愤怒情志特质与神经递质代谢酶基因多态性的关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨愤怒情志特质与神经递质代谢酶基因多态性的关系,并分析愤怒情志特质各维度间的相关性。
     方法:
     1.状态-特质怒表达量表Ⅱ问卷调查
     以河南中医学院在校正常大学生为调查对象,经伦理委员会批准并签署知情同意书后,采用整群随机抽样法获取调查样本。共发放问卷2864份,其中有效问卷2642份,占92.25%。以特质怒部分分值>x+s为高特质怒、分值     2.挑选基因多态性位点
     查阅相关文献,选择国外已有初步研究的色氨酸羟化酶(TPH)基因A218C(rs1800532)位点,儿茶酚胺氧位甲基转移酶(COMT)基因V158M(rs4680)位点,单胺氧化酶A(MAOA)基因30bp-uVNTR位点,做进一步研究;此外,还选取了上述三种神经递质代谢酶基因中较小且研究相对较少的MAOA基因,从人类基因组单体型图(HapMap)中选出能代表汉族人该基因SNP阳性信号的tag SNP,即rs5906597、rs2235186、rs1181275和rs5905613,同时还选取该基因中的一个功能性SNP位点rs58524323,做探索性的研究。
     3.DNA提取
     (1)标本的采集和处理
     征得知情同意后,用负压采血管对合格受试者行静脉穿刺采血5ml (2% EDTA-Na2200μl抗凝),血样置-20℃冰箱保存,两周内提取DNA。
     (2)DNA的提取方法
     将-20℃低温冷冻保存的血样于室温水浴解冻,将600μl血样移入EP离心管,加入等体积红细胞裂解液,充分混匀后12000转/min离心,吸去含有裂解红细胞的上清液。加入白细胞裂解液450μl,打碎沉淀物。
     向离心管中加入10%SDS40μl,充分混匀10min,再加入蛋白酶K10μl,上下颠转离心管轻柔混匀,置于37℃水浴过夜。
     将溶液冷却至室温,加入等体积Tris饱和酚,将离心管置于旋转器上充分混匀10min,使两相形成乳浊液;混匀后12000转/min离心5min,用宽口移液管吸取上层水相层移至新的离心管中,加入等体积的酚/氯仿(体积比1/1)500μl,充分混匀使两相形成乳浊液;混匀后10000转/min离心5min,用宽口移液管吸取上层水相层移至新的离心管中,加入等体积的氯仿,再次充分混匀,而后12000转/min离心10min。
     用宽口移液管将水相转移至新的离心管,在水相中加入1/10体积3mol/L的NaCl和800μ1冷无水乙醇,颠转离心管轻柔混匀,沉淀DNA,12000转/min离心5min。用70%冷乙醇重悬DNA沉淀,12000转/min离心10min,弃去上清,反复洗涤三次,室温干燥后溶于适量灭菌水中,-20℃保存备用。
     4.基因分型
     (1)PCR扩增目的片段
     以基因组DNA为模板,分别使用下列各对引物PCR扩增目的片段。引物设计所需的基因组DNA序列均来自美国国家生物信息中心(http://www.ncbi.nlm.nih.gov/)。所有引物序列均采用Primer Premier 5.0软件设计。引物的设计与合成由上海捷瑞生物工程有限公司完成。待测多态性位点PCR扩增引物的名称、序列(5'-3')、扩增产物长度如下。
     rs1800532:上游引物F GCATTTAGAATGGTACCTGGC下游引物R CACCACTCGATGCAACATTTG扩增的产物长度为231bp
     rs4680:上游引物F TACTGTGGCTACTCAGCTGTG下游引物R TTCAGTGAACGTGGTGTGAAC扩增的产物长度为240bp
     rs5906957:上游引物F CAGATTACTAGAGTAGGCTCC下游引物R GGTTACAGAGGTTATTGGCAG扩增的产物长度为230bp
     rs2235186:上游引物F AGAATGAAGCTGGAGAGAGAG下游引物R TTGAATAGGAGGTCACCTGTC扩增的产物长度为233bp
     rs1181275:上游引物F CTTCACTTCCATTCCTACTCC下游引物R AAGTAGTAAAATGAAGGTATG扩增的产物长度为190bp
     rs5905613:上游引物F CCACAATAGATAACCTTGGGC下游引物R CCTGGGCCAAAAATGCTATTC扩增的产物长度为222bp
     rs58524323:上游引物F CATGACATTCTCTGACTCCTG下游引物R CAGAACAGACACATACACACC扩增的产物长度为229bp
     MAOA基因30bp-uVNTR:上游引物F FAM-AGCACGCGTGCCTCAGCCTCCTTCCCCGGC下游引物R CCGAGATTCGGCGGGCCCTCCGCCTTGCGC扩增的产物长度为140-230bp
     PCR反应体系:模板DNAlμl,10XPCR缓冲液1.5μl, MgCl2 (25mM) 1.5μl, dNTP (10mM) 0.3μ1, Taq酶1.25U,引物各0.25μl,使用去离子水补足体积至25μl。PCR反应条件:94℃预变性2分钟;94℃变性15秒、60℃退火15秒、72℃延伸30秒共35个循环;72℃延伸3分钟。
     扩增完成后,1.2%琼脂糖凝胶电泳获得目的核苷酸片段。
     (2)SNP位点连接酶检测反应
     针对每个位点设计分别用于识别两种不同碱基的左端探针(长度相差3bp),以及带荧光(FAM)的右端共用探针,终产物长度差别即为左端探针的长度差别。LDR探针由上海捷瑞生物工程有限公司设计、合成,探针名称、序列(5'-3')、连接产物长度如下。
     rs 1800532左端探针TA:TATTAATTGACAACCTATTACGTGA左端探针TC:TTTTATTAATTGACAACCTATTACGTGC右端公用探针:P-TAGCTGCTATTCTGAGCATAGGGAA-FAM连接产物的大小分别为:50/A和53/C;
     rs4680左端探针TA:TTTTCAGCGGATGGTGGATTTCGCAGGCA左端探针TG:TTTTTTTCAGCGGATGGTGGATTTCGCAGGCG右端公用探针:P-TGAAGGACAAGGTGTGCATGCCTGATTT-FAM连接产物的大小分别为:57/A和60/G;
     rs5906957左端探针TA:TTTTTTTTTCAGATTTTAGCATTTCCCTCCTCA左端探针TG:TTTTTTTTTTTTCAGATTTTAGCATTTCCCTCCTCG右端公用探针:P-AGACCTTCCAACGGCTCCCCTTCTCTTTTTT-FAM连接产物的大小分别为:64/A和67/G;
     rs2235186左端探针TC:TCAGAAAGAAAGGGCAGCTCTTAAG左端探针TT:TTTTCAGAAAGAAAGGGCAGCTCTTAAA右端公用探针:P-ATAAACAGCTGTAACCTGATCATTC-FAM连接产物的大小分别为:50/C和53/T;
     rs1181275左端探针TC:TTTTCATTTTCATTCATTTCTCCTTATAC左端探针TT:TTTTTTTCATTTTCATTCATTTCTCCTTATAT右端公用探针:P-GATTTATCCTTCCTATATATTTTTGTTT-FAM连接产物的大小分别为:57/C和60/T;
     rs5905613左端探针TC:TTTTTTTTTACCAAATTCCTCACTATCACAGGC左端探针TT:TTTTTTTTTTTTACCAAATTCCTCACTATCACAGGT右端公用探针:P-TGTACCATTTGTACTTGAGCCAGCATTTTTT-FAM连接产物的大小分别为:64/C和67/T
     rs58524323左端探针TA:TTTTTTTTTTTTATATTCACAAAAAGATAAGCTAACT左端探针TG:TTTTTTTTTTTTTTTATATTCACAAAAAGATAAGCTAACC右端公用探针:P-GCCTAGCAGTCCTGTTCATAGAACATTTTTTTTT-FAM连接产物的大小分别为:71/A和74/G
     10μl连接体系为:PCR产物3μl、10×Taq DNA ligase buffer 1μl、Taq DNA ligase5U,特定LDR探针各0.1pmol,去离子水补足体积至10μL。连接反应参数:94℃变性30秒、60℃退火并连接3分钟,循环20次。反应结束后,4℃保存待用。
     (3)反应产物的扫描和结果的读取
     分别取1μl上述七个SNP多态性位点的连接反应产物及VNTR多态性位点的PCR产物,加10μl上样buffer(已混入Marker),95℃变性3分钟,立即冰水浴。反应产物经ABI 3730XL测序仪扫描,根据目的峰与Marker的位置差距来读取结果。
     5.统计分析
     数据资料采用SPSS13.0进行统计分析。定性资料采用频率指标描述,组间比较采用卡方检验;不同基因型的得分采用均数加减标准差(x±s)描述,并进行单因素方差分析;相关分析采用线性相关,并计算Pearson相关系数。所有的统计检验均采用双侧检验,检验水准a=0.05,P<0.05被认为差异有统计学意义。
     结果:
     1.高、低特质怒组8个多态性位点基因型和等位基因频率分布比较:差异均无统计学意义(P>0.05)。
     2.8个基因多态性位点各基因型组怒的表达部分得分比较:高特质怒组中,对于TPH基因A218C位点各基因型组,发怒(AX-O)得分差异有统计学意义(F=3.252,P=0.041),女性怒的表达(AX)得分差异有统计学意义(F=6.668,P=0.002),男性郁怒(AX-I)得分差异有统计学意义(F=4.693,P=0.012);其余各基因多态性位点不同基因型组怒的表达、发怒、郁怒的得分差异无统计学意义(P>0.05)。低特质怒组中,TPH基因A218C位点各基因型组郁怒得分差异有统计学意义(F=3.113,P=0.046);其余各基因多态性位点不同基因型组怒的表达、发怒、郁怒的得分差异无统计学意义(P>0.05)。
     3.8个基因多态性位点各基因型组怒的控制部分得分比较:高特质怒组中,男性TPH基因A218C位点各基因型组控制发怒(AC-O)得分差异有统计学意义(F=3.551,P=0.034),其余各基因多态性位点不同基因型受试者怒的控制(AC)、控制发怒、控制郁怒(AC-I)的得分差异无统计学意义(P>0.05)。低特质怒组中,对于TPH基因A218C位点各基因型组,怒的控制得分差异有统计学意义(F=5.227,P=0.006),控制发怒的得分差异有统计学意义(F=5.943,P=0.003),控制郁怒的得分差异有统计学意义(F=4.104,P=0.018),女性控制发怒的得分差异有统计学意义(F=3.527,P=0.032);对于MAOA基因rs2235186位点,女性各基因型组控制发怒的得分差异有统计学意义(F=3.383,P=0.037);其余各基因多态性位点不同基因型受试者怒的控制、控制发怒、控制郁怒的得分差异无统计学意义(P>0.05)。
     4.高、低特质怒组特质怒、怒的表达、怒的控制间的相关性:两组无论是否按男女分层,特质怒与发怒均正相关(r=0.493,P<0.01。r=0.377,P<0.01),怒的表达与发怒及郁怒均正相关(r=0.521,P<0.01;r=0.751,P<0.01。r=0.393,P<0.01:r=0.885,P<0.01),怒的控制与控制发怒、控制郁怒均正相关(r=0.940,P<0.01:r=0.952,P<0.01。r=0.952,P<0.01;r=0.954,P<0.01),控制发怒与控制郁怒均正相关(r=0.791,P<0.0l。r=0.816,P<0.01);而发怒与怒的控制、控制发怒、控制郁怒均负相关(r=-0.336,P<0.01;r=-0.391,P<0.01;r=-0.252,P<0.01。r=-0.305,P<0.01;r=-0.351,P<0.01;r=-0.231,P<0.01)。
     结论:
     1.TPH基因A218C多态性与我国正常大学生中高特质怒者下列愤怒情志特质有关:发怒特质,女性怒的表达特质,男性的郁怒特质及控制发怒特质;该位点多态性还与我国正常大学生中低特质怒者下列愤怒情志特质有关:郁怒特质,怒的控制特质,控制发怒特质,控制郁怒特质及女性的控制发怒特质。
     2. MAOA基因tag SNP rs2235186多态性与我国正常大学生中低特质怒女性的控制发怒特质有关。
     3. COMT基因的V158M位点及MAOA基因的30bp-uVNTR、rs1181275、rs5906957.rs5905613和rs58524323多态性与我国正常大学生的愤怒情志特质无关。
     4.无论是否按男女进行分层,高、低特质怒组愤怒情志特质各维度间均存在如下相关关系:特质怒与发怒特质正相关,怒的表达特质与发怒特质及郁怒特质正相关,怒的控制特质与控制发怒特质、控制郁怒特质正相关,控制发怒特质与控制郁怒特质正相关;而发怒特质与怒的控制特质、控制发怒特质、控制郁怒特质负相关。
Objective:This paper attempts to investigate the relationships between anger emotion trait and neurotransmitter metabolic enzymes genetic polymorphisms, and analyze correlations among the dimensions of anger emotion trait。
     Methods:
     1. STAXI-2 questionnaire inquiry
     Subjects are normal college students who come from Henan University of Traditional Chinese Medicine. After the ethics committee approved and signed the informed consent forms, we use cluster random sampling method to collect survey samples. A total of 2864 questionnaires were issued, in which 2642 questionnaires were valid, accounting for 92.25%. According to the trait anger scale, We define scores> x+s as the high trait anger, scores< x-s as the low trait anger.Thus there are 364 high trait anger people and 473 low trait anger people. According to this study's sample size required, we should take 236 people of the high trait anger, whose scores range from high to low, take 236 people of the low trait anger, whose scores range from low to high. By concentrating of blood, extracting DNA and genotyping and other steps, we exclude those who did not participate in blood concentrating and the lost blood samples in the extraction of DNA, and eventually we proceed with the statistical analysis of the data of 225 high trait anger people and 221 low trait anger people.
     2. Selection of gene polymorphisms sites
     In the light of relevant literature, we select tryptophan hydroxylase (TPH) gene A218C (rs1800532) sites, catecholamine-O-methyltransferase (COMT) gene V158M (rs4680) sites and monoamine oxidase A (MAOA) Gene 30bp-uVNTR sites for further research, which have been preliminarily studied by foreign countries. In addition, we select MAOA gene which the smallest gene and lest studied gene in the three neurotransmitter metabolism gene, and select tag SNP from the Haplotype map of human genome(HapMap) which are rs5906597, rs2235186, rs1181275 and rs5905613 whose tag SNPs can represent Han positive signal of the MAOA gene's SNPs. At the same time, we choose a functional SNP of MAOA gene, which is the site rs58524323 to proceed with exploratory research.
     3. DNA extraction
     (1) specimen collection and processing
     After the informed consent forms were approved and signed, we used vacuum blood collection to needle eligible subjects for vein blood 5ml (2% EDTA-Na 2200μl anticoagulant), and then we stored the blood samples at -20℃in the refrigerator for two weeks.
     (2) DNA extraction method
     We unfreezed -20℃cryopreservation blood samples at room temperature water, and put 600μl blood samples into the EP tube, and added equal volume of erythrocyte lysis buffer, and finally used 12 000 circle/min after mix well for centrifugation of blood samples. These procedures can ensure the absorption the supernatant which include lysis red blood cells. At last, we added leukocyte lysis buffer 450μl and broke sediments.
     Adding 40μl 10% SDS to centrifuge tube, we made the full mixing for 10min, and then added protease K10μl, and gently shaked them up by transferring centrifuge tube, and eventually bathed them in 37℃water overnight.
     We let the solution cool off, and the solution graduated into to room temperature. We added an equal volume of Tris saturated phenol, and placed the tube on the rotator for full mix 10min, so that the formation of two-phase emulsion can be achieved. Furthermore, we centrifugated it for 5min by 12 OOOcircle/min with a wide-bore pipette drawing the upper layer of water phase to a new centrifuge tube, added an equal volume of phenol/chloroform (volume ratio 1/1) 500μl, and mixed well to form a two-phase emulsion. And then we centrifugated it for 5min by 10 000 circle/min with wide-bore pipette drawing the upper aqueous layer to a new centrifuge tube, and added an equal volume of chloroform for a thorough mixing, and then centrifugated 10min by 12 000 circle/min.
     We transfered the water phase to new centrifuge tubes with a wide mouth pipette, and added 1/10 volume 3mol/L of NaCl and 800μl cold ethanol to the aqueous phase, and gently mixed them by reversing the centrifuge tube. Furthermore, we got precipitated DNA to 12000 circle/min for 5min's centrifugation. And then we used 70% cold ethanol to re-suspend DNA precipitation, and centrifugated it for 10min by 12 000circle/min, and finally discarded supernatant and repeated washing three times. The DNA precipitation should be dried and dissolved in appropriate amount of sterile water, storing at -20℃for standby application.
     4. Genotyping
     (1) PCR amplified fragment
     Genomic DNA as template, respectively using the following primers PCR amplified purpose fragments. Genomic DNA sequence required by Primer design were from the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). All primers were designed using Primer Premier 5.0 software. Primer Design and Synthesis were accomplished by Biological Engineering limited company of ShangHai Jierui. The name, sequence (5' -3'), amplified product length of wait for detect polymorphic locus' PCR amplification primer are as follows.
     rs1800532:upstream primer F GCATTTAGAATGGTACCTGGC downstream primer R CACCACTCGATGCAACATTTG Amplified product length 231bp
     rs4680:upstream primer F TACTGTGGCTACTCAGCTGTG downstream primer R TTCAGTGAACGTGGTGTGAAC Amplified product length 240bp
     rs5906957:upstream primer F CAGATTACTAGAGTAGGCTCC downstream primer R GGTTACAGAGGTTATTGGCAG Amplified product length 230bp
     rs2235186:upstream primer F AGAATGAAGCTGGAGAGAGAG downstream primer R TTGAATAGGAGGTCACCTGTC Amplified product length 233bp
     rs1181275:upstream primer F CTTCACTTCCATTCCTACTCC downstream primer R AAGTAGTAAAATGAAGGTATG Amplified product length 190bp
     rs5905613:upstream primer F CCACAATAGATAACCTTGGGC downstream primer R CCTGGGCCAAAAATGCTATTC Amplified product length 222bp
     rs58524323:upstream primer F CATGACATTCTCTGACTCCTG downstream primer R CAGAACAGACACATACACACC Amplified product length 229bp
     MAOA基因30bp-uVNTR: upstream primer F FAM-AGCACGCGTGCCTCAGCCTCCTTCCCCGGC downstream primer R CCGAGATTCGGCGGGCCCTCCGCCTTGCGC Amplified product length 140-230bp
     PCR reaction system:template DNA1μl,10 X PCR buffer 1.5μl, MgC12 (25mM) 1.5μl, dNTP (10mM) 0.3μl, Taq enzyme 1.25U, each primer 0.25μl, make up the volume with deionized water to 25μl. PCR reaction conditions:94℃fore-denaturation for 2 minutes; 94℃denaturation for 15 seconds,60℃annealing for 15 seconds,72℃extend for 30 seconds,35 cycles; 72℃extend for 3 minutes.
     When amplification was accomplished, use 1.2% agarose gel electrophoresis to obtain the purpose of DNA fragment.
     (2) SNP loci ligase detection reaction
     Design two left end of the probe(length difference 3bp) for each locus which were used to identify two different bases, and design right end of common probe which with fluorescence (FAM) for each locus, the difference length of the end product were the difference length between the left end of the probe. LDR probe were designed by Biological Engineering limited company of ShangHai Jierui.The name, sequence (5' -3')and product length of the probes are as follows.
     rs1800532 Left end of the probe TA:TATTAATTGACAACCTATTACGTGA Left end of the probe TC:TTTTATTAATTGACAACCTATTACGTGC Right common probe:P-TAGCTGCTATTCTGAGCATAGGGAA-FAM The size of the product are connected:50/A and 53/C;
     rs4680 Left end of the probe TA:TTTTCAGCGGATGGTGGATTTCGCAGGCA Left end of the probe TG:TTTTTTTCAGCGGATGGTGGATTTCGCAGGCG Right common probe:P-TGAAGGACAAGGTGTGCATGCCTGATTT-FAM The size of the product are connected:57/A和60/G;
     rs5906957 Left end of the probe TA:TTTTTTTTTCAGATTTTAGCATTTCCCTCCTCA Left end of the probe TG:TTTTTTTTTTTTCAGATTTTAGCATTTCCCTCCTCG Right common probe:P-AGACCTTCCAACGGCTCCCCTTCTCTTTTTT-FAM The size of the product are connected:64/A和67/G;
     rs2235186 Left end of the probe TC:TCAGAAAGAAAGGGCAGCTCTTAAG Left end of the probe TT:TTTTCAGAAAGAAAGGGCAGCTCTTAAA Right common probe:P-ATAAACAGCTGTAACCTGATCATTC-FAM The size of the product are connected:50/C和53/T;
     rs1181275 Left end of the probe TC:TTTTCATTTTCATTCATTTCTCCTTATAC Left end of the probe TT:TTTTTTTCATTTTCATTCATTTCTCCTTATAT Right common probe:P-GATTTATCCTTCCTATATATTTTTGTTT-FAM The size of the product are connected:57/C和60/T;
     rs5905613 Left end of the probe TC:TTTTTTTTTACCAAATTCCTCACTATCACAGGC Left end of the probe TT:TTTTTTTTTTTTACCAAATTCCTCACTATCACAGGT Right common probe:P-TGTACCATTTGTACTTGAGCCAGCATTTTTT-FAM The size of the product are connected:64/C和67/T
     rs58524323 Left end of the probe TA:TTTTTTTTTTTTATATTCACAAAAAGATAAGCTAACT Left end of the probe TG:TTTTTTTTTTTTTTTATATTCACAAAAAGATAAGCTAACC Right common probe:P-GCCTAGCAGTCCTGTTCATAGAACATTTTTTTTT-FAM The size of the product are connected:71/A和74/G
     10μl connection system:PCR product 3μl,10×Taq DNA ligase buffer 1μl, Taq DNA ligase5U, every specific LDR probe 0.1pmol, make up the volume with deionized water to 10μL. Connect reaction parameters:94℃denaturation for 30 seconds,60℃annealing and connect 3 minutes,20 cycles. When reaction was accomplished,4℃stored for later use.
     (3) Scanning the reaction products and reading the results
     The seven SNP polymorphisms connection reaction products and VNTR polymorphisms' PCR product were taken 1μl, add 10μl of sample buffer (has already mixed with Marker),95℃denaturation 3 minutes, ice water bath immediately. scan reaction products by ABI 3730XL sequenator, according to the gap between position of the purpose peak and the Marker to read the results.
     5. Statistical analysis
     Data were analyzed by SPSS13.0. qualitative data described by the frequency index, group comparison using chi-square test; the score of different genotypes described by the mean score plus or minus standard deviation (x±s), and carry out the single factor analysis of variance; correlation analysis using linear correlation, Pearson correlation coefficients were calculated. All statistical tests were used two-sided test, test level a=0.05, P<0.05 was considered statistically significant difference.
     Results:
     1. We make a comparison of frequency distribution of genotype and allele of 8 gene polymorphic locus of high and low trait anger groups:the difference was not statistically significant (P>0.05).
     2. The analysis of scores of the anger expression of 8 gene polymorphism locus'genotype groups shows:in high trait anger group, with regard to each genotype of the TPH gene A218C locus, the scores of anger expression-out are significantly (F=1=3.252,P=0.041), female scores of anger expression are significantly (F=6.668, P=0.002), male scores of anger expression-in are significantly (F=4.693, P=0.012); In terms of genotype groups of the rest gene polymorphisms locus, anger expression, anger expression-out and anger expression-in are no significant difference in scores (P>0.05). In low trait anger group, with regard to each genotype of the TPH gene A218C locus, the scores of anger expression-in are significantly (F=3.113, P=0.046); According to genotype groups of the rest gene polymorphisms locus, anger expression, anger expression-out and anger expression-in are no significant difference in scores (P>0.05).
     3. The analysis of scores of the anger control of 8 gene polymorphism locus' genotype groups shows:in high trait anger group, at genotypes of the TPH gene A218C locus, male scores of anger control-out are significantly (F =3.551,P=0.034), but in terms of the rest gene polymorphisms locus' different genotype groups, anger control, anger control-out and anger control-in are no significant difference in scores (P>0.05). In low trait anger group, at genotypes of the TPH gene A218C locus, and the scores of anger control are significantly (F=5.227,P=0.006), so are the scores of anger control-out (F=5.943, P=0.003) and the scores of anger control-in (F=4.104, P=0.018) and female scores of anger control-out (F=3.527,P=0.032). At genotypes of locus rs2235186 of MAOA gene, female scores of anger control-out are significantly (F=3.383,P=0.037), but in terms of the rest gene polymorphisms locus' different genotype groups, anger control, anger control-out and anger control-in are no significant difference in scores (P >0.05).
     4. The correlations between trait anger, anger expression and anger control in high and low trait anger groups tell us that trait anger and anger expression-out are positively correlated 0=0.493, P<0.01。r=0.377, P< 0.01) Whether the two groups are stratified by sex; and anger expression and anger expression-out, anger expression and anger expression-in are correlated (r=0.521,P<0.01; r=0.751, P<0.01。r=0.393,P<0.01; r=0.885, P<0.01). In addition, anger control and anger control-out, anger control and anger control-in are positively correlated (r=0.940,P<0.01; r=0.952, P<0.01。r=0.952,P<0.01; r=0.954,P<0.01); and anger control-out and anger control-in are positively correlated (r=0.791,P<0.01。r=0.816,P<0.01), while anger expression-out and anger control, anger expression-out and anger control-out, anger expression-out and anger control-in are negatively correlated (r=-0.336, P<0.01; r=-0.391, P<0.01; r=-0.252, P<0.01。r=-0.305,P<0.01; r=-0.351,P<0.01; r=-0.231,P<0.01)
     Conclusion:
     1. TPH gene A218C polymorphism is related with the following anger emotion trait of normal college students of the high trait anger in our country:anger expression-out traits, female anger expression traits, male anger expression-in traits and anger control-out traits. The polymorphism is concerned with the following anger emotion trait of normal college students of the low trait anger in our country:anger expression-in traits, anger control traits, anger control-out traits, anger control-in traits and female anger control-out traits.
     2. MAOA gene tag SNP rs2235186 is related with female anger control-out traits of normal college students of the low trait anger in our country.
     3. COMT gene V158M locus polymorphism and MAOA gene 30bp-uVNTR, rs1181275, rs5906957, rs5905613 and rs58524323 do not have relations with anger emotion traits of normal college students in our country.
     4. The following relationships can be found at either men or women in various dimensions of anger emotion traits of high and low trait anger groups: trait anger and anger expression-out trait are positively correlated; anger expression trait and anger expression-out trait, anger expression trait and anger expression-in trait are positively correlated, anger control trait and anger control-out trait, anger control trait and anger control-in trait are positively correlated, anger control-out trait and anger control-in trait are positively correlated. While anger expression-out trait and anger control trait, anger expression-out trait and anger control-out trait, anger expression-out trait and anger control-in trait are negatively correlated.
引文
[1]周惠清,李定国,宋艳艳,等.全国城市中小学生焦虑情绪流行病学调查[J].上海交通大学学报(医学版),2007;27(11):1379-1381.
    [2]詹向红,李伟,徐玮玮,等.慢性愤怒应激对衰老大鼠学习记忆能力的影响及其脂质过氧化机制[J].中国老年学杂志2010;30(6):752-753.
    [3]Park YJ, Baik S, Shin HJ, et al.Moon S Anger, cardiovascular health and depression in middle-aged Korean men:the mediating effect of social support [J]. Taehan Kanho Hakhoe Chi,2006; 36(5):863-871.
    [4]Susan A Everson, Debbie E Goldberg, George A Kaplan, et al. Anger Expression and Incident Hypertension[J]. Psychosomatic Medicine,1998,60(6):730-735
    [5]Robert A Nicholson, Sandra E Gramling, Jason C Ong, et al. Differences in Anger Expression Between Individuals With and Without Headache After Controlling for Depression and Anxiety[J]. Headache:The Journal of Head and Face Pain,2003; 43(6):651-663.
    [6]孙英霞,情志致病方式与伤脏规律研究——情志刺激与胃脘痛发病相关性研究[D].山东中医药大学,2009;49.
    [7]张伯礼,宋其云,崔秀琼,等.天津地区中医中风病危险因素及证候调查研究[J].天津中医,2000;17(1):35-37.
    [8]李心天.医学心理学[M].北京:北京医科大学、中国协和医科大学联合出版社,1998,第1版,172.
    [9]Spielberger CD. State-Trait Anger Expression Inventory:Professional Manual. Odessa, Florida:Psychological Assessment Resources, Inc.1988, 30.
    [10]乔明琦.肝气逆肝气郁两证客观指标实验研究[J].山东中医学院学报,1992;16(3):23-26.
    [11]乔明琦,张珍玉,徐旭杰,等.经前期综合征证候分布规律的流行病学调查研究[J].中国中医基础医学杂志,1997;3(3):31-33.
    [12]乔明琦,张慧云,石忠峰,等.择时造模猕猴经前期“病证表现”及其评价[J].中国中医基础医学杂志,2002;8(7):59-60.
    [13]Sluyter F, Keijser JN, Boomsma DI, et al. Genetics of testosterone and the aggression-hostility-anger (AHA) syndrome:a study of middle-aged male twins[J]. Twin Res.2000; 3(4):266-341.
    [14]Schinka JA, Busch RM, Robichaux-Keene N. A meta-analsis of the association between the serotonin transporter gene polymorphism (5-HTTLPR) and trait anxiety[J]. Mol Psychiatry 2004; 9(2):197
    [15]Rujescu D, Giegling I, Bondy B, et al. Association of anger-related traits with SNPs in the TPH gene[J]. Molecular Psychiatry,2002; 7: 1023-1029.
    [16]Rujescu D, Giegling I, Gietl A, et al.A functional single nucleotide polymorphism (V158M) in the COMT gene is associated with aggressive personality traits [J]. Biol Psychiatry,2003; 54(1):34-39.
    [17]Jae-Won Yang, So-Hee Lee, Seung-Ho Ryu, et al. Association between Monoamine Oxidase A Polymorphisms and Anger-Related Personality Traits in Korean Women [J]. Neuropsychobiology,2007; 56:19-23.
    [18]王力,岑麟祥,林焘,等.古汉语常用字字典[M].北京:商务印书馆,2005,第4版:280.
    [19]严和骎.医学心理学概论[M].上海:上海科学技术出版社,1983,第1版:33.
    [20]李德新,龚一萍.试论怒伤肝的机制及其临床意义[J].浙江中医学院学报,1988;12(6):7-8.
    [21]王洪图主编.黄帝内经研究大成[M].北京:北京出版社,1997,第1版:976-991.
    [22]翟双庆,王长宇,孔军辉.论五神、七情的五行五脏归属[J].北京中医药大学学报,2002;25(5):1.
    [23]徐浩岚,游向宇,张介平.论传统中医心理疗法的情志观[J].沪州医学院学报,2004:27(6):568.
    [24]任昱,张虹.《内经》“怒”理论钩玄[J].浙江中医学院学报,2004;28(5):11-12.
    [25]孙广仁.中医基础理论[M].北京:中国中医药出版社,2002,第1版:203-229.
    [26]乔明琦,张惠云,韩秀珍,等.七情定义新探[J].上海中医药大学学报,2006;20(1):12-15.
    [27]王文燕.个性与情志致病研究——状态-特质怒表达量表Ⅱ的初步引进及易怒特质影响因素研究[D].山东中医药大学,2008,6-29.
    [28]胡兰.论《内经》情志活动与形体物质的辩证关系[J].实用中医药杂志,2005;21(2):114-115.
    [29]张蕾.浅谈体质与情志的关系[J].天津中医药大学学报,2006;25(2):72.
    [30]孟昭兰主编.情绪心理学[M].北京:北京大学出版社,2005;第1版:26-37.
    [31]孟迎春.机体状况与情志致病研究——睡眠和疲劳状况与愤怒郁怒产生及致病的相关性研究[D].山东中医药大学,2008,31-43.
    [32]宗飞.护士群体怒表达方式与睡眠质量疲劳状况的相关性调查[D].山东中医药大学,2009,19-20
    [33]姜乾金.医学心理学[M].北京:人民卫生出版社,1991,第1版:51-115.
    [34]高冬梅.引发怒情志的始发因素研究——生活事件与特质怒及怒表达相关性流行病学调查[D].山东中医药大学,2009,47.
    [35]郭蕾.怒志的生理病理及实验研究[J].山东中医学院学报,1995;19(5):290-294.
    [36]邵雷.《内经》怒志生成理论的研究[D].北京中医药大学,2008,1-2.
    [37]彭聃龄主编.普通心理学[M].北京:北京师范大学出版社,2004,第3版:380-393.
    [38]Hatalski CG, BrUnson KL, Tantayanubuta B, et al. Neuronal activity and stress diferentially regulate hippocampal and hypothalamic corticotropin releasing hormone expressing in the immature rat[J]. Neuroscience,2001; 101(3):571.
    [39]刘晓伟,曲宏达,张红梅等.怒、恐应激大鼠脑内c-fos与CRHmRNA表达差异性分析[J].四川中医,2006;24(1):11-13.
    [40]姚泰主编.生理学[M].北京:人民卫生出版社,2005;第1版:495.
    [41]张沁园.怒致病的相关机理探讨[J].吉林中医药,2006;26(6):2-3
    [42]孟昭兰,邓惠.爆发怒与潜在怒及其在认知操作中的功能[J].心理学报,2000;32(1):49-53.
    [43]张利燕.人格研究两大传统的对立与整合[J].衡阳师范学院学报(社会科学)2003;24(1):107-110.
    [44]赵国祥.185名处级领导干部的个性特质的研究[J].心理科学,2002;25(2)231-232.
    [45]Allport GW. Personality:A psychological interpretation[M]. New York:Holt, 1937:332-334.
    [46]孔克勤,叶逸乾.个性心理学[M].上海,华东师范大学出版社,2006,第1版,226.
    [47]Spielberger, CD. State-Trait Anger Expression Inventory. Odess FL:Psychological Assessment Resource Inc.1999.
    [48]吴雯.对高愤怒特质男性青少年犯的认知行为团体干预研究[D].首都师范大学,2008,7.
    [49]高迎浩.大学生愤怒情绪及其与人格特征的相关研究[D].河南大学,2005,30.
    [50]李怀玉.警察情绪愤怒量表的初步编制[J].山西警官高等专科学校学报,2007;15(2):28-30
    [51]Siegel JM. The Multidimensional Anger Inventory [J]. Joural of Personality and Social Psychology,1986; 51(1):191-200.
    [52]Eric R. Dahlen, Ryan C. Martin. Refining the anger consequences questionnaire[J]. Personality and Individual Differences,2006; 41(6): 1021-1031.
    [53]Ryan C. Martin, Eric R. Dahlen. Anger response styles and reaction to provocation[J]. Personality and Individual Differences,2007; 43(8): 2083-2094.
    [54]陶海燕.状态-特质怒表达量表Ⅱ的修订及愤怒-郁怒人群应对方式的调查分析[D].山东中医药大学,2009,18.
    [55]Wang DG, Fan JB, Siao CJ, et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human enome[J]. Science,1998:280:1077-1082.
    [56]Li W, Sadler LA. Low nucleotide diversity in man[J]. Genetics,1991; 129:513-523.
    [57]Nickerson DA, Taylor SL, Weiss KM, et al.DNA sequence diversity in a 9.7 kb regionof the human lipoprotein lipase gene[J]. Nature Genetics,1998:19:233 enetics 240.
    [58]Lander ES. The new genomics:global views of biology[J].Science, 1996:274(5287):536-539.
    [59]李进,王兵,李胜男.试述单核苷酸多态性的研究进展[J].云南师范大学学报,2007;27(6):40-43.
    [60]Landegren U, Nilsson M, Kwork PY. Reading bits of genetic information: methods for single-nucleotide polymorphism analysis[J]. Genome Res,1998; 8(8):769-776.
    [61]寇长贵.大学生神经症环境因素与COMT基因多态性的交互作用研究[D].吉林大学,2009,34.
    [62]仪军玲,李彩霞,胡兰.单核苷酸多态性及其检测方法[J].证据科学,2008;16(6):757-763.
    [63]O'Donovan MC, Oefner PJ, Roberts SC, et al. Blind analysis of denaturing hing-performance liquid chromatography as a tool for mutation detection [J]. Genomics,1998:52(1):44-49.
    [64]Makino R, Yazyu H, Kishimoto Y, et al. F-SSCP:fluorescence-based polymerase chain reaction-single-strand conformation Polymorphism (PCR-SSCP) analysis[J].PCR Methods Appl,1992;2(1):10-13.
    [65]彭翠英,廖端芳,张佳,等.单核苷酸多态性及其检测方法[J].中华检验医学杂 志,2004;27(10):703-705.
    [66]Pease AC, Solas D, Sullivan EJ, et al. Light-generated oligonucleotide arrays for rapid DNA sequence analysis[J]. Proc Natl Acad Sci USA,1994; 91(11):5022-5026.
    [67]Lipshutz RJ, Morris D, Chee M, et al.Using oligonucleotide probe arrays to access genetic diversity [J]. Biotechniques,1995; 19(3):442-447.
    [68]高秀丽,景奉香,杨建波,等.单核苷酸多态性检测分析技术[J].遗传,2005;27(1):110-122.
    [69]Prince JA, Brookes AJ. Towards high-throughput genotyping of SNPs by dynamic allele-sPecific hybridization[J].Expert Rev Mol Diagn,2001; 1(3):352-358.
    [70]赵广荣,扬帆,元英进,等.单核苷酸多态性的检测方法的新进展[J].遗传,2005;27(1):123-129.
    [71]Aldetborn A, Kristofferson A, Hammerling U. Determination of single nucleotide Polymorphisms by real-time Pyrophosphate DNA sequencing [J]. Genome Res,2000; 10(8):1249-1258.
    [72]Zhenxian Xiao, Junxua Xiao, Yuexing Jiang, et al. A novel method based on ligase detection reaction for low abundant YIDD mutants detection in hepatitis B virus[J]. Hepatology Research, 2006;34(3):150-155.
    [73]赵春霞,石先哲,吕申,等.人类基因组的单核苷酸多态性及其研究进展[J].色谱,2003;21(2):110-114.
    [74]Consolandi C, Busti E, Pera C, et al. Detection of HLA Polymorphisms by Ligase Detection Reaction and a Universal Array Format:A Pilot Study for Low Resolution Genotyping [J]. Hum Immunol.2003; 64(1):168-178.
    [75]Harald B, Ulrike H, Bernd S, et al. Association between protein tyrosine phosphatase 22 variant R620W in conjunction with the HLA-DRB1 shared epitope and humoral autoimmunity to an immunodominant epitope of cartilage specific typeⅡ collagen in early rheumatoid arthritis[J]. Arthritis Rheum,2006; 54 (1):82-89.
    [76]Fedetz M, Matesanz F, Caro-Maldonado A, et al. The 1858T PTPN22 gene variant contributes to a genetic risk of type 1 diabetes in a Ukrainian population [J]. Tissue Antigens,2006;67(2):430-433.
    [77]Kawasaki EJ, Awata T, Ikegami H, et al. Systematic search for single nucleotide polymorphisms in a lymphoid tyrosine phosphatase gene (PTPN22): association between a promoter polymorphism and type 1 diabetes in Asian populations[J]. Am J Med Genet,2006,140A(12):586-593.
    [78]Omori S, Tanaka Y, Takahashi A, et al. A ssociation of CDKAL1, IGF2BP2, CDKN2A/B, HHEX, SLC30A8, and KCNJ11 with susceptibility to type 2 diabetes in a Japanese population[J]. Diabetes,2008; 57(3):791-795.
    [79]Sladek R, Rocheleau G, Rung J, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes[J]. Nature,2007; 445 (7130): 881-885.
    [80]Rong R, Hanson RL, Ortiz D, et al. Association analysis of variation in/Near FTO, CDKAL1, SLC30A8, HHEX, EXT2, IGF2BP2, LOC387761, and CDKN2B with type 2 diabetes and related quantitative traits in Pima Indians[J]. Diabetes, 2009; 58(2):478-488.
    [81]Wu Y, Li H, Loos RJ, et al. Comm on variants in CDKAL1, CDKN2A/B, IGF2BP2, SLC30A8, and HHEX/IDE genes are associated with type 2 diabetes and impaired fasting glucose in a Chinese Han population [J]. Diabetes,2008; 57 (10):2834-2842.
    [82]Scott LJ, Mohlke KL, Bonnycastle LL, et al.A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants[J]. Science,2007; 316 (5829):1341-1345.
    [83]Wen H, Ding Q, Fang ZJ, et al. Population study of genetic polymorphisms and superficial bladder cancer risk in Han-Chinese smokers in Shanghai [J]. Int Urol Nephrol,2009; 41 (4):855-864.
    [84]Sak SC, Barrett JH, Paul AB, et al. Comprehensive analysis of 22 XPC polymorphisms and bladder cancer risk[J]. CancerEpidemiol BiomarkersPrev, 2006;15(12):2537-2541.
    [85]Chang JS, W rensch MR, H ansen HM,et al.Nucleotide excision repair genes and risk of lung cancer among San Francisco BayArea Latinos and African Americans [J]. Int J Cancer,2008; 123(9):2095-2104.
    [86]Cui Y, Morgenstern H, Greenland S, et al. Polymorphism of Xeroderma Pigmentosum group G and the risk of lung cancer and squamous cell carcinomas of the oropharynx, larynx and esophagus[J]. Int J Cancer,2006; 118 (3):714-720.
    [87]徐倩,孙丽萍,宫月华,等.粘蛋白MUC1 568A/G SNP与辽宁地区人群胃癌遗传易感性的关系[J].遗传,2008,30(9):1163-1168.
    [88]Kang S, Kim JW, Park NH, et al. Interleukin-1 beta-511 polymorphism and risk of cervical cancer [J]. J Korean Med Sci,2007; 22 (1):110-113.
    [89]张琦,钟光珍,王志军,等.染色体9p21上两个8NP位点与中国汉族人群心肌梗死的关系[J].山东医药,2010;50(5):4-6.
    [90]徐莉,何涛.山东地区汉族人载脂蛋白A5 SNP3基因多态性与冠心病的关系[J].山东医药,2008;48(46):1-3.
    [91]李珊珊.亚甲基四氢叶酸还原酶单核苷酸多态性与男性不育研究进展[J].中华男科学杂志,2010;16(1):60-64.
    [92]于舰,庞灏,王保捷.人类酪氨酸羟化酶基因SNP多态性与精神疾病的相关性[J].法医学杂志,2008;24(5):333-335.
    [93]唐学明.数目可变的串联重复顺序(VNTR)的研究方法进展[J].国外医学遗传学分册,1994;3:120-124.
    [94]崔晶,王炜,王敏.中国人群中COor/37第二外显子VNTR多态性的研究[J].浙江大学学报(医学版),2006;35(4):354-359.
    [95]Kawaguchi Y, lkegami H, Shen GO, et al. Insulin gene region contributes to genetic susceptibility to, but may nol to low incidence of, insulin-dependent diabetes mellitus in Japanese[J]. Biochem Biophys Res Commun,1997;233:283-287.
    [96]Chuang L, Tsai S, Juang J, et al. Genetic epidemiology of type Ⅰ diabetes mellitus in Taiwan [J]. Diabetes Res ClinPract,2000;50(Suppl 2):S41-S47.
    [97]Lee WH, Hwang TH, Oh GT, et al. Genetic factors associated with endothelial dysfunction affect the early onset of coronary artery disease in Korean [J]. Vasc Med,2001;6 (2):103-108.
    [98]Selim S. Firoozrai M, Nourmohammadi Ⅰ, et al. Endothelial nitric oxide synthase gene intron4 VNTR polymorphism in patients with coronary artery disease in lran[J]. Indian J Med Res,2006; 124(6):683-688.
    [99]高洪云,韩红星.老年缺血性脑卒中患者eNOS基因VNTR多态性研究[J].老年医学与保健,2009;15(6):345-347.
    [100]OZELO MC, ORIGA AF, ARANHA FJ, et al. Platelet glyco-protein lbalpha polymorphisms modulate the risk for myocardial inhretion[J]. Thromb Haemost,2004;92:384-386.
    [101]马芳,李玉云,吴俊英,等.血小板膜糖蛋白Ibα基因VNTR多态性与血栓性疾病[J].血栓与止血学,2009;15(2):75-78.
    [102]Watther DJ, Peter JU, Bashammakh S, et al. Synthesis of serotonin by a second tryptophan hydroxylase isoform[J]. Science,2003;299(5603):76.
    [103]Zill P, Buttner A, Eisenmenger W, et al. Analysis of tryptophan hydroxylase Ⅰ and Ⅱ mRNA expression in the human brain:a post-mortem study[J]. J Psychiatr Res,2007;41(1-2):168-173.
    [104]Te-Jen Lai, Chia-Yen Wu, Hsu-Wen Tsai, et al. Polymorphism screening and haplotype analysis of the tryptophan hydroxylase gene (TPH1) and association with bipolar affective disorder in Taiwan[J]. BMC Medical Genetics,2005:6:14-23.
    [105]Merja Viikki, Olli Kampman, Ari Illi,et al.TPH1 218A/C polymorphism is associated with major depressive disorder and its treatment response [J]. Neuroscience Letters,2010:468(1):80-84.
    [106]Li D, He L. Further clarification of the contribution of the tryptophan hydroxylase (TPH) gene to suicidal behavior using systematic allelic and genotypic meta-analyses[J]. Human Genetics,2006:119(3):233-240.
    [107]Youl-Ri Kim, Jong-Min Woo, Si Young Heo, et al. An Association Study of the A218C Polymorphism of the Tryptophan Hydroxylase 1 Gene with Eating Disorders in a Korean Population:A Pilot Study [J]. Psychiatry Investigation,2009;6(1):44-49.
    [108]Stephen B. Manuck, Janine D. Flory, Robert E. Ferrell, Karin M. Dent, J. John Mann, Matthew F. Muldoon. Aggression and anger-related traits associated with a polymorphism of the tryptophan hydroxylase gene[J]. Biological Psychiatry,45 (5),1999:603-614.
    [109]Rujescu D, Giegling I, Bondy B, Gietl A, Zill P, Moller HJ. Association of anger-related traits with SNPs in the TPH gene[J]. Molecular Psychiatry 2002;7:1023-1029.
    [110]P. Baud, N. Perroud, P. Courtet, et al. Modulation. of anger control in suicide attempters by TPH-1[J]. Genes, Brain and Behavior,2009; 8(1): 97-100.
    [111]Nolan KA, Volavka J, Lachman HM, Saito T. An association between a polymorphism of the tryptophan hydroxylase gene and aggression in schizophrenia and schizoaffective disorder[J]. Psychiatr Genet 2000:10:109-115.
    [112]Luc Staner, Gokhan Uyanik, Humberto Correa, et al.A dimensional impulsive-aggressive phenotype is associated with the A218C polymorphism of the tryptophan hydroxylase gene:A pilot study in well-characterized impulsive inpatients[J]. American Journal of Medical Genetics, 2002:114(5):553-557.
    [113]David Craig, Dominic J. Hart, Robin Carson, Stephen P. McIlroy, A. Peter Passmore. Allelic variation at the A218C tryptophan hydroxylase polymorphism influences agitation and aggression in Alzheimer's disease [J]. Neuroscience Letters,2004;363 (3):199-202.
    [114]郭建雄,刘恩益,林振强,等.精神分裂症患者攻击行为与色氨酸羟化酶、单胺氧化酶A基因多态性的关联研究[J].中国神经精神疾病杂志,2009;35(2):84-87.
    [115]Youl-Ri Kim, Joo Young Lee, Sung Kil Min. No Evidence of an Association between A218C Polymorphism of the Tryptophan Hydroxylase 1 Gene and Aggression in Schizophrenia in a Korean Population[J]. Yonsei Med J, 2010:51(1):27-32.
    [116]Bohnert AM, Crnic KA, Lim KG. Emotional competence and aggressive behavior in schoo 12 age children. Joumal of Abnormal Child Psychology,2003:31: 79-91.
    [117]Randolph A. Smish, Stephen F.Davis著.郭秀艳,孙里宁译.实验心理学教程—勘破心理世界的侦探(第3版)[J].北京,中国轻工业出版社,2006;第1版,220.
    [118]Dan Rujescua, Ina Gieglinga, Anton Gietla, et al. A functional single nucleotide polymorphism (V158M) in the COMT gene is associated with aggressive personality traits [J]. Biol Psychiatry.2003:54(1):34-39.
    [119]Baud P, Courtet P, Perroud N, et al. Catechol-O-methyltransferase polymorphism (COMT) in suicide attempters:a possible gender effect on anger traits[J]. Am J Med Genet B Neuropsychiatr Genet,2007;144B(8): 1042-1047.
    [120]Calati R, Porcelli S, Giegling Ⅰ, et al.Catechol-o-methyltransferase gene modulation on suicidal behavior and personality traits:review, meta-analysis and association study[J]. Psychiatr Res,2010. [PubMed 20667552]
    [121]Jee In Kang, Kee Namkoong, Se Joo Kim. Association of DRD4 and COMT polymorphisms with anger and forgiveness traits in healthy volunteers [J]. Neuroscience Letters,2008:430:252-257.
    [122]Gu Y, Yun L, Tian Y, et al. Association between COMT gene and Chinese male schizophrenic patients with violent behavior[J]. Med Sci Monit, 2009:15(9):484-489.
    [123]刘文英,周云飞,高欢,等.精神分裂症COMT基因多态性与暴力行为的关联研究 [J].中国民康医学,2008;20(11):1105-1107,1111.
    [124]黄雄,姜南,林振强,等.COMT基因多态性与精神分裂症暴力攻击行为的关联性[J].广东医学,2010;31(1):82-83。
    [125]Flory JD, Xu K, New AS, et al. Irritable assault and variation in the COMT gene [J]. Psychiatr Genet,2007; 17(6):344-346.
    [126]Youl-Ri Kim, Jeong Hyun Kim, Se Joo Kim, et al. Catechol-O-methyltransferase Val158Met polymorphism in relation to aggressive schizophrenia in a Korean population[J]. Eur Neuropsychopharmacol,2008; 18(11):820-825.
    [127]Zalsman G, Huang Y, Oquendo MA, et al. No association of COMT Val158Met polymorphism with suicidal behavior or CSF monoamine metabolites in mood disorders [J]. Arch Suicide Res.2008; 12 (4):327-335.
    [128]Albaugh MD, Harder VS, Althoff RR, et al. COMT Val158Met genotype as a risk factor for problem behaviors in youth[J]. J Am Acad Child Adolesc Psychiatry,2010;49(8):841-849.
    [129]Rael D. Strous, Karen A. Nolan, Raya Lapidus, et al. Aggressive behavior in schizophrenia is associated with the low enzyme activity COMT polymorphism:a replication study[J]. Am J Med Genet B Neuropsychiatr Genet,2003;120B(1):29-34.
    [130]Nolan KA, Volavka J, Czobor P, et al. Suicidal behavior in patients with schizophrenia is related to COMT polymorphism[J]. Psychiatr Genet,2000; 10(3):117-124.
    [131]Jones G, Zammit S, Norton N, et al. Aggressive behaviour in patients with schizophrenia is associated with catechol-O-methyltransferase genotype [J]. Br J Psychiatry,2001; 179:351-355.
    [132]Cesura AM, Pletscher A.The new generation of monoamine oxidase inhibitors [J]. Prog Drug Res,1992:38:171-297.
    [133]Ramin V. Parsey, Ramin S. Hastings, Maria A. Oquendo, et al. Lower serotonin transporter binding potential in the human brain during major depressive episodes[J]. Am J Psychiatry,2006;163:52-58.
    [134]Ramin V. Parsey, Ramin S. Hastings, Maria A. Oquendo, et al. Effect of a Triallelic Functional Polymorphism of the Serotonin-Transporter-Linked Promoter Region on Expression of Serotonin Transporter in the Human Brain [J]. Am J Psychiatry,2006; 163:48-51.
    [135]Darin D. Dougherty, Scott L. Rauch, Thilo Deckersbach, et al. Ventromedial Prefrontal Cortex and Amygdala Dysfunction During an Anger Induction Positron Emission Tomography Study in Patients With Major Depressive Disorder With Anger Attacks[J]. Arch Gen Psychiatry, 2004;61:795-804.
    [136]Sue Z. Sabol, Stella Hu, Dean Hamer.A functional polymorphism in the monoamine oxidase A gene promoter [J]. Hum Genet,1998:103:273-279.
    [137]Yen FC, Hong CJ, Hou SJ, et al. Association Study of Serotonin Transporter Gene VNTR Polymorphism and Mood Disorders, Onset Age and Suicide Attempts in a Chinese Sample [J]. Neuropsychobiology,2003;48:5-9.
    [138]Ducci F, Newman TK, Funt S, et al. A functional polymorphism in the MAOA gene promoter (MAOA-LPR) predicts central dopamine function and body mass indexAssociation between MAOA, dopamine function and BMI[J]. Molecular Psychiatry,2006:11:858-866.
    [139]Yu WY, Tsai SJ, Hong CJ, et al. Association Study of a Monoamine Oxidase A Gene Promoter Polymorphism with Major Depressive Disorder and Antidepressant Response[J]. Neuropsychopharmacology,2005:30(9):1719-1723.
    [140]李凤芝,李昌吉,龙云芳,等.攻击性驾驶行为与单胺氧化酶A基因多态性的关系[J].中华预防医学杂志,2004;38(5):321-323.
    [141]安礼.特质怒人群体质与个性特征流行病学研究[D].山东中医药大学,2008;16.
    [142]Giegling Ⅰ, Hartmann AM, Moller HJ, et al. Anger- and aggression-related traits are associated with polymorphisms in the 5-HT-2A gene[J]. J Affect Disord,2006:96(1-2):75-81.
    [143]Roy H. Perlisab, Shaun Purcellb, Jesen Fagernessb, et al. Clinical and Genetic Dissection of Anger Expression and CREB1 Polymorphisms in Major Depressive Disorder[J]. Biological Psychiatry,2007;62(5),536-540.
    [144]Kang JI, Namkoong K, Kim SJ. Association of DRD4 and COMT polymorphisms with anger and forgiveness traits in healthy volunteers[J]. Neurosci Lett,2008; 430(3):252-257.
    [145]Yang J, Lee MS, Lee SH, et al. Association between tryptophan hydroxylase 2 polymorphism and anger-related personality traits among young Korean women [J], Neuropsychobiology,2010;62(3):158-163.
    [146]Patel PD, Pontrello C, Burke S Robust and tissue-specific expression of TPH2 versus TPH1 in rat raphe and pineal gland[J]. Biol Psychiatry, 2004:55(4):428-433.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700