(I)姜黄素半互穿式羟丙甲纤维素—明胶微球给药系统的研究(II)OX26-NGF-融合蛋白的基因克隆及其表达纯化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,姜黄素在抗氧化、消炎、抗肿瘤、等疾病领域具有良好的药理活性,已经成为了药物研发的热点之一。虽然如此,姜黄素却具有稳定性差、水溶性差、生物利用度低等缺点,极大地限制了其开发成药。针对这一问题,诸如微乳制剂、包合物技术等很多手段被提出,但是利用凝胶微球给药系统却尚未见报道。本文试图提出一种新的由高吸水性材料羟丙甲纤维素(HPMC, Hydroxypropyl methylcellulose)和天然高分子材料明胶(Gelatin)所构成的半互穿式高分子网络凝胶微球(Semi-IPN gel microsphere,Semi-interpenetrating polymer network gel microsphere)作为给药系统,来解决姜黄素稳定性差、溶出度低和生物利用度低的问题。
     文章首先采用紫外分光光度法建立了姜黄素体外分析方法,发现姜黄素在421nm处有最大吸收波长,且线性浓度范围为0~10μg/mL;该方法符合药典规定。对于稳定性的研究表明光强越强、温度越高、酸性或者碱性越强,姜黄素稳定性越差。而对于溶解度的研究则表明,在水和环己烷中姜黄素溶解度极低,在HPMC溶液中则溶解度大大增加(达到1027μg/mL),因此利用这一特点,制备HPMC-Gelatin半互穿式凝胶微球,以解决其溶出度低的问题。
     其次,通过实验确定了搅拌转速为500rpm、相比为3:1和分散剂选用单硬酸甘油酯(用量为0.6g/30mL环己烷)的反向悬浮聚合工艺。采用这一工艺,成功制备出了9个处方的微球。用傅立叶变换红外光谱表征了半互穿网络结构的形成;采用扫描电镜、光学显微镜和激光粒度分布仪观察微球,结果表明微球呈球形、表面光滑、平均粒径为201μm,粒径分布窄。另外实验结果表明表明随着交联剂用量的增加和HPMC含量的减少,平衡吸水倍率和吸水速率在逐渐减小,机械强度在不断增加。空白微球的制备,为制备载药微球奠定基础。
     第三,采用反相悬浮的手段,在不同交联剂和HPMC/Gelatin比例条件下,成功制备了包载有姜黄素的载药微球,并进行了如下表征:扫描电镜和光学显微镜观察微球的形貌;激光粒度扫描仪分析其平均粒径;傅立叶红外光谱仪表征药物包载入球后是否保持原型;X-RD和DSC表征药物在微球中的存在形式。结果表明载药微球呈球形,表面光滑,平均粒径为216μm,药物以原型形式被包载进入到微球中,有晶体形式存在。另外还通过稳定性试验,表明与原料药相比,微球中的姜黄素稳定性有所提高,因此凝胶微球可以增加姜黄素的稳定性。
     第四,文章还考察了HPMC/Gelatin比例和交联剂用量对姜黄素载药微球包封率和体外释放的影响。结果表明随着HPMC含量的增加和交联剂的减少,包封率有所降低,姜黄素溶出度在增加。对于体外溶出行为,采用Higuchi’s模型对有效扩散系数D进行拟合。结果表明,随着HPMC/Gelatin比例的增加和交联剂用量的减少,有效扩散系数在增加。
     第五,采用高效液相色谱法建立了姜黄素体内分析方法,计算了药动学参数和生物利用度。结果表明该方法符合《中国药典》的规定,该微球制剂在体内的吸收呈单室模型,其相对于原料药的生物利用度提高了4.863±1.185倍。通过以上研究,姜黄素借助于半互穿式HPMC-Gelatin凝胶微球这一新型的给药系统后,溶出度、稳定性和生物利用度得到了很大提高。同时,这一给药系统也为提高其它难溶性药物溶出,增加生物利用度提供了提供了可供借鉴的参考。
     第二部分
     针对NGF无法透过血脑屏障这一问题,本文拟通过基因工程的手段,将NGF与OX26抗体进行融合,构建一个既能透血脑屏障又能够治疗神经疾病的融合蛋白。为此,通过PCR的方法,扩增了NGF-β基因,并将其亚克隆至pXA6载体上。将pXA6-NGF-β质粒,转染入COS-1细胞,瞬时表达融合蛋白并收集上清。采用Protein A亲和层析的方法从其中纯化出了融合蛋白OX26- NGF-β。采用FcELISA的方法测定含量,SDS-PAGE确定纯度,并结合Western Blot的分析确认融合蛋白构建成功。
In recent years, extensive attention has been paied to a very promising drugcandidate, curcumin, in anti-oxidant, anti-inflammatory, antitumor areas. Nonetheless,its drug development is limited for its poor stability, poor water-solubility and lowbioavailability. Therefore, many technologies such as micro-emulsion, cyclodextrininclusion, have been put forward. But using gel microspheres drug delivery systemhas not been reported. So a new DDS, Semi-IPN gel microsphere composed ofHPMC and Gelatin, has been raised to solve the problem.
     Firstly, curcumin analytical method in vitro has been established by UV withmax absorption wavelength of 421nm and linear absorption from 0-10ug. Thisanalytical method was confirmed to meet C.P. For curcumin, higher light intensity,temperature and strong acidic or alkaline condition leds to poor stabilty. Solubilitytests results show that the solubility in water and cyclohexane are low, but increasegreatlyin HPMC solution, reaching to 1027μg/mL.
     Secondly, the reverse suspension polymerization process of preparation wasdetermined, namely GSM is selected as dispersant (0.6g/30mL cyclohexane), stirringspeed equals to 500rpm and O/Wratio is 3:1. Nine formulations were successfulpreparaed. Semi-IPN structure formation was confirmed using FT-IR. The appearanceresults show that the microspheres are spherical with smooth surface, and averageparticle size is 201um with narrow distribution. Additionally results show that withthe increase of crosslinking agent and decrease of the content of HPMC, balancebibulous magnification and bibulous rate decline while mechanical strength increases.
     Thirdly, curcumin loaded microsphere was prepared. By using scanning electronmicroscope and optical microscope, the microspheres are spherical with smoothsurface, and average particle size is 216um.Characterized by FT-IR, the drug issuccessfully incroprated into microspheres. Stability test results show that, thestability of curcumin in microsphere is improved compared with the raw curcumin.Amorphous form mainly of curcumin in microsphere was observed through the X-rayRD and DSC, but the crystals also exist.
     Fourth,the effect of HPMC/gelatin ratio and crosslinking agent dosage oncurcumin release in vitro was also investigated. Results show that with the dosageincrease of HPMC and decrease of crosslinking reagent, encapsulating ratio decreases and solubility increases. The effective diffusion coefficient D was fitted usingHiguchi's mode and with the increase of HPMC and decrease of crosslinking agent,,effective diffusion coefficients rise.
     Finally, analytical method in vivo has been established by HPLC. Results showthat methodological verify complies with the CP. The drug loaded microsphere wasoral administration and blood was taken by angulus oculi medialis. PK parameterswere calculated. Results show that the absorption behavior is one compartment model.Bioavailability relative to raw curcumin is improved by4.863±1.185 times.
     To sum up, by HPMC-Gelatin semi-interpenetrating gel microspheres,curcumin’s solubility, stability and bioavailability are improved and this newformulation will probably contribute to other poorly-soluble drugs to solve theseproblems.
     (Part II)
     In order to solve the problem of transferring NGF through blood brain barrier,the fusion protein composed of NGF and OX26 antibody was constructed by meansof genetic engineering. NGF-? gene was amplified and subcloned into pXA6 by PCRmethod, then the plasmid was transfected into COS-1 cells, and the fusion protein wastransient expressed following collecting the supernatant. OX26-NGF-? waspurified byProtein A affinity chromatography. Concentration was determined by the method ofFc ELISA, purity was dtermined by SDS-PAGE, at last it was confirmed that thefusion protein was constructed successfully combined with Western Blot analysis.
引文
[1] Hatcher H.,Planalp R.,Cho J.,et al,Curcumin: from ancient medicine tocurrent clinical trials,Cell Molecular Life Science,2008,65(11):1631-1652
    [2]陈敏娟,姜黄素研究进展及应用前景,海峡药学,2003,15(1): 4-6
    [3]崔晶,翟光喜等,姜黄素的研究进展,中南药学,2005,3(2): 108-111
    [4] Strimpakos A.S.,Sharma R.A.,Curcumin: preventive and therapeuticproperties in laboratorystudies and clinical trials,Antioxidants and RedoxSignaling,2008,10(3):511-45
    [5]林溪,许建华,姜黄素与阿霉素联合用药的体外抗肿瘤作用,中国药理学通报,2000,16(5): 522-525
    [6] Gopinath D.,Ahmed M.R.,et al,Dermal wound healing processes withcurcumin incorporated collagen films. Biomaterials,2004,25(10): 1911-1917
    [7] Lin Y.,Kunnumakkara A.,et al,Curcumin inhibits tumor growth andangiogenesis in ovarian carcinoma bytargeting the nuclear factor-κB pathway,Clinical Cancer Research,2007,13(11): 3423-3430
    [8]李瑜娟,王涛等,姜黄抗炎抗氧化作用在心脑血管病中的应用,中华实用中西医杂志,2008,21(19): 1516-1517
    [9]韩婷,宓鹤鸣,姜黄的化学成分及药理活性研究进展,解放军药学学报,2001,17(2): 95-97
    [10]麦镇江,姜黄素的药理作用研究进展,中药材,2004,27(9): 698-701
    [11]刘安昌,娄红祥等,姜黄素药理活性及体内代谢,国外医药:植物药分册,2004,19(1): 1-5
    [12]王春彬,高大中,姜黄素的研究进展以及在心血管疾病中的应用,心血管病学进展,2005,26(6):614-616
    [13] Villegas I,Sánchez-Fidalgo S,New mechanisms and therapeutic potential ofcurcumin for colorectal cancer,Molecular Nutral Food Research,2008 ,52(9):1040-61
    [14]张慧珠,任雷鸣,姜黄素与阿霉素合用对KB及KBv200细胞的杀伤作用,中国药理学通报,2001,17(6): 702-704
    [15]王磊,柯红等,姜黄素与阿霉素联合应用对人白血病耐药细胞株HL-60/ADR的生长抑制影响,肿瘤,2006,26(12): 1078-1080
    [16]唐春兰,杨和平,姜黄素抗肿瘤作用的分子生物学机制研究进展,重庆医学,2006,35(6):555-557
    [17]崔淑香,曲显俊等,姜黄素抗肿瘤作用的机制探讨,山东大学学报,2005,43(3): 195-198
    [18] Hutzen B,Friedman L,Sobo M,Curcumin analogue GO-Y030 inhibits STAT3activityand cell growth in breast and pancreatic carcinomas InternationalJournal of Oncology,2009,35(4):867-72
    [19]陈文鹃,陈燕,吴裕丹等,姜黄素调节HL - 60细胞周期蛋白的表达的研究,临床血液学杂志,2001,14 (5):215- 2171
    [20] HolyJon M.,Genetic Toxicologyand Environmental Mutagenesis Curcumindisrupts mitotic spindle structure and induces micronucleation in MCF-7 breastcancer cells,Mutation Research,2002,518(1):71-84
    [21] Bush J. A.,Cheung K.J.,Li G.,Curcumin induces apoptosisin humanmelanoma cells through a Fas receptor/ caspase-8 pathwayindependent of p53,Experimental cell research,2001,271(2) :305-314
    [22] Pan M. H.,Chang W. L.,Lin Shiau S.Y.,Induction of aptoptosis bygarcinoland curcumin through cytochrome release and activation of caspases in humanleukemia HL260 cells. Journal of Agrical Food Chemistry,2001,49(3):1464-1474
    [23] Wu Y.,Chen Y.,Xu J.,Anticancer activities of curcumin on human Burkitt′s lymphoma. Zhonghua Zhong Liu Za Zhi,2002,24(4):348-352
    [24] Anto R.J.,Mukhopadhyay A.,Denning K.,Curcumin(diferuloylmethane)induces apoptosis through activation of caspase-8,BID cleavage andcytochrome c release : itssuppression by ectopic expression of bcl-2 and bcl-xl,Carcinogenesis,2002,23(1):143-150
    [25] Nguyen K.,Shaikh N.,et al,Molecular responses of vascular smooth musclecells and phagocytes to curcumin-eluting bioresorbable stent materials,2004,Biomaterials,25(23): 5333-5346
    [26] Aggarwal B.,Kumar A.,A. Bharti,Anticancer potential of curcumin:preclinical and clinical studies,Anticancer Resesrch,2003,23(1):363-398
    [27] Sanjaya Singh,Bharat B. Aggarwal,Activation of transcription factor NF- Bis suppressed bycurcumin,The Journal of Biological Chemistry,1995,270(42):24995-25000
    [28]顾军,韩香,姜黄素的基础药理作用,天津药学,2000,12(2):5-6
    [29] Rao T. S.,Basu N.,H. H. Siddiqui,Anti-inflammatoryactivityof curcuminanalogues,An Annotated Bibliographyof Indian Medicine,1982,75(1):574--578
    [30]许东晖,王胜等,姜黄素的药理作用研究进展,中草药,2005,36(11):1737-1740
    [31] Yosunori Sugiyama,Shunro Kawakishi,Toshihiko Osawa,Involvement of theβ-diketone moietyin the antioxidative Mechanism of Tetrahydro curcumin,Biochemical Pharmacology,1996,52(4):519-525
    [32] K. Indira Priyadarsini,Dilip K. Maity,et al,Role of phenolic O-H andmethylene hydrogen on the free radical reactions and antioxidant activityofcurcumin,Free Radical Biology and Medicine,2003,35(5):475-484
    [33] Kurien B.T.,Scofield R.H.,Increasing aqueous solubilityof curcumin forimproving bioavailability,Trends Pharmacology Science,2009,30(7):334-335
    [34]万红,赵轶等,不同条件下姜黄素稳定性的研究,中国医学创新,2009,6(16): 17-18.
    [35]陈婧,刘彩霞等,总姜黄素在不同介质中的稳定性考察,中草药,2006,37(10): 1508-1510
    [36] Anand P.,A. Kunnumakkara,et al,Bioavailabilityof curcumin: problems andpromises. Cancer Letters,1995,94(1): 79-83
    [37]谭俊,王诗明姜黄素制剂稳定性实验研究,中药材,2002, 25(8): 585-586
    [38]齐莉莉,王进波,单体姜黄素稳定性的研究,食品工业科技,2007,28(1):181-182
    [39]任鲁华,李强等,增加难溶性药物溶解度方法新进展,黑龙江医药,2007,20(1): 25-27
    [40]吴佩颖,徐莲英等,2005,难溶性药物增溶方法研究进展,中成药,27(9):11-14
    [41]喇万英,韩刚等,姜黄素-β-环糊精包合物的制备与验证,中成药,2005,27(8): 966-968
    [42]韩刚,许建华等,2004,姜黄素β-环糊精包合物的制备工艺研究,中药材27(12): 946-948
    [43]崔晶,翟光喜等,姜黄素微乳的研制及其性质研究,中国药学杂志,2005,40(24): 1877-1880
    [44] Giunchedi P.,Conti B.,Gema I,et a1,Emulsion spray-drying for thepreparation of albumin-loaded PLGA microspheres,Drug development andindustrial pharmacy,2001, 27(7):745-750
    [45] Ermis D.,Yuksd A.,Preparation of spraydried microspheres indomethacin andexamination of the effects of coating on dissolution rates,Journal ofmicroencapsulation,1999,16(3):315-324.
    [46] Perrutr M.,Jung J.,Leboeuf F.,Enhancement of dissolution rate poorly-solubleactive ingredients bysupercritical fluid processes Part II: preparation ofcomposite particles,International journal of pharmaceutics,2005,288(1) :11-16
    [47] Murali Mohan Babu G.V.,Prasad Ch.D.S,Ramana MurthyK.V.,Evaluationof modified gum karaya as carrier for the dissolution enhancement of poorlywater soluble drug nimodipine,International journal of pharmaceutics,2002,234(1-2) :1-17
    [48] Ruan Li-Ping,Bo-YangYu,et a1,Improving the solubilityof ampelopsin bysolid dispersions and inclusion complexes,Journal of pharmaceutical andbiomedical analysis,2005,38(3):457-464
    [49]李凤前,胡晋红,王慧等,PEG6000固体分散体系对难溶性药物水飞蓟素的增溶作用与晶格变化的关系,药学学报,2002,37(4):294-298.
    [50]仲明远,全山丛,姜黄素制剂学研究进展,中成药,2007,29(002): 255-258
    [51]韩刚,张永等,姜黄素滴丸的制备及体外溶出研究,中成药,2006,28(12):1832-1833
    [52] Sou K.,Shunsuke Inenaga,et al,Loading of curcumin into macrophages usinglipid-based nanoparticles,International Journal of Pharmaceutics,2008,352(1-2): 287-293
    [53] Pan C. J.,Tang J.J.,et al,Preparation, characterization and anticoagulation ofcurcumin-eluting controlled biodegradable coating stents,Journal of ControlledRelease,2006,116(1): 42-49
    [54] Li L.,Braiteh F.,et al,Liposome-encapsulated curcumin in vitro and in vivoeffects on proliferation, apoptosis, signaling, and angiogenesis,Cancer Journalfor Clinicians,104(6): 1322-1331
    [55] Kurien B.T.,Scofield R.H.,Increasing aqueous solubilityof curcumin forimproving bioavailability. Trends PharmacologyScience,2009,30(7):334-335
    [56]刘延敏,王传胜等,姜黄素固体分散体的制备及体外溶出度测定,哈尔滨医科大学学报2006,40(4): 327-328
    [57] Anant P.,Anshuman A. A.,Bhimrao K.,et al,Characterization of curcum inPVP solid dispersion obtained byspraydrying,,International Journal ofPharmaceutics,2004,271(1-2): 281-286
    [58] Tonnesen H. H.,Masson M.,Loftsson T.,Studies of curcum in and curcuminoids XXXI. Cyclodextrin comp lexation: Solubility, chem ical and photochemical stability,International Journal of Pharmaceutics,2002 (244): 127-135
    [59]赵琳琳,韩刚等,姜黄素壳聚糖微球的制备及体外药物释放研究,中药材,2007,30(2): 230-232
    [60] Kumar V.,Lewis S.A.,Mutalik S.,et al,Biodegradable microspheres ofcurcum in for treatment of inflammation,Indian Journal of PhysiologyandPharmacology,2002,46(2): 209-217
    [61]崔晶,翟光喜等,姜黄素微乳的研制及其性质研究,中国药学杂志,2005,40(24): 1877-1880
    [62] Al-Kahtani AA, Sherigara BS,Controlled release of theophylline throughsemi-interpenetrating network microspheres ofchitosan-(dextran-g-acrylamide),Journal of Material Science: Material inMedicine,2009,20(7):1437-1445
    [63] Al-Kahtani Ahmed A,Bhojya Naik HS,Sherigara BS,Synthesis andcharacterization of chitosan-based pH-sensitive semi-interpenetrating networkmicrospheres for controlled release of diclofenac sodium,CarbohydrateResearch,2009,344(5):699-706
    [64] Rokhade AP,Kulkarni PV,Mallikarjuna NN,et al,Preparation andcharacterization of novel semi-interpenetrating polymer network hydrogelmicrospheres of chitosan and hydroxypropyl cellulose for controlled release ofchlorothiazide,Journal of Microencapsulation,2009,26(1):27-36
    [65] Peppas N.A.,Merrill E.W.,Crosslinked poly(vinyl alcohol) hydrogels asswollen elastic networks,Joural of Applied Polymer Science,1977,21(7):1763-1770
    [66]唐黎明,戴彧,新型pH及温度敏感性水凝胶,高分子学报,2003,3,426-429
    [67] Kurisawa M.,Yui N.,Dual-stimuli-responsive drug release frominterpenetrating polymer network-structured hydrogels of gelatin and dextran1998,Journal of Controlled Release,54(2): 191-200.
    [68] Jameela S.R.,Jayakrishnan A.,Glutaraldehyde crosslinked chitosan as a longacting biodegradable drug deliveryvehicle: studies on the in vitro release ofmitoxantrone and invivo degradation of microspheres in rat muscle,Biomaterials,1995,16(10): 769-775
    [69] Lin C.,Metters A.,Hydrogels in controlled release formulations: Networkdesign and mathematical modeling,Advanced drug deliveryreviews 2006,58(12-13): 1379-1408.
    [70]阎雪莹,唐晓飞等,水蛭素明胶微球的制备及体外释放的考察,现代生物医学进展,2008,8(1): 109-111.
    [71]姚瑶,陶昱斐等,依托泊苷明胶微球的制备,中国现代应用药学,2005,22(3): 219-221
    [72]李军,邓艳芸等,恩诺沙星肺靶向明胶微球的制备及质量评价,中国兽药杂志,2008,42(12): 43-46
    [73]商丹,张朝平等,氨苄西林磁性明胶药物微球的制备及控制释放,高校化学工程学报,2009,23(003): 537-542
    [74]陆扬,明胶微球的研究进展,明胶科学与技术,2006,26(2): 57-68
    [75] Esposito E.,R. Cortesi,et al,Gelatin microspheres: influence of preparationparameters and thermal treatment on chemico-physical and biopharmaceuticalproperties,Biomaterials,1996,17(20): 2009-2020
    [76]宇海银,顾家山等,羟丙基甲基纤维素的接枝共聚及其在复合材料中的应用研究,合成化学,2003,11(3): 233-236
    [77]张幸生,羟丙基甲基纤维素在药物制剂中的应用进展,时珍国医国药,2001,12(009): 851-851
    [78]陈挺,包泳初,陈子晟等,国产羟丙基甲基纤维素作为缓释药物骨架片基质的研究,《中华中医药学会制剂分会学术年会》,2005
    [79]石晶,鲍永利,离子凝聚法制备负载流感疫苗的壳聚糖微球,高等学校化学学报,2008,29(11):2308-2311
    [80]何熠,肖国民,邹良,胸腺肽聚乳酸微球的制备和释药性能研究,中国医药工业杂志,2006,37(3):178-180
    [81]胡婷婷,乐园,赵宏,高压均质技术结合喷雾干燥法制备布地奈德多孔微球,北京化工大学学报,36(2): 9-13
    [82]刘海峰,薛屏,反相悬浮聚合技术的研究进展与应用,应用化工,2005,34(8): 460-463
    [83]范荣,朱秀林,丙烯酸钠的反相悬浮聚合及吸水性能研究,高分子材料科学与工程,1995,11(6):25-29
    [84]高瑞昶,李凭力,颗粒单分散聚丙烯酰胺凝胶微球的制备,化工学报,2000,51(4):527-530
    [85] Ha. J., Kim S., et al,Albumin release from bioerodible hydrogels based onsemi-interpenetrating polymer networks composed of poly(ε-caprolactone) andpoly(ethylene glycol) macromer,Journal of Controlled Release,1997,49(2-3):253-262.
    [86] Chen, Y., D. Ding, et al. (2008). "Synthesis of Hydroxypropylcellulose-poly(acrylic acid) Particles with Semi-Interpenetrating Polymer Network Structure."Biomacromolecules 9(10): 2609-2614.
    [87] Park Y., Liang J., et al,Controlled release of clot-dissolving tissue-typeplasminogen activator from a poly(L-glutamic acid) semi-interpenetratingpolymer network hydrogel,Journal of Controlled Release,2001,75(1-2): 37-44
    [88] Rokhade A., Patil S.,et al,Synthesis and characterization ofsemi-interpenetrating polymer network microspheres of acrylamide grafteddextran and chitosan for controlled release of acyclovir,CarbohydratePolymers, 2007,67(4): 605-613
    [89]耿奎士,苏砚溪等,两组份互穿网络聚合物的合成研究,高等学校化学学报,1989,10(1): 87-91
    [90] Kosmala J.,Henthorn D.,et al,Preparation of interpenetrating networks ofgelatin and dextran as degradable biomaterials,Biomaterials,2000,21(20):2019-2023
    [91] Kim S.,Shin S.,et al,Swelling characterizations of chitosan andpolyacrylonitrile semi-interpenetrating polymer network hydrogels,Journal ofApplied Polymer Science,2003,87(12): 2011-2015
    [92] Zhang G.,Zhang L.,et al,Rapid deswelling of sodium alginate/poly(N-isopropylacrylamide) semi-interpenetrating polymer network hydrogels inresponse to temperature and pH changes,Colloid & Polymer Science, 2005,283(4): 431-438
    [93] Zhang J.,Cheng S.,et al.,Poly(vinyl alcohol)/poly(N-isopropylacrylamide)semi-interpenetrating polymer network hydrogels with rapid response totemperature changes,Colloid & Polymer Science,281(6): 580-583.
    [94] Seong Soo Kim,Jin Woo Lee,So Yeon Kim,Synthesis and characteristics ofinterpenetrating polymer network hydrogel composed of chitosan andpoly(acrylic acid) Journal of Applied Polymer Science,73 (1):113 - 120
    [95] Bajpai A.,Giri A.,Swelling dynamics of a macromolecular hydrophilicnetwork and evaluation of its potential for controlled release of agrochemicals,Reactive and Functional Polymers,2002,53(2-3): 125-141
    [96] Yoon-Jeong Park, Junfeng Liang,Controlled release of clot-dissolvingtissue-type plasminogen activator from a poly(glutamic acid)semi-interpenetrating polymer network hydrogel,Journal of Controlled Release2001,75(1-2):37-44
    [97] Gao-Qi Zhang,Liu-Sheng Zha,Rapid deswelling of sodiumalginate/poly( N-isopropylacrylamide) semi-interpenetrating polymer networkhydrogels in response to temperature and pH changes,Colloid and PolymerScience,283(4):431-438
    [98] Wen-Fu Lee,Ying-Jou Chen,Studies on preparation and swelling properties ofthe N-isopropylacrylamide/chitosan semi-IPN and IPN hydrogels,Journal ofApplied Polymer Science,82 (10):2487-2496
    [99] Burugapalli K.,Bhatia D.,et al,Interpenetrating polymer networks based onpoly(acrylic acid) and gelatin. I: Swelling and thermal behavior,Journal ofApplied Polymer Science,2001,82(1): 217-227
    [100]吴炜亮,吴国杰等,聚乙烯醇-壳聚糖水凝胶机械性能的研究,广东工业大学学报,2006,23(4): 105-109
    [101]汪涛,朱惟德,用正交试验法优化聚丙烯酰胺水凝胶的机械性能,上海大学学报,2001,7(1): 60-64.
    [102]郑丽莉,药物多晶型对药物质量的影响,中国药师,2008,11(3): 347-349
    [103]李志万,药物晶型的分析方法,中国兽药杂志,2006,40(1): 45-48
    [104] Arifin D.,Lee L.,et al,Mathematical modeling and simulation of drug releasefrom microspheres: Implications to drug deliverysystems,Advanced drugdeliveryreviews,2006,58(12-13): 1274-1325.
    [105]潘吉铮,聚乳酸微球载体的结构与控释性能关系及模型,博士学位论文,华南理工大学,2004
    [106] Shoba G, JoyD, Joseph T, Majeed M, Rajendran R, Srinivas PS. Influence ofpiperine on the pharmacokinetics of curcumin in animals and human volunteers.Planta Medica. 1998,64(4):353-356.
    [107] Pradat P.F.,Treatment of peripheral neuropathies with neutrotrophic factors:animal models and clinical trials. Review Neurology,2003,159(2):147-61
    [108] Hefti F,Development of effective therapyfor Alzheimer's disease based onneurotrophic factors. NeurobiologyAging,1994,15(Supply2):193-194
    [109] Oson L.,NGF and the treatment of Alzheimer's disease. ExperinmentalNeurology,1993,124(1):5-15
    [110] Pan W.,Banks W.A.,Kastin A.J.,Permeability of the blood-brain barrier toneurotrophins,Brain Research. 1998,788(1-2):87-94
    [111] Poduslo J.F.,Curran G.L.,Berg CT,Macromolecular permeability across theblood-nerve and blood-brain barriers,Proceedings of the National Academy ofSciences,1994,91(12):5705-5709
    [112] Tirassa P.,Stenfors C.,Lundeberg T.,et al,Cholecystokinin-8 regulation ofNGF concentrations in adult mouse brain through a mechanism involvingCCK(A) and CCK(B) receptors,British Journal of Pharmacology,1998,123(6):1230-1236
    [113] Bartus R.T.,The blood-brain barrier as a target for pharmacological modulation.Current Opinon of Drug DiscoveryDevelopment,1999,2(2):152-67
    [114] 16: Liao G.S.,Li X.B.,Zhang C.Y.,et al,Pharmacological actions of nervegrowth factor-transferrin conjugate on the central nervous system,Journal ofNatural Toxins,2001,10(4):291-297
    [115] Friden P.M.,Walus L.R.,Watson P.,et al,Blood-brain barrier penetration andin vivo activityof an NGF conjugate. Science. 1993,259(5093):373-7
    [116] Poduslo J.F.,Curran G.L.,Berg CT,Macromolecular permeability across theblood-nerve and blood-brain barriers,Proceedings of the National Academy ofSciences,1994,91(12):5705-5709
    [117] Xie Y.,Ye L.,Zhang X.,et al,Transport of nerve growth factor encapsulatedinto liposomes across the blood-brain barrier: in vitro and in vivostudies.Journal of Control Release,2005,105(1-2):106-19
    [118] Studyon nerve growth factor liposomes on crossing blood-brain barrier in vitroand in vivo. Yao Xue Xue Bao,2004,39(11):9444-9448
    [119] Kurakhmaeva K.B., Djindjikhashvili I.A.,Petrov V.E.,et al,Brain targetingof nerve growth factor using poly(butyl cyanoacrylate) nanoparticles,Journal ofDrug Target,2009,17(8):564-74
    [120] Mc Grath J.P.,Cao X.,Schutz A.,et al,Bifunctional fusion between nervegrowth factor and a transferring receptor antibody,Journal of neuroscienceResearch,1997,47(2):123-33
    [121] Kordower J.H., Charles V.,Bayer R,et al,Intravenous administration of atransferrin receptor antibody-nerve growth factor conjugate prevents thedegeneration of cholinergic striatal neurons in a model of Huntington disease.Proceedings of the National Academyof Sciences,1994,91(19):9077-80
    [122] Li X.B.,Liao G.S.,Shu Y.Y.,et al,Brain deliveryof biotinylated NGFbounded to an avidin-transferrin conjugate. Journal of Natural Toxins,2000,9(1):73-83
    [123] B?ckman C,Biddle PT,Ebendal T,et al,Effects of transferrin receptorantibody-NGF conjugate on young and aged septal transplants in oculo,Experinmental Neurology,1995,132(1):1-15
    [124] Granholm A.C.,Albeck D.,B?ckman C.,A non-invasive system for deliveringneural growth factors across the blood-brain barrier: a review. ReviewNeurology,1998,9(1):31-55
    [125] Park E.,Starzyk R.M.,McGrath J.P.,et al,Production and characterizationof fusion proteins containing transferrin and nerve growth factor,Journal ofdrug target,1998;6(1):53-64

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700