois J, Cote J F, Charest A, et al. Essential function of PTP-PEST during mouse embryonic vascularization, mesenchyme formation, neurogenesis and early liver development[J]. Mech Dev,2006, 123:869-880.
    
    168. Speake B K, Murray A M, Noble R C. Transport and transformations of yolk lipids during development of the avian embryo[J]. Prog Lipid Res, 1998, 37:1-32.
    
    169. Spiegelman B M, Flier J S. Obesity and the regulation of energy balance[J]. Cell, 2001,104:531-543.
    
    170. Spolarics Z. A carbohydrate-rich diet stimulates glucose-6-phosphate dehydrogenase expression in rat hepatic sinusoidal endothelial cells[J]. J Nutr, 1999, 129:105-108.
    
    171. Stanley E L, Hume R, Coughtrie M W. Expression profiling of human fetal cytosolic sulfotransferases involved in steroid and thyroid hormone metabolism and in detoxification[J]. Mol Cell Endocrinol, 2005, 240:32-42.
    
    172. Steinberg T H, Agnew B J, Gee K R, et al. Global quantitative phosphoprotein analysis using Multiplexed Proteomics technology[J]. Proteomics, 2003, 3:1128-1144.
    
    173. Stralfors P, Hemmings H C, Greengard P. Inhibitors of protein phosphatase-1. Inhibitor-1 of bovine adipose tissue and a dopamine- and cAMP-regulated phosphoprotein of bovine brain are identical[J]. Eur J Biochem, 1989, 180:143-148.
    
    174. Strott C A. Steroid sulfotransferases[J]. Endocr Rev, 1996, 17:670-697.
    
    175. Strott C A. Sulfonation and molecular action[J]. Endocr Rev, 2002, 23:703-732.
    176. Subramanian A, Miller D M. Structural analysis of alpha-enolase[J]. Mapping the functional domains involved in down-regulation of the c-myc protooncogene. J Biol Chem, 2000,275:5958-5965.
    
    177. Svec F, Abadie J, Browne E S, et al. Dehydroepiandrosterone and macronutrient selection by obese Zucker rats (fa/fa) [J]. Appetite, 1995, 25:143-154.
    
    178. Svec F, Porter J. Effect of DHEA on macronutrient selection by Zucker rats[J]. Physiol Behav,1996,59:721-727.
    
    179. Swierczynski J, Bannasch P, Mayer D. Increase of lipid peroxidation in rat liver microsomes by dehydroepiandrosterone feeding[J]. Biochim Biophys Acta, 1996, 1315:193-198.
    
    180. Tagliaferro A R, Davis J R, Truchon S, et al. Effects of dehydroepiandrosterone acetate on metabolism, body weight and composition of male and female rats[J]. J Nutr, 1986, 116:1977-1983.
    
    181.Tanaka N, Takahashi H, Kitano H, et al. Proteome approach to characterize the methylmalonate-semialdehyde dehydrogenase that is regulated by gibberellin[J]. J Proteome Res,2005,4:1575-1582.
    
    182. Tang X, Ma H, Zou S, et al. Effects of dehydroepiandrosterone (DHEA) on hepatic lipid metabolism parameters and lipogenic gene mRNA expression in broiler chickens[J]. Lipids, 2007,42:1025-1033.
    
    183. Tarlow D M, Watkins P A, Reed R E, et al. Lipogenesis and the synthesis and secretion of very low density lipoprotein by avian liver cells in nonproliferating monolayer culture[J]. Hormonal effects.J Cell Biol, 1977,73:332-353.
    
    184. Tian Q, Stepaniants S B, Mao M, et al. Integrated genomic and proteomic analyses of gene expression in Mammalian cells[J]. Mol Cell Proteomics, 2004, 3:960-969.
    
    185. Tona K, Onagbesan O M, Jego Y, et al. Comparison of embryo physiological parameters during incubation, chick quality, and growth performance of three lines of broiler breeders differing in genetic composition and growth rate[J]. Poult Sci, 2004, 83:507-513.
    
    186. Tugwood J D, Issemann I, Anderson R G, et al. The mouse peroxisome proliferator activated receptor recognizes a response element in the 5' flanking sequence of the rat acyl CoA oxidase gene[J]. Embo J, 1992,11:433-439.
    
    187. Unlu M, Morgan M E, Minden J S. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts[J]. Electrophoresis, 1997, 18:2071-2077.
    
    188. Van Home P L. Production and economic results of commercial flocks with white layers in aviary systems and battery cages[J]. Br Poult Sci, 1996, 37:255-261.
    
    189. Van Nieuwenhoven F A, Van der Vusse G J, and Glatz J F. Membrane-associated and cytoplasmic fatty acid-binding proteins[J]. Lipids, 1996, 31 Suppl:S223-227.
    
    190. Vensel W H, Tanaka C K, Cai N, et al. Developmental changes in the metabolic protein profiles of wheat endosperm[J]. Proteomics, 2005, 5:1594-1611.
    
    191. Venter J C, Adams M D, Myers E W, et al. The sequence of the human genome[J]. Science, 2001,291:1304-1351.
    
    192. Vyetrogon K, Tebbji F, Olson D J, et al. A comparative proteome and phosphoproteome analysis of differentially regulated proteins during fertilization in the self-incompatible species Solanum chacoense Bitt[J]. Proteomics, 2007, 7:232-247.
    
    193. Wang M J, Huang H M, Chen H L, et al. Dehydroepiandrosterone inhibits lipopolysaccharide-induced nitric oxide production in BV-2 microglia[J]. J Neurochem, 2001,77:830-838.
    
    194. Wang Q, Li H, Li N, et al. Tissue expression and association with fatness traits of liver fatty acid-binding protein gene in chicken[J]. Poultry science, 2006, 85:1890-1895.
    
    195. Wang Y, Fried S K, Petersen R N, et al. Somatotropin regulates adipose tissue metabolism in neonatal swine[J]. J Nutr, 1999, 129:139-145.
    
    196. Washburn M P, Wolters D, Yates J R. Large-scale analysis of the yeast proteome by multidimensional protein identification technology[J]. Nat Biotechnol, 2001,19:242-247.
    
    197. Wasinger V C, Cordwell S J, Cerpa-Poljak A, et al. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium[J]. Electrophoresis, 1995, 16:1090-1094.
    
    198. Wei J, Sun J, Yu W, et al. Global proteome discovery using an online three-dimensional LC-MS/MS[J]. J Proteome Res, 2005, 4:801-808.
    
    199. Weinstock P H, Levak-Frank S, Hudgins L C, et al. Lipoprotein lipase controls fatty acid entry into adipose tissue, but fat mass is preserved by endogenous synthesis in mice deficient in adipose tissue lipoprotein lipase[J], Proc NatI Acad Sci U S A, 1997, 94:10261-10266.
    
    200. Weldon S L, Rando A, Matathias A S, et al. Mitochondrial phosphoenolpyruvate carboxykinase from the chicken. Comparison of the cDNA and protein sequences with the cytosolic isozyme[J]. The Journal of biological chemistry, 1990, 265:7308-7317.
    
    201. Whitehead C C, Griffin H D. Development of divergent lines of lean and fat broilers using plasma very low density lipoprotein concentration as selection criterion: the first three generations[J]. Br Poult Sci, 1984,25:573-582.
    
    202. Willemse P H, Dikkeschei L D, Wolthers B G. Physiological importance of dehydroepiandrosterone[J]. Lancet, 1994, 344:483-484.
    
    203. Wilson L A, Reyns G E, Darras V M, et al. cDNA cloning, functional expression, and characterization of chicken sulfotransferases belonging to the SULT1B and SULT1C families[J].Arch Biochem Biophys, 2004, 428:64-72.
    
    204. Wong G K, Cavey M J. Development of the liver in the chicken embryo. I. Hepatic cords and sinusoids[J]. Anat Rec, 1992, 234:555-567.
    
    205. Wong G K, Cavey M J. Development of the liver in the chicken embryo. II. Erythropoietic and granulopoietic cells[J]. Anat Rec, 1993, 235:131-143.
    
    206. Wood T C, Her C, Aksoy I, et al. Human dehydroepiandrosterone sulfotransferase pharmacogenetics: quantitative Western analysis and gene sequence polymorphisms[J]. J Steroid Biochem Mol Biol, 1996, 59:467-478.
    
    207. Wu H Q, Masset-Brown J, Tweedie D J, et al. Induction of microsomal NADPH-cytochrome P-450 reductase and cytochrome P-450IVA1 (P-450LA omega) by dehydroepiandrosterone in rats: a possible peroxisomal proliferator[J]. Cancer Res, 1989, 49:2337-2343.
    
    208. Yamada J, Sakuma M, Ikeda T, et al. Characteristics of dehydroepiandrosterone as a peroxisome proliferator[J]. Biochim Biophys Acta 1991,1092:233-243.
    
