恩度PLGA缓释微球磷酸钙骨水泥复合物治疗骨肉瘤实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:重组人血管内皮抑素(rh-Endostatin)是一种特异的多靶点血管内皮细胞生长抑制因子,具有抑制人内皮细胞的迁移的作用,能特异性强效抑制肿瘤新生血管内皮细胞增殖,阻止肿瘤新生血管的形成,进而抑制肿瘤生长和转移,而对正常组织和结构无影响。恩度(Endostar)是一种新型重组人血管内皮抑素注射液,通过在Endostatin氨基末端增加9个氨基序列(MGGSHHHHH),从而简化了蛋白纯化程序、有效增加了蛋白质的稳定性,并可水溶性应用,更重要的是增强了抑制血管形成的作用。磷酸钙骨水泥(CPC)是目前唯一能自行固化并产生骨再生效果的骨骼修复材料,同时由于其固化条件温和,以及内部存在的孔隙结构,成为良好的药物载体。本研究构建恩度的聚乳酸-乙醇酸共聚物poly(lactic-co-glycolic acid) (PLGA)缓释微球,并与磷酸钙骨水泥(Calcium Phosphate Cement,CPC)相复合,研究复合后复合骨水泥的理化性质、药物体外缓释、缓释后的生物学活性和应用于荷骨肉瘤裸鼠体内对骨肉瘤生长抑制情况。
     研究方法:利用乳化溶剂挥发法(w/o/o)制备出相应粒径的恩度PLGA缓释微球,观察其形态以及粒径分布,并研究了该方法制备缓释微球的制备工艺及其影响因素,优选载药量和包封率高的处方以制备微球;将恩度PLGA缓释微球分别以5%、8%、10%的质量百分比与磷酸钙骨水泥复合,检测复合物的凝结时间、抗压强度、孔隙率及微结构的改变等理化性质,研究不同质量配比的载药微球复合磷酸钙骨水泥后是否对骨水泥的结构产生重要影响;体外测定恩度PLGA缓释微球磷酸钙骨水泥复合物药物缓释情况,并以人脐静脉内皮细胞(Human Umbilical Vein Endothelial Cells HUVESc)增殖抑制试验(MTT)法检测缓释后的药物活性;将恩度PLGA缓释微球磷酸钙骨水泥复合物植入荷骨肉瘤裸鼠模型,并进行对照实验,明确恩度PLGA缓释微球磷酸钙骨水泥复合物对裸鼠骨肉瘤的治疗作用。
     结果:1、选用PLGA微球作为药物载体材料,采用乳化溶剂挥发法制备恩度PLGA缓释微球,制备工艺简便易行,稳定性好,包封率和载药量较高。同时,该法制备的缓释微球的初始突释较小,前期释放较快,后期稳定,且缓慢溶蚀释放为其主释药过程,时间可达3周以上,能够满足骨肿瘤病灶清除后缺损修复中抗肿瘤药物局部持续释放要求。2、CPC作为一种理想的提供局部负荷力学重建与药物缓释的载体,其理化特性可能随着加入药物的量而改变。不同配比的恩度PLGA缓释微球对磷酸钙骨水泥的凝结时间、抗压强度及孔隙率均有影响,三者的关系是统一的。恩度PLGA缓释微球磷酸钙骨水泥复合物的固化时间及材料性能产生负面的影响;5%、8%恩度PLGA缓释微球磷酸钙骨水泥复合物的固化时间及材料性能无显著改变。3、以CPC为载体的药物缓释体系可以达到药物缓释过程可控、局部药物高效、稳定、长期释放的目的。恩度PLGA缓释微球磷酸钙骨水泥复合物是一种集骨修复和药物治疗于一体的较理想的新型功能人工骨,作为Endostar的控释载体,该体系能有效缓释具有生物活性的Endostar超过28天,且突释较小。恩度PLGA缓释微球磷酸钙骨水泥复合物的缓释液具有良好的生物活性,可有效抑制HUVECs的增殖,其抑制作用与其浓度呈正相关。4、恩度PLGA缓释微球磷酸钙骨水泥复合物在体内可抑制骨肉瘤移植瘤的生长、侵袭和转移,恩度可望作为骨肉瘤综合治疗的组成部分。
     结论:采用可生物降解的聚合物PLGA作为载体材料,可将rh-endostatin制备成缓释微球。较低质量百分比(5%以下)PLGA包裹的rh-endostatin缓释微球复合磷酸钙骨水泥对CPC固化及材料性能未产生负面的影响,CPC的凝结时间无明显延长,抗压强度无明显改变。rh-endostatin缓释后各组CPC的抗压强度无明显降低,rh-endostatin从骨水泥中的缓释情况与其从缓释微球中缓释相近,稳定性、重现性良好。含有rh-endostatin的缓释液可有效抑制HUVECs的增殖,其抑制作用与其浓度呈正相关,浓度越高对细胞增殖的抑制越大,具有剂量依赖抑制关系。rh-endostatin/PLGA微球复合CPC骨水泥具有较好的抑制裸鼠骨肉瘤新生血管形成,诱导肿瘤凋亡的作用。以上结果提示恩度PLGA缓释微球磷酸钙骨水泥复合物能应用于骨肉瘤的局部治疗,本研究将对载药CPC的临床应用一定的具有指导作用。
     本研究创新点:
     首次合成抗新生血管形成药物(恩度,Endostar)PLGA缓释微球磷酸钙骨水泥复合物,既具有骨肉瘤术中的重建作用,同时也具有持久的局部缓释抗肿瘤作用。不仅能用于脊柱肿瘤术中重建,同时也能应用于四肢肿瘤,具有广泛的临床应用前景,为后期其他研究奠定了基础。
It was confirmed by many studies at home and abroad that the solid tumor could not develop if there were not new endothelial cells to supplement and the formation of neogenesis blood capillary was the cause of the amplification and metastasis of tumors. Rh-Endostatin was discovered by Folkman et al at 1997 and it is the fragment of non-collegenous dormain which is at the C-terminal of extracellular matrix(ECM) collagen protein XVIII. It exerts a negative effect on the angiogenesis of tumor. And it is a specific kind of angiogenic inhibitor. The experiment in vitro indicated that it can inhibit the proliferation and migration of vascular endothelial cells effectively and inhibit the angiogenesis of carcinoma. So the nutrition supply of tumor cells was obstructed and the proliferation and migration of tumor were inhibited. Therefore rh-Endostatin is featured in broad-spectrum, high-efficiency and no resistance to prevent neoplasm of tumor blood vessels. Calcium phosphates possess good biocompatibility and osteoconductivity as the filling materials for repairing bone defects. When solidified, CPC produces strong compressive strength without releasing much heat and has good plasticity, biocompatibility, osteoconductivity and degradability in vivo. Currently, CPC is the only material available capable of spontaneous solidification and inducing bone regeneration, and has been widely used in dental and orthopedic surgeries. The mild condition required for solidification and the porous structure of CPC suggest great potential of CPC as a drug carrier for sustained drug release in vivo to maintain sufficient local drug concentration and minimize potential systemic adverse effects of the drugs, especially the agents for tumor therapy.