    209. Yamagata A, Kristensen D B, Takeda Y, et al. Mapping of phosphorylated proteins on two-dimensional polyacrylamide gels using protein phosphatase[J]. Proteomics, 2002,2:1267-1276.
    
    210. Yamaguchi Y, Tanaka S, Yamakawa T, et al. Reduced serum dehydroepiandrosterone levels in diabetic patients with hyperinsulinaemia[J]. Clin Endocrinol (Oxf), 1998, 49:377-383.
    
    211. Yanai M, Tatsumi N, Endo F, et al. Analysis of gene expression patterns in the developing chick liver[J]. Dev Dyn, 2005, 233:1116-1122.
    
    212. Yanase T. Physiological significance of replacement therapy of dehydroepiandrosterone[J]. Intern Med, 2004,43:156-158.
    
    213. Yant L J, Ran Q, Rao L, et al. The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults[J]. Free Radic Biol Med, 2003, 34:496-502.
    
    214. Yen T T, Allan J A, Pearson D V, et al. Prevention of obesity in Avy/a mice by dehydroepiandrosterone[J]. Lipids, 1977, 12:409-413.
    
    215. Yokouchi Y. Establishment of a chick embryo model for analyzing liver development and a search for candidate genes[J]. Dev Growth Differ, 2005, 47:357-366.
    
    216. Yoon S, Seger R. The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions[J]. Growth Factors, 2006, 24:21-44.
    
    217. Zaret K S. Regulatory phases of early liver development: paradigms of organogenesis[J]. Nat Rev Genet, 2002,3:499-512.
    218.Zhan X,Desiderio D M.A reference map of a human pituitary adenoma proteome[J].Proteomics,2003,3:699-713.
    219.Zhang H,Zha X,Tan Y,et al.Phosphoprotein analysis using antibodies broadly reactive against phosphorylated motifs[J].J Biol Chem,2002,277:39379-39387.
    220.Zhao R,Muehlbauer E,Decuypere E,et al.Effect of genotype-nutrition interaction on growth and somatotropic gene expression in the chicken[J].Gen Comp Endocrinol,2004,136:2-11.
    221.Zhao S,Ma H,Zou S,et al.Effects of in ovo administration of DHEA on lipid metabolism and hepatic lipogenetic genes expression in broiler chickens during embryonic development[J].Lipids,2007b,42:749-757.
    222.Zhao S,Ma H,Zou S,et al.Hepatic lipogenesis in broiler chickens with different fat deposition during embryonic development[J].J Vet Med A Physiol Pathol Clin Med,2007a,54:1-6.
    223.Zhao Y,Ramakrishnan A,Kim K E,et al.Regulation of Bcl-3 through interaction with the Lck tyrosine kinase[J].Biochem Biophys Res Commun,2005,335:865-873.
    224.Zolnierowicz S,Bollen M.Protein phosphorylation and protein phosphatases[J].Embo J,2000,19:483-488.
    225.仇雪梅,杨山.VLDL选择对蛋鸡血脂性状影响的研究[J].中国家禽,1996,09:015-018.
    226.李碧春,赵东伟,王克华,陈国宏.鸡胚胎及其部分组织器官生长发育的研究[J].江苏农业研究,2001,22:3938-3943
    227.李慧锋.鸡脂肪代谢相关基因的表达与网络分析[D].中国农业大学,2005
    228.李新,余应年.药物的Ⅱ相代谢与酶系及其进展[J].中国临床药理学杂志,2000,16:458-465
    229.田朝阳,邹思湘等.脱氢表雄酮对肉鸡脂类代谢和相关激素的影响[J].农业生物技术学报,2007,15(05):778-782
    230.许梓荣,冯杰.甜菜碱对肥育猪胴体组成的影响及作用机理探讨[J].畜牧兽医学报,1998,29(5):397-405
    231.杨笋,韩锐.去氢表雄酮的抗氧化作用及其机理[J].癌症,2001,20(12):1349-1354
    232.尹靖东,齐广海,霍启光等.家禽脂类代谢调控机理的研究进展[J].动物营养学报,2001,12(2):1-7
    233.于赫.肉鸡血浆VLDL浓度双向选择效应的研究[D].东北农业大学,2000
    234.俞利荣,曾嵘,夏其昌.蛋白质组研究技术及其进展[J].生命的化学,1998,18(6):4-9
    35.占秀安,许梓荣.肉碱对中华鳖脂肪代谢的影响[J].浙江大学学报(农业与生命科学版),2002,28(1):70-73
    236.祝炼,袁莉.胰岛素信号转导与肝胰岛素抵抗.世界华人消化杂志[J],2004,12(10):2420-2423.
    237.邹思湘,李庆章等.动物生物化学[M].中国农业出版社,2005
    238.邹晓庭,卢建军.甜菜碱调控蛋鸡脂肪代谢的机理研究[J].中国农业科学,2002,35(3):324-330
    [1]孙楼.不同饲养方式对肉鸡生产效果的研究[D],中国农业大学,2005
    [2]Heyer B S,Warsowe J,Solter D,et al.New member of the Snfl/AMPK kinase family,Melk,is expressed in the mouse egg and preimplantation embryo[J].Mol Reprod Dev,1997,47(2):148-156.
    [3]Van Horne P L.Production and economic results of commercial flocks with white layers in aviary systems and battery cages[J].British poultry science,1996,37(2):255-261.
    [4]李晓伟.肉种鸡产蛋期笼养与平养利弊分析[J].中国家禽,2003,17-18
    [5]孟长泽,孔向军,王淑霞,赵建琳.肉种鸡笼养与平养对比试验[J].养禽与禽病防治,2005, 20-21
    
    [6] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical biochemistry, 1976, 72:248-254.
    
    [7] Subramanian A, Miller D M. Structural analysis of alpha-enolase. Mapping the functional domains involved in down-regulation of the c-myc protooncogene[J]. The Journal of biological chemistry, 2000,275(8):5958-5965.
    
    [8] Piast M, Kustrzeba-Wojcicka I, Matusiewicz M, Banas T. Molecular evolution of enolase[J]. Acta Biochim Pol, 2005, 52(2):507~513.
    
    [9] Fougerousse F, Edom-Vovard F, Merkulova T, et al. The muscle-specific enolase is an early marker of human myogenesis[J]. J Muscle Res Cell Motil, 2001, 22(6):535-544.
    
    [10] Keller A, Rouzeau J D, Farhadian F, et al. Differential expression of alpha- and beta-enolase genes during rat heart development and hypertrophy[J]. Am J Physiol, 1995, 269(2):H1843-851.
    
    [11] Coughtrie M W. Sulfation through the looking glass-recent advances in sulfotransferase research for the curious[J]. Pharmacogenomics J, 2002, 2(5):297-308.
    
    [12] Strott C A. Sulfonation and molecular action[J]. Endocr Rev, 2002 , 23(5):703-732.
    
    [13] Blanchard R L, Freimuth R R, Buck J, et al. A proposed nomenclature system for the cytosolic sulfotransferase (SULT) superfamily[J]. Pharmacogenetics, 2004,14(3): 199-211.
    
    [14] Iida A, Sekine A, Saito S, et al. Catalog of 320 single nucleotide polymorphisms (SNPs) in 20 quinone oxidoreductase and sulfotransferase genes[J]. J Hum Genet, 2001, 46(4):225-240.
    
    [15] Falany C N, He D, Dumas N, et al. Human cytosolic sulfotransferase 2B1: isoform expression,tissue specificity and subcellular localization[J]. J Steroid Biochem Mol Biol, 2006, 102(l-5):214-221.
    
    [16] Wilson L A, Reyns G E, Darras V M, et al. cDNA cloning, functional expression, and characterization of chicken sulfotransferases belonging to the SULT1B and SULT1C families[J].Archives of biochemistry and biophysics, 2004, 428(1):64-72.
    
    [17] Stanley E L, Hume R, Coughtrie M W. Expression profiling of human fetal cytosolic sulfotransferases involved in steroid and thyroid hormone metabolism and in detoxification[J]. Mol Cell Endocrinol, 2005, 240(1-2):32-42.
    
    [18] Kester M H, Kaptein E, Roest T J, et al. Characterization of human iodothyronine sulfotransferases[J]. The Journal of clinical endocrinology and metabolism, 1999, 84(4): 1357-1364.
    
    [19] Duanmu Z, Weckle A, Koukouritaki S B, et al. Developmental expression of aryl, estrogen, and hydroxysteroid sulfotransferases in pre- and postnatal human liver[J]. J Pharmacol Exp Ther, 2006,316(3):1310-1317.
    
    [20] Noble R C, Cocchi M. Lipid metabolism and the neonatal chicken[J]. Progress in lipid research,1990, 29(2):107-140.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700