     Endostar is a neotype self-designed rh-Endostatin and it is produced by using escherichia coli as expression vectors. Endostar raise the stability of the protein efficiently and the antiangiogenenic effect, and make the purification of protein easy. As shown in these researchs, the inhibitory effect of Endostar to new vessels is greater two times than Endostatin at least. PhaseⅢclinical trials confirm that the efficacy of Endostar combined with NP regimen in treating advanced non-small-cell lung cancer(NSCLC) is raised significantly and the treatment prolong the live time and improve the quality of life. At present in home and abroad many researchers are attempting to use Endostar combined chemotherapy to treatment many kinds of advanced malignant tumour. Calcium phosphates possess good biocompatibility and osteoconductivity as the filling materials for repairing bone defects. When solidified, CPC produces strong compressive strength without releasing much heat and has good plasticity, biocompatibility, osteoconductivity and degradability in vivo. Currently, CPC is the only material available capable of spontaneous solidification and inducing bone regeneration, and has been widely used in dental and orthopedic surgeries. The mild condition required for solidification and the porous structure of CPC suggest great potential of CPC as a drug carrier for sustained drug release in vivo to maintain sufficient local drug concentration and minimize potential systemic adverse effects of the drugs, especially the agents for tumor therapy.
     At present, the research of the pharmaceutical dosage form of Endostar is very seldom and there is no report about sustained-release dosage form of Endostar. Because Endostar is easy to be degradated and inactivated and has a very short half-life in vivo, it is required to inject many times and the promising prospects in utilization are restricted. In this study we design to prepare controlled release of Endostar encapsulated within poly(D,L-lactide-co-glycolide)(PLGA).The lasting time of the drug is 4 weeks and the quality of drug and the compliance of patients are raised. The delayed release microspheres are used to combinate with calcium phosphate cement (CPC), then the complex is used to fill the defect after the focal cleaning of bone tumor. Because the diameter of Osteoblast is about 100~150um, in this study the particle diameter of these microspheres are controlled about 100~150um. After delayed release the cellules are profit to osteoblast to enter and newly formed bone tissue to deposite.
     This study is divided into 4 parts. The first part begun with the preparation of PLGA microspheres by W/O/O phase separation method and observed the appearance and the size and distribution of PLGA microspher. Single-factor experiment was designed to investigate the influential factors of the size and encapsulation efficiency of microspheres. The influential factors include stirring rate when preparing double emulsion, polyvinyl alcohol (PVA) volume, PLGA concentration, the volume of inner water phase. Adjusting all kinds of influential factors, the encapsulation efficiency of microspheres are usually high(more than 45%). In vitro test confirmed that PLGA microspheres for Endostar delivery systems prepared by the solvent evaporation with W/O/O phase separation method have better functions of sustained releasing Endostar, moreover, their stability and reproducibility are favorable, and encapsulation efficiency are high, which could provide the local sustained releasing Endostar.
     The second part of this study researched on the properties of CPC combined with PLGA microspheres for Endostar. We studied the properties of CPC combined with different content of PLGA microspheres, including the setting time, compressive strength, microstructural development and the interval porosity. The result showed that high content of PLGA microspheres(10%) affected the properties of CPC that had the longer setting time and lower compressive strength. On the other hand, the properties of CPC combined with low content of PLGA microspheres(5% and 8%) were not influenced.
     The third part of this study researched on the release characteristics in vitro of the PLGA microspheres for Endostar combined with CPC and the biological activities of Endostar delayed release from CPC. The experimental result showed that the delayed release of Endostar from CPC is like as the delayed release of Endostar from PLGA, their stability and reproducibility are favorable, and it could meet the need of the local controlled releasing.
     The last part of this study is the in vivo research of the PLGA microspheres for Endostar combined with CPC on tumor. Implanted the PLGA microspheres for Endostar combined with CPC and MTX CPC into osteosarcoma model of the nude mouse. It has shown that the PLGA microspheres for Endostar combined with CPC has the stronger ability of inhibiting the growth and inducing the apoptosis of the of the tumor cell.
     Conclusion:Endostar can be encapsulated in microspheres to yield continuous release when using biodegradable polymers PLGA as carrier material, and this technique will have a favorable perspective in the near future. The properties of CPC combined with low content of PLGA microspheres(5% and 8%) were not influenced negatively. The delayed release of Endostar from CPC is like as the delayed release of Endostar from PLGA, their stability and reproducibility are favorable, and it could meet the need of the local controlled releasing. The compressive strength of three groups CPC after Endostar delayed release from them did not cut down, and the porosity of CPC (8% and 10%) raised obviously. In summary, the composite cement serves as an ideal drug carrier and Endostar released from the composites retains good bioactivity. The composite cement may find potential clinical application in bone defect reconstruction with sustained release of therapeutic agents to improve the therapeutic effect, simplify the drug administration and minimize the adverse effects of the drugs.
     All aboved experimental result suggested that the PLGA microspheres for Endostar combined with CPC could be used for local treatment of malignant bone tumor. And this research has certain instructive function to the clinical application of drug-loaded CPC.
     The new ideas of this study:
     1、Discuss the feasibility of CPC on the spinal tumor.
     2、Compounded the PLGA microspheres for Endostar combined with CPC for the first time and carried out the basic research.
引文
[1] Zetter BR.Angiogenesis and tumor metastasis[J].Annu Rev Med,1998,49:4O7-424.
    [2] Shichiri M, Hirata Y. Antiangiogenesis signals by endostatin [J]. FASEB J, 2001, 15(6):1044-1053.
    [3] Huang X, Wong MK, Zhao Q, et al. Soluble recombinant endostatin purified from Escherichia coli: antiangiogenic activity and antitumor effect [J]. Cancer Res,2001,61(2):478-481.
    [4] Lim TH, Brebach GT, Renner SM,et al. Biomechanical evaluation of an injectable calcium phosphate cement for vertebroplasty. Spine. 2002 Jun 15;27(12):1297-302.
    [5] Pandya NM, Dhalla NS, Santani DD.Angiogenesis--a new target for future therapy. Vascul Pharmacol. 2006,44(5):265-274.
    [6] Verlaan JJ, van Helden WH, Oner FC. Balloon vertebroplasty with calcium phosphate cement augmentation for direct restoration of traumatic thoracolumbar vertebral fractures. Spine. 2002 Oct 15;27(20):2300-1; author reply 2300-1.
    [7] Satoshi Itasaka, Ritsuko Komaki,et al.Endostatin improves radioresponse and blocks tumor revascularization after radiation therapy for A431 xenografts in mice.Int J Radiat Oncol Biol Phys. 2007,67(3), 870-878.
    [8] Abdollahi A, Hlatky L, Huber PE.Endostatin: the logic of antiangiogenic therapy. Drug Resist Updat. 2005,8(1-2):59-74.
    [9] Jia H, Kling J.China offers alternative gateway for experimental drugs.Nat Biotechnol. 2006,24(2):117-118.
    [10]王金万,孙燕,刘永煜,等.重组人血管内皮抑素联合NP方案治疗晚期NSCLC随机、双盲、对照、多中心Ⅲ期临床研究[J].中国肺癌杂志,2005,8(4):283-290.
    [11] SINHA VR,AMAN T. Biodegradable microspheres for protein delivery[J]. J Controlled Release, 2003, 90 (2):261-280.
    [12] Ren T,Ren J,JiaX,et a1.The boneformationin vitro andmandibu—lar defect repair using PLGA porous scafolds[J].J Biomed MaterRes A,2005,74(4):562-569.
    [13] Griffin RJ, Monzen H, Williams BW,et al. Arsenic trioxide induces selective tumour vascular damage via oxidative stress and increases thermosensitivity of tumours. Int J Hyperthermia. 2003,19(6):575-89.
    [14] Yu D, Wang ZH, Zhu LY. Mechanism of arsenic trioxide-induced apoptosis in hepatic blastoma cells HepG2. Zhonghua Zhong Liu Za Zhi. 2003,25(2):120-3.
    [15] Simon CG Jr, Khatri CA, Wight SA, et al.Preliminary report on the biocompatibility of a moldable, resorbable, composite bone graft consisting of calcium phosphate cement and poly(lactide-co-glycolide) microspheres.J Orthop Res.2002,20(3):473-482.
    [16] Huang X, Miao X.Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass.J Biomater Appl. 2007 ,21(4):351-374.
    [17] Cleland JL, Jones AJS. Stable formulations of recombinant human growth hormone andinterferon-γfor microencapsulation in biodegradable microspheres[J].Pharm Res, 1996, 13(10):1464.
    [18] Cleland JL. Solvent evaporation processes for the production of controlled release biodegradable microsphere formulations for therapeutics and vaccines[J].Biotechnol Prog, 1998, 14:102
    [19] Cleland JL, Duenas ET, Daugherty A, et al. Recombinant human growth hormone poly(lactic-co-glycolic acid)(PLGA) provide a long lasting efect[J]. J Control Release,1997,49(2-3):193.
    [20] Singh M, Shirley B, Bajwa K ,et al. Controlled release of recombinant insulin-like growth factor from a novel formulation of polylactide-co-glycolide microparticles[J].JC ontrol Res,2001,70:21.
    [21] Rosa GD, Iommelli R, Rotonda MIL, et al. Influence of the co-encapsulation of different non-ionic surfactants on the properties of PLGA insulin-loaded microspheres[J].J Control Res,2000,69:283.
    [22] JUAN W,BARBARA M,STEVEN P.Characterization of the initial burst release of a model peptide from PLGA microspheres[J].J Control Release,2002,82(3):289-307.
    [23] EHTEZAZI T,WASHINGTON C,MELIA C D.First order release rate from porous PLA microspheres with limited exit holes on the exterior surface[J],J Control Release,2000,66(1):27-38.
    [24] KIM HK.PARK TG.Comparative study on sustained release of human growth hormone from semi-crystalline poly(1-lactic acid)and amorphous poly (d,l-lactic-co-glycolic acid) microspheres:morphological effect on protein release[J].J Control Release,2004,98(1):115-125.
    [25] LI F ,XIAN RQ,XING JZ,et a1.Pharmaceutical and immunological evaluation of a single-dose hepatitis B vaccine using PLGA microspheres[J].J Control Release,2006,l12:35-42.
    [26] HE JT,SU HB,LI GP,et a1.Stabilization and encapsulation of a staphylokinase variant(K35R)into poly(1actic-co-glycolic acid) micmspheres[J].Inter JPharm,2006,309:101-108.
    [27]陈发明,吴织芬,金岩等.重组人骨形态发生蛋白-2缓释微球对成骨细胞的作用.中华实验外科杂志,2005,22:151-153.
    [28] Takahashi Y, Yamamoto M, Tabata Y. Enhanced osteoinduction by controlled release of bone morphogenetic protein-2 from biodegradable sponge composed of gelatin and beta-tricalcium phosphate. Biomaterials,2005,26:4856-4865.
    [29] Zhang JX, Zhu KJ. An improvement of double emulsion technique for preparing bovine serum albumin-loaded PLGA microspheres. J Microencapsulation, 2004,21:775-785.
    [30] Singh M,Shirley B,Bajwa K,et al.Controlled release of recombinant insulin-like growth factor from a novel formulation of polylactide-co-glycolide microparticles.J Control Release,2001,70:21-29.
    [31] Katsikogianni G,Avgoustakis K.Poly(lactide-co-glycolide)-methoxy-poly(ethylene glycol) nanoparticles:drug loading and release properties.J Nanosci Nanotechnol,2006,6:3080-3086.
    [32]殷香保,黎洪浩,陈汝福等.聚乳酸阿霉素纳米微粒的制备及体内外释药的研究.中华实验外科杂志,2006,23:227-229.
    [1]Larsson S,Bauerrvv"Use ofinjectable calcium phosphate cementforfracturefixation:areview-Clin Orthop 2002 Feb;(395):23-32
    [2]Blom EJ,Klein-Nulend J,Wolke JG,et al Transforming growth factor-betal incorporationin a calcium phosphate bone cement:material properties and release characteristics J Biomed MaterRes 2002 Feb;59(2):265-72
    [3]Bohner M,Lemaitre J,Merkle HP,et al Control ofgentamicin release from a calciumphosphate cement by admixed poly(acrylic acid)J Pharm Sci 2000 Oct;89(1 O、:1 262-70
    [4]Pandya NM,Dhalla NS,Santani DD Angiogenesis-a new-target for future therapy VasculPharmacol 2006,44(5):265-274
    [5]黄粤,刘昌胜,邵慧芳等妥布霉素对磷酸钙骨水泥性能的影响中国生物医学工程学报2002 10 20;21 r5、:417-421
    [6]徐宝山,唐天驷,胡永成等负载甲氨蝶呤的经皮椎体成形术后血清药物浓度的监测中华临床医药杂志2002 09 25;3f14):22-24
    [7]Brown wE,Chow-LC,A new-calcium phosphate watersetting cement//Brown PW Cementsresearch progress.Wasterville,Ohio:American Ceramic Society,1986:352-379.
    [8]LeGeros RZ Properties of osteoconductive biomaterials:calcium phosphates Clin O~hop,2002,(395):81-98
    [9]Verlaan JJ,van Helden WH,Oner FC Balloonvertebroplasty with calcium phosphatecement augmentation for direct restoration oftraumatic thoracolumbar vertebral fractures Spine 2002Oct 15,27(20):2300-1,author re ply 2300-1
    [10]Wilke HJ,Mehnert U,Claes LE,et al iomechanical evaluation ofvertebroplasty andkyphoplasty with polymethyl methacrylate or calcium phosphate cement under cyclic loading Spine2006,31(25):2934-2941
    [11]LinkDP,van denDolder J,Jurgensw J_et alMechanical evaluation ofimplanted calciumphosphate cement incorporated with PLGA microparticles Biomaterials 2006,27(28):4941-4947
    [12]Simon CG Jr,Khatri CA,Wight SA,et al Preliminary report on the biocompatibility ofamoldable,resorbable,composite bone graft consisting of calcium phosphate cement andpoly(1actide-co-glycolide)microspheres J Orthop Res 2002,20(3):473-482
    [13]陈华江,贾连顺,肖建如等抗肿瘤药物复合磷酸钙骨水泥的理化性质研究第二军医大学学报2007,28(3);250-253
    [14]Sinha VR,Aman T Biodegradable microspheres for protein delivery[J]J ControlledRelease,2003,90(2):261-280
    [15]RAJANKV,SANJAYG Current status ofdrug deliverytechnologies andfuturedirections[J]Pharm Technol On2L ine,2001,25(1):12-14
    [16]Ren T,Ren J,JiaX,et a1.The boneformationin vitro andmandibu lar defect repair usingPLGA porous scafolds[J].JBiomedMaterResA,2005,74(4):562-569.
    [17]Day RM,Boccaccini AIt,Maquet V,et a1.Invivo characterisation ofa novel bioresorbablepoly(1 actide co glycolide)tubular foam scaffold for tissue engineering applications[J].J Mater SciMaterMed,2004,15(6):729-734.
    [18]Griffin RJ,Monzen H,Williams BW,et al Arsenic trioxide induces selective tumourvascular damage via oxidative stress and increases thermosensitivity oftumours Int J Hyperthermia2003,1 9(6):575-89
    [19]YuD,WangZH,ZhuLY Mechanism ofarsenictrioxide-induced apoptosisinhepaticblastoma cells HepG2 Zhonghua Zhong Liu Za Zhi 2003,25(2):1 20-3
    [20]Singh UV,Udupa N In vitro characterization ofmethotrexate loaded poly(1actic-co-glycolic)acidmicrospheres and antitumor efficacyin Sarcoma-1 80mice bearingtumor PharmActaHelv 1997Jun;72(3):1 65-73
    [21]Hoshino T,Saito K,Muranishi H,et al Sustained-release microcapsules ofa boneformation stimulant,TAK-778,for local injection into a fracture site J Pharm Sci 2001Dec;90(12、:2121-30
    [22]刘凯,李祖兵磷酸钙骨水泥及其复合材料研究进展国外医学口腔医学分册2003,30r2、:162-164
    [23]ZetterBR.Angiogenesis andtumormetastasis[J].AnnuRevMed,1998,49:407-424.
    [24]Shichiri M,Hirata Y Antiangiogenesis signals by endostatin[J]FASEB J,2001,15r6、:1044-1053
    [25]Huang X,Wong MK,Zhao Q,et al Soluble recombinant endostatin purified fromEscherichia coli:antiangiogenic activity and antitumor effect[J]Cancer Res,2001,61(2):478-481
    [26]王金万,孙燕,刘永煜等.重组人血管内皮抑素联合NP方案治疗晚期NSCLC随机、双盲、对照、多中中一Dill期临床研究[q中国肺癌杂志,2005,8(4):283-290.
    [27]Ambard AJ,MueninghoffL Calcium phosphate cement:review-ofmechanical andbiological properties J Prosthodont,2006,15:321-328
    [28]刘爱红,孙康宁,赵萍磷酸钙骨水泥的研究进展材料导报2005,19(2):17-19,30
    [29]沈卫,刘昌胜,顾燕芳等磷酸钙骨水泥的水化反应机理研究无机材料学报,1996;11『4):685-90
    [30]周栋,胡平,江钢等.聚羟基丁酸及其共聚物在体内组织相容性和降解率的实验研究[J].武警医学,2004,14(4):210-213
    [31]孙沫逸,杨耀武,毛天球等.由异种骨制备的多相钙磷陶瓷肌内降解性能的研究[n医学研究生学报,2004,17f3):210-221
    [1]Otsuka M,Matsuda Y,Fox JL,et a1.A novel skeletal drug delivery system using self-settingcalcium phosphate cement 9:Effect of the mixing solution volume on anticancer drug release fromhomogeneous drug-load cement.J Pharm Sci,1995,84(6):733-736
    [2]Otsuka M,Matsuda Y,Suwa Y et a1.A novel skeletal drug delivery system using self-settingcalcium phosphate cement 2:Physicochemical properties and drug release rate ofthe cement-containingindomethecin.JPharm Sci 1994,83(5):611-616
    [3]Otsuka M,Matsuda Y,Suwa Y,et a1.A novel skeletal drug delivery system usingself-setting calcium phosphate cement 4:Effects ofthe mixing solution volume on the drug release rateofheterogeneous aspirin-loaded cement.J Pharm Sci,1994,83(2):259-263
    [4]otsuka M,Matsuda Y,Suwa Y,et a1.A novel skeletal drug delivery system usingself-setting calcium phosphate cement 5:Drug release behaviour from a heterogeneous drug-loadedcement containing an anticancer drug J Pharm Sci,1994,83(1 1):1565-1568
    [5]Otsuka M,Nakahigashi Y.Matsuda Y.et a1.A novel skeletal drug delivery system usingself-setting calcium phosphate cement 7:Effect Of biologic factors on indomethacin release from thecement loaded on bovine bone.J Pharm Sci,1994,83(1 1):1569-1573
    [6]Maria-Pau Oinebra,Tania Traykova,Josep A.CalciumPhosphate cements:Competitive drugcarriers for the musculoskeletal s'rrstem Elsevier B10,2006,27:2171 2217
    [7]Radin S,Campbell JT,Ducheyne P,et al Calcium phosphate ceramic coatings as carriers ofvancomycin[J]Biomaterials,1997,1 8:777-782
    [8]Takechi M,Miyamoto Y,Ishikawa K,et al Effects of added antibiotics on the basic propertiesof anti-washout-type fast-setting calcium phosphate cement [J ] J Biomed MaterRes,1998,39(2):308-316
    [9]Radin S,Campbell JT,Ducheyne P,et al Calcium phosphate ceramic coatings as carriers ofvancomycin[J]Biomaterials,1997,1 8(11):777-782
    [10]Thanoo BC,Sunw MC,Jayakrishnan A Cross-linked chitosan microspheres:Preparationand Evaluation as a matrix for the controlled release of pharmaceuticals J Pharm Pharmacol,1 992,44(4):283-286
    [11]Julia Schnieders,Uwe Obureck,Roger Thull,Thomas Kissel Controlled release ofgentamicin from calcium phosphate-poly(1actic acid-CO-glycolic acid)composite bone cementBiomaterials 2006(27)42394249
    [12]Folkman J.Tumor angiogenesis:therapeuticimplications[J].NEngl JMed 1971,285(21):11 82-11 86.
    [13]Hanahad D,Folkman J.Patterns and emerging mechanisms ofthe angiogenic switch duringtumorigenesis[J].Cell,1996,86:353-364.
    [14]O’Reilly,Boehm T,Folkman J,et a1.Endostatin:an endogenous inhibitor ofangiogenesisandtumor growth[J].Cell,1997,88:277-285.
    [15]ABDOLLAHI A,HAHNFELDT P,MAERCKER C,et a1.Endostatin’S antiangiogenicsignaling network[J].Mol Cell,2004,13(5):649-663.
    [16]SHI H,HUANG Y,ZHOU H,et a1.Nucleolin is a Receptor that Mediates Antiangiogenicand antitumor activity ofendostatin[J].Blood,2007,110(8):2899-2906.
    [17]NYBERGP,HEIKKILA P,SORSAT,etal.Endostatin inhibits human tongue carcinoma cellinvasion and intravasation and blocks the activation ofmatrix metalloprotease一2,一9,and一13{J].J BiolChem,2003,278(25):22404-22411.[1 8]Dhanabal M,Ramchandran R,Waterman MJF,et a1.Endostatin induces endothelial cellapoptosis.JBiolChem,1999,274:1 1721-6.
    [19]Shichiri M,Hirata Y.Antlanglogenesls signals by endostatin.FASEB J.2006,15(6):1044-1053.
    [20]Huang X,Wong MK,Zhao Q,et a1.Soluble recombinant endostatin purified fromEscherichiacoli:antiangiogenic activity and antitumor effect.Cancer Res,2004,61 (2):478-481.
    [21]Jia YH,Dong XS,Wang XS.Effects of endostatin on expression ofvascular endothelialgrowth/hctor and its receptors and neovascularization in colonic carcinoma implanted in nudemice.world J Gsatroenter01.2004,10(22):3361-3364.
    [22]LeeCH,WuCL,ShiauAL.Endostatingenetherapy delivered by SalmonellaCholeraesuisinmurinetomormodels.GeneMed,2007,6(12、:1382-93.
    [23]刘芝兰,刘颖,陈建兵,等.血管内皮抑制素的作用机制和临床应用.中国医师进修杂志,2007,30(4):68-70.
    [1] Mellon MJ, Ahn M, Jimenez JA, et al. Anti-angiogenic gene therapy for metastatic renal cell carcinoma produces tumor growth suppression in an athymic nude mouse model [J]. J Urol, 2008, 179 (2):737-742.
    [2] Folkman J. Role of angiogenesis in tumor growth and metastasis [J]. Sem in Oncol, 2002, 29 (6 Supp l16):15-18.
    [3] Yokoyama Y, Sedgewick G, Ramakrishnan S. Endostatin binding to ovarian cancer cells inhibits peritoneal attachment and dissemi-nation [J]. Cancer Res, 2007, 67 (22):10813210822.
    [4] Liu F, Tan G, Li J, et al. Gene transfer of endostatin enhances the efficacy of doxorubicin to suppress human hepatocellular carcinomas in mice [J]. Cancer Sci, 2007, 98 (9):1381-1387.
    [5] Li J, Dong X, Xu Z, et al. Endostatin gene therapy enhances the efficacy of paclitaxel to suppress breast cancers and metastases in mice [J]. J Biomed Sci, 2008, 15 (1):99-109.
    [6] Hoffmann S, Wunderlich A, Celik I, et al. Paneling human thyroid cancer cell lines for candidate proteins for targeted anti-angiogenic therapy [J]. J Cell Biochem, 2006, 98 (4):954-965.
    [7] Li X, Liu YH, Lee SJ, et al. Prostate-restricted replicative adenovirus expressing human endostatin-angiostatin fusion gene exhibiting dramatic antitumor efficacy[J]. Clin Cancer Res, 2008, 14 (1):291-299.
    [8] Bergers G, Benjamin LE. Tumorigenesis and the angionenic switch [J]. Nat Rev Cancer, 2003, 3 (6):401-410.
    [9] Boxer GM, Tsiompanou E, Levine T, et al. Immunohistochemical expression of vascular endothelia growth factor and microvesse counting prognostic indicator sin nodenegative colorectal cancer [J]. Tumo Biol, 2005, 26 (1):1-8.
    [10] Des Guetz G, Uzzan B, Nicolas P, et al. Microvessel density and VEGF expression are prognostic factors in colorectal cancer Meta-analysis of the literature [J]. Br J Cancer, 2006, 94 ( 12 ):1823-1832.
    [11]李永昌,肖玉周,汪万英,等. VEGF及KDR在骨肉瘤中的表达及其临床意义[J].解剖与临床, 2008, 13 (2):27-29.
    [12] Park H, Min K, Kim H, et al. Expression of vascular endothelial growth factor-C and its receptor in osteosarcomas[ J ]. Pathology Research and Practice, 2008, 204 (8): 575-582.
    [13] Charity RM, Foukas AF, Deshmukh NS, et al. Vascular endothelial growth factor expression in Osteosarcoma[J]. Clin Orthop Relat Res, 2006, 448:193-198.
    [14] Wang D, Zhong ZY. Vector-based Apel small interfering RNA enhances the sensitivity of human osteosarcoma cells to endostatin in vivo [J]. Cancer Sci, 2007, 98 (12):1993-2001.
    [15] Wang YS, Eichler W, Friedrichs U, et al. Impact of endostatin on bFGF-induced proliferation, migration, and matrix metallo-proteinase-2 expression/secretion of bovine choroidal endothelial cells [J]. Curr Eye Res, 2005, 30 (6):479-489.
    [1] Brown WE, Chow LC,Cem Res Prog. A new calcium phosphate, wa ter-setting cement. In: Brown PW Eds. Cement Research Progress, Wasterville, Ohio: American Ceramic Society, 1986:352-379.
    [2] Morris GM, Hopewell JW,Morris AD. The influence of methotrexate on radiation-induced damage to different lengths of the rat spinal cord. Br J Radio]. 1992;65(770):152-6.
    [3]张伟。磷酸钙骨水泥的研究与应用进展。国外医学生物医学工程分册,1998;21(6):350-355。
    [4] Otsuka M ,Sawada Y, Matsuda T ,et al. Antibiotic delivery system using bioactive bone cement consisting of bis - GMA– TEGDMA resin and bioactive glass ceramics[J ] . Biomaterials ,1997 ,18(23):1559-1564.
    [5] Pelrier LF, Jones RH.Treatment of unicameral bone cysts by curettage and packing with plaster-of-paris pellets.J Bone Jt Surg(Am)1978,60A:820-822.
    [6] Takechi M,Miyamoto Y,Ishikawa K,et a1.Effects of added antibiotics on the basic peoperties of antiwashout-type fast-setting calcium phosphate cement. J Biomed Mater Res,1998,39(2):308-316.
    [7] Otsuka M,Matsuda Y,Wang Z,et a1.Effect of sodium bicarbonate amount on in vitro indomethacin release from self-setting carbonated-apatite cement.Pharm Res,1997,14(4):444-449.
    [8] Sasaki S , Ishii Y. Apatite cement containing antibiotics : efficacy in treating experimental osteomyelitis[J] . J Orthop Sci ,1999 ,4(5) :361 -369.
    [9]王传军,陈统一,张键等。载药妥布霉素人工骨(磷酸钙骨水泥)修复骨缺损的动物试验[J]。复旦学报(医学科学版),2001,28(6):473-476。
    [10]黄粤,刘昌胜,邵慧芳等。萘普生钠/磷酸钙骨水泥药物缓释体系的研究[J]。药学学报,2000,35(1):44-47。
    [11]张进军,李兵仓,陈青等。磷酸钙骨水泥承载头孢哌酮钠后对其理化特性的影响[J]。生物医学工程学杂志,2000,17(4):400-402。
    [12] Tahara Y, Ishii Y. Apatite cement containing cis-diamminedichloroplatinum implanted in rabbit femur for sustained release of the anticancer drug and bone formation[J] . Orthop Sci ,2001 ,6 (6) : 556 - 565.
    [13] Miura S, Miiy, Miyauchi, et a1.Efficacy of slow-releasing anticancer drug delivery systems ontransplamtable osteosarcoma in rats. Jpn JClin Onco1.1995;25(3):61-71.
    [14]孙明林,胡蕴玉,贾新斌。磷酸钙骨水泥/骨形态发生蛋白复合人工骨的生物相容性[J]。第四军医大学学报,2001,22(11):1006-1010。
    [15]张伟,侯春林,刘昌胜等。磷酸钙骨水泥对骨形态发生蛋白缓释作用的体外实验研究[J]。中国矫形外科杂志,2001,8(8):783-787。
    [16] Otsuka M,Matsuda Y,Baig A A,et a1.Calcium-level responsive controlled drug delivery from implant dosage forms to treat osteoperosis in an animal moded.Adv Drug Delivery Rev,2000,42a:249-258.
    [17] Yokoyama A , Matsuno H ,Yamamoto S ,et al. Tissue response to a newly developed calcium phosphate cement containing succinic acid and carboxymethyl-chitin. J Biomed Mater Res,2003;64A(3):491-501.
    [18] Chow LC, Markovic M ,Takagi S .A dual constant-composition titration system as an in vitro resorption model for comparing dissolution rates of calcium phosphate biomaterials. J Biomed Mater Res, 2003;65B (2):245-51.
    [19] Fernandez E, Ginebra MP, Boltong MG, et al, Kinetic study of the setting reaction of a calciump hosphate bone cement,J Biomed Mater Res, 1996;32(3):367-74.
    [20] Otsuka M ,Matsuda Y ,Suwa Y ,et al. A novel skeletal drug delivery system using self-setting calcium phosphate cement 3:Physicochemical properties and drug release rate of bovine insulin and bovine albumin, J Pharm Sci, 1994;83(2):255-8.
    [21] Otsuka M, Matsuda Y, Suwa Y, et al, A novel skeletal drug delivery system using self-setting calcium phosphate cement 3:Physicochemical properties and drug release rate of bovine insulin and bovine albumin, J Pharm Sci, 1994;83(2):259-63.
    [22] Otsuka M, Matsuda Y, Suwa Y, et al. A novel skeletal drug delivery system using self-setting calcium phosphate cement 5 :Drug release behaviour from a heterogeneous drug-loaded cement containing an anticancer drug, J Pharm Sci, 1994;83(11):1565-8.
    [23] Otsuka M, Matsuda Y, Fox JL, et al. A novel skeletal drug delivery system using self-setting calcium phosphate cement 9: Effect of the mixing solution volume on anticancer drug release from homogeneous drug-loaded cement, J Pharm Sci, 1995;84(6):733-6.
    [24] Ooms EM, Egglezos EA, Welke JG, et al. Soft-tissue response to injectable calcium phosphate cements. Biomaterials,2003;24(5):749-57.
    [25] Pioletti DP, Takei H,L in T, et al. The effects of calcium phosphate cement particles on osteoblast functions. [J] Biomaterials,2000,21:1103-1114.
    [1] M. Haybeck, Lancet Oncol. 4 (2003) 713.
    [2] J. Folkman, Tumor angiogenesis, Cancer Med. (2005) [7th edition].
    [3] Y. Sun, J. Wang, Y. Liu, X. Song, Y. Zhang, K. Li, Y. Zhu, Q. Zhou, L. You, C. Yao, Results of phase III trial of rh-endostatin (YH-16) in advanced non-small cell lung cancer (NSCLC) patients, J. Clin. Oncol. (2005) 23.
    [4] L.C. Ginns, D.H. Roberts, E.J. Mark, J.L. Brusch, J.J. Marler, Pulmonary capillary hemangiomatosis with atypical endotheliomatosis: successful antiangiogenic therapy with doxycycline, Chest 124 (2003) 2017– 2022.
    [5] W. Kalas, S. Gilpin, J.L. Yu, L. May, H. Krchnakova, P. Bornstein, J. Rak, Restoration of thrombospondin 1 expression in tumor cells harbouring mutant ras oncogene by treatment with low doses of doxycycline, Biochem. Biophys. Res. Commun. 310 (2003) 109–114.
    [6] J. Wood, K. Bonjean, S. Ruetz, A. Bellahcene, L. Devy, J.M. Foidart, V. Castronovo, J.R. Green, Novel antiangiogenic effects of the bisphosphonate compound zoledronic acid, J. Pharmacol. Exp. Ther. 302 (2002) 1055– 1061.
    [7] D. Panigrahy, S. Singer, L.Q. Shen, C.E. Butterfield, D.A. Freedman, E.J. Chen, M.A. Moses,S. Kilroy, S. Duensing, C. Fletcher, J.A. Fletcher, L. Hlatky, P. Hahnfeldt, J. Folkman, A. Kaipainen, PPARgamma ligands inhibit primary tumor growth and metastasis by inhibiting angiogenesis, J. Clin. Invest. 110 (2002) 923–932.
    [8] J.L. Masferrer, K.M. Leahy, A.T. Koki, B.S. Zweifel, S.L. Settle, B.M. Woerner, D.A. Edwards, A.G. Flickinger, R.J. Moore, K. Seibert, Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors, Cancer Res. 60 (2000) 1306– 1311.
    [9] J. Folkman, J.B. Mulliken, R.A. Ezekowitz, Antiangiogenic therapy of haemangiomas with interferon, in: R. Stuart-Harris, R. Penny (Eds.), The Clinical Applications of the Interferons, Chapman and Hall Medical, London, 1997.
    [10] L.B. Kaban, J.B. Mulliken, R.A. Ezekowitz, D. Ebb, P.S. Smith, J. Folkman, Antiangiogenic therapy of a recurrent giant cell tumor of the mandible with interferon alfa-2a, Pediatrics 103 (1999) 1145– 1149.
    [11] D.J. Minna, J. Dowell, Erlotinib hydrochloride, Nat. Rev., Drug Discov. (Suppl. 14) (2005) 15.
    [12] J.B. Sunwoo, Z. Chen, G. Dong, N. Yeh, C. Crowl Bancroft, E. Sausville, J. Adams, P. Elliott, C. Van Waes, Novel proteasome inhibitor PS-341 inhibits activation of nuclear factor-kappa B, cell survival, tumor growth, and angiogenesis in squamous cell carcinoma, Clin. Cancer Res. 7 (2001) 1419–1428.
    [13] E.S. Gragoudas, A.P. Adamis, E.T. Cunningham Jr., M. Feinsod, D.R. Guyer, Pegaptanib for neovascular age-related macular degeneration, N. Engl. J. Med. 351 (2004) 2805– 2816.
    [14] H. Hurwitz, L. Fehrenbacher, W. Novotny, T. Cartwright, J. Hainsworth, W. Heim, J. Berlin, A. Baron, S. Griffing, E. Holmgren, N. Ferrara, G. Fyfe, B. Rogers, R. Ross, F. Kabbinavar, Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer, N. Engl. J. Med. 350 (2004) 2335–2342.
    [15] M. Relf, S. Le Jeune, S. Fox, K. Smith, R. Leek, A. Moghaddam, R. Whitehouse, R. Bicknell, A.L. Harris, Expression of the angiogenic factors vascular endothelial growth factor, acidic and basic fibroblast growth factor, tumor growth factor beta-1, platelet-derived endothelial growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis, Cancer Res. 57 (1997) 963– 969.
    [16] A. Eggert, N. Ikegaki, J. Kwiatkowski, H. Zhao, G.M. Brodeur, B.P. Himelstein, High-level expression of angiogenic factors is associated with advanced tumor stage in human neuroblastomas, Clinical Cancer Res. 6 (2000) 1900–1908.
    [17] H. Uehara, Angiogenesis of prostate cancer and antiangiogenic therapy, J. Med. Invest. 50(2003) 146– 153.
    [18] A. Abdollahi, L. Hlatky, P.E. Huber, Endostatin: the logic of antiangiogenic therapy, Drug Resist. Updat. 8 (2005) 59– 74.
    [19] R.S. Kerbel, B.A. Kamen, The anti-angiogenic basis of metronomic chemotherapy, Nat. Rev., Cancer 4 (2004) 423–436.
    [20] T. Browder, C.E. Butterfield, B.M. Kraling, B. Shi, B. Marshall, M.S. O’Reilly, J. Folkman, Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer, Cancer Res. 60 (2000) 1878– 1886.
    [21] R.J. Motzer, B. Rini, M.D. Michaelson, B.G. Redman, G.R. Hudes, G. Wilding, R.M. Bukowski, D.J. George, S.T. Kim, C.M. Baum, Phase 2 trials of SU11248 show antitumor activity in second-line therapy for patients with metastatic renal cell carcinoma (RCC), J. Clin. Oncol. 23 (2005) (Abstract 4508).
    [22] C. Ezzell, Starving tumors of their life blood, Sci. Am. 33 (1998).
    [23] R. Satchi-Fainaro, M. Puder, J.W. Davies, H.T. Tran, D.A. Sampson, A.K. Greene, G. Corfas, J. Folkman, Targeting angiogenesis with a conjugate of HPMA copolymer and TNP-470, Nat. Med. 10 (2004) 255–261.
    [24] R. Satchi-Fainaro, R. Mamluk, L. Wang, S.M. Short, J.A. Nagy, D. Feng, A.M. Dvorak, H.F. Dvorak, M. Puder, D. Mukhopadhyay, J. Folkman, Inhibition of vessel permeability by TNP-470 and its polymer conjugate, caplostatin, Cancer Cell 7 (2005) 251–261.
    [25] A. Abdollahi, P. Hahnfeldt, C. Maercker, H.J. Grone, J. Debus, W. Ansorge, J. Folkman, L. Hlatky, P.E. Huber, Endostatin’s antiangiogenic signaling network, Mol. Cell 13 (2004) 649–663.
    [26] J. Folkman, Endogenous angiogenesis inhibitors, Acta Pathol. Microbiol. Immunol. Scand. 112 (2004) 496– 507.
    [27] P. Nyberg, L. Xie, R. Kalluri, Endogenous inhibitors of angiogenesis, Cancer Res. 65 (2005) 3967–3979.
    [28] M.S. O’Reilly, T. Boehm, Y. Shing, N. Fukai, G. Vasios, W.S. Lane, E. Flynn, J.R. Birkhead, B.R. Olsen, J. Folkman, Endostatin: an endogenous inhibitor of angiogenesis and tumor growth, Cell 88 (1997) 277– 285.
    [29] T. Boehm, J. Folkman, T. Browder, M.S. O’Reilly, Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance, Nature 390 (1997) 404– 407.
    [30] S.P. Oh, Y. Kamagata, Y. Muragaki, S. Timmons, A. Ooshima, B.R. Olsen, Isolation and sequencing of cDNAs for proteins with multiple domains of Gly–Xaa–Yaa repeats identify a distinct family of collagenous proteins, Proc. Natl. Acad. Sci. U. S. A. 91 (1994) 4229–4233.
    [31] T. Pihlajaniemi, Collagen XVIII, Proc. Natl. Acad. Sci. U. S. A. 91 (1994).
    [32] M.S. O’Reilly, L. Holmgren, Y. Shing, C. Chen, R.A. Rosenthal, Y. Cao, M. Moses, W.S. Lane, E.H. Sage, J. Folkman, Angiostatin: a circulating endothelial cell inhibitor that suppresses angiogenesis and tumor growth, Cold Spring Harbor Symp. Quant. Biol. 59 (1994) 471–482.
    [33] F. Rastinejad, P.J. Polverini, N.P. Bouck, Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene, Cell 56 (1989) 345– 355.
    [34] E. Marshall, Cancer therapy. Setbacks for endostatin, Science 295 (2002) 2198– 2199.
    [35] R.M. Tjin Tham Sjin, R. Satchi-Fainaro, A.E. Birsner, V.M. Ramanujam, J. Folkman, K. Javaherian, A 27-amino-acid synthetic peptide corresponding to the NH2-terminal zinc-binding domain of endostatin is responsible for its antitumor activity, Cancer Res. 65 (2005) 3656– 3663.
    [36] M.G. Cattaneo, S. Pola, P. Francescato, F. Chillemi, L.M. Vicentini, Human endostatin-derived synthetic peptides possess potent antiangiogenic properties in vitro and in vivo, Exp. Cell Res. 283 (2003) 230–236.
    [37] L. Morbidelli, S. Donnini, F. Chillemi, A. Giachetti, M. Ziche, Angiosuppressive and angiostimulatory effects exerted by synthetic partial sequences of endostatin, Clin. Cancer Res. 9 (2003) 5358–5369.
    [38] F. Chillemi, P. Francescato, E. Ragg, M.G. Cattaneo, S. Pola, L. Vicentini, Studies on the structure– activity relationship of endostatin: synthesis of human endostatin peptides exhibiting potent antiangiogenic activities, J. Med. Chem. 46 (2003) 4165–4172.
    [39] A.K. Olsson, I. Johansson, H. Akerud, B. Einarsson, R. Christofferson, T. Sasaki, R. Timpl, L. Claesson-Welsh, The minimal active domain of endostatin is a heparin-binding motif that mediates inhibition of tumor vascularization, Cancer Res. 64 (2004) 9012–9017.
    [40] S.A. Wickstrom, K. Alitalo, J. Keski-Oja, An endostatin-derived peptide interacts with integrins and regulates actin cytoskeleton and migration of endothelial cells, J. Biol. Chem. 279 (2004) 20178–20185.
    [41] X. Huang, M.K. Wong, Q. Zhao, Z. Zhu, K.Z. Wang, N. Huang, C. Ye, E. Gorelik, M. Li, Soluble recombinant endostatin purified from Escherichia coli: antiangiogenic activity and antitumor effect, Cancer Res. 61 (2001) 478– 481.
    [42] G. Perletti, P. Concari, R. Giardini, E. Marras, F. Piccinini, J. Folkman, L. Chen, Antitumor activity of endostatin against carcinogen- induced rat primary mammary tumors, Cancer Res. 60 (2000) 1793–1796.
    [43] G.C. Li, M.M. Nie, J.M. Yang, C.Q. Su, L.C. Sun, Y.Z. Qian, J. Sham, G.E. Fang, M.C. Wu, Q.J. Qian, Treatment of hepatocellular carcinoma with a novel gene-viral therapeutic systemCNHK300- murine endostatin, Zhonghua Yixue Zazhi 84 (2004) 943–948.
    [44] M. Capillo, P. Mancuso, A. Gobbi, S. Monestiroli, G. Pruneri, C. Dell’Agnola, G. Martinelli, L. Schultz, F. Bertolini, Continuous infusion of endostatin inhibits differentiation, mobilization, and clonogenic potential of endothelial progenitors, Clin. Cancer Res. 9 (2003) 377.
    [45] O. Kisker, C.M. Becker, D. Prox, M. Fannon, R. D’Amato, E. Flynn, W.E. Fogler, B.K. Sim, E.N. Allred, S.R. Pirie-Shepherd, J. Folkman, Continuous administration of endostatin by intraperitoneally implanted osmotic pump improves the efficacy and potency of therapy in a mouse xenograft tumor model, Cancer Res. 61 (2001) 7669– 7674.
    [46] T. Boehm, M.S. O’Reilly, K. Keough, J. Shiloach, R. Shapiro, J. Folkman, Zinc-binding of endostatin is essential for its antiangiogenic activity, Biochem. Biophys. Res. Commun. 252 (1998) 190–194.
    [47] N. Yamaguchi, B. Anand-Apte, M. Lee, T. Sasaki, N. Fukai, R. Shapiro, I. Que, C. Lowik, R. Timpl, B.R. Olsen, Endostatin inhibits VEGF-induced endothelial cell migration and tumor growth independently of zinc binding, EMBO J. 18 (1999) 4414– 4423.
    [48] B.K. Sim, W.E. Fogler, X.H. Zhou, H. Liang, J.W. Madsen, K. Luu, M.S. O’Reilly, J.E. Tomaszewski, A.H. Fortier, Zinc ligand-disrupted recombinant human Endostatin: potent inhibition of tumor growth, safety and pharmacokinetic profile, Angiogenesis 3 (1999) 41– 51.
    [49] Y.H. Ding, K. Javaherian, K.M. Lo, R. Chopra, T. Boehm, J. Lanciotti, B.A. Harris, Y. Li, R. Shapiro, E. Hohenester, R. Timpl, J. Folkman, D.C. Wiley, Zinc-dependent dimers observed in crystals of human endostatin, Proc. Natl. Acad. Sci. U. S. A. 95 (1998) 10443– 10448.
    [50] W. Wen, M.A. Moses, D. Wiederschain, J.L. Arbiser, J. Folkman, The generation of endostatin is mediated by elastase, Cancer Res. 59 (1999) 6052– 6056.
    [51] U. Felbor, L. Dreier, R.A. Bryant, H.L. Ploegh, B.R. Olsen, W. Mothes, Secreted cathepsin L generates endostatin from collagen XVIII, EMBO J. 19 (2000) 1187– 1194.
    [52] Y. Yokoyama, S. Ramakrishnan, Addition of an aminopeptidase Nbinding sequence to human endostatin improves inhibition of ovarian carcinoma growth, Cancer 104 (2005) 321–331.
    [53] G. Schuch, L. Oliveira-Ferrer, S. Loges, E. Laack, C. Bokemeyer, D.K. Hossfeld, W. Fiedler, S. Ergun, Antiangiogenic treatment with endostatin inhibits progression of AML in vivo, Leukemia 19 (2005) 1312– 1317.
    [54] E.A. te Velde, A. Reijerkerk, D. Brandsma, J.M. Vogten, Y. Wu, O. Kranenburg, E.E. Voest, M. Gebbink, I.H. Borel Rinkes, Early endostatin treatment inhibits metastatic seeding of murine colorectal cancer cells in the liver and their adhesion to endothelial cells, Br. J. Cancer 92 (2005) 729– 735.
    [55] H.C. Yao, D.J. Jin, Y.N. Sun, M.H. Ren, X.D. Li, Endostatin in the treatment of the transplantable model of human laryngeal squamous carcinoma in nude mice, Zhonghua Erbi Yanhouke Zazhi 39 (2004) 394–398.
    [56] A. Calvo, Y. Yokoyama, L.E. Smith, I. Ali, S.C. Shih, A.L. Feldman, S.K. Libutti, R. Sundaram, J.E. Green, Inhibition of the mammary carcinoma angiogenic switch in C3(1)/SV40 transgenic mice by a mutated form of human endostatin, Int. J. Cancer 101 (2002) 224– 234.
    [57] N.O. Schmidt, M. Ziu, G. Carrabba, C. Giussani, L. Bello, Y. Sun, K. Schmidt, M. Albert, P.M. Black, R.S. Carroll, Antiangiogenic therapy by local intracerebral microinfusion improves treatment efficiency and survival in an orthotopic human glioblastoma model, Clin. Cancer Res. 10 (2004) 1255– 1262.
    [58] D.K. Skovseth, M.J. Veuger, D.R. Sorensen, P.M. De Angelis, G. Haraldsen, Endostatin dramatically inhibits endothelial cell migration, vascular morphogenesis, and perivascular cell recruitment in vivo, Blood 105 (2005) 1044– 1051.
    [59] A. Abdollahi, K.E. Lipson, A. Sckell, H. Zieher, F. Klenke, D. Poerschke, A. Roth, X. Han, M. Krix, M. Bischof, P. Hahnfeldt, H.J. Grone, J. Debus, L. Hlatky, P.E. Huber, Combined therapy with direct and indirect angiogenesis inhibition results in enhanced antiangiogenic and antitumor effects, Cancer Res. 63 (2003) 8890– 8898.
    [60] H. Cho, W.J. Kim, Y.M. Lee, Y.M. Kim, Y.G. Kwon, Y.S. Park, E.Y. Choi, K.W. Kim, N-/C-terminal deleted mutant of human endostatin efficiently acts as an anti-angiogenic and anti-tumorigenic agent, Oncol. Rep. 11 (2004) 191–195.
    [61] M. Kuroiwa, T. Takeuchi, J.H. Lee, J. Yoshizawa, J. Hirato, S. Kaneko, S.H. Choi, N. Suzuki, H. Ikeda, Y. Tsuchida, Continuous versus intermittent administration of human endostatin in xenografted human neuroblastoma, J. Pediatr. Surg. 38 (2003) 1499– 1505.
    [62] S.M. Plum, A.D. Hanson, K.M. Volker, H.A. Vu, B.K. Sim, W.E. Fogler, A.H. Fortier, Synergistic activity of recombinant human endostatin in combination with adriamycin: analysis of in vitro activity on endothelial cells and in vivo tumor progression in an orthotopic murine mammary carcinoma model, Clin. Cancer Res. 9 (2003) 4619– 4626.
    [63] P. Li, Z. Feng, G. Zhang, H. Zhang, S. Xue, B. Huang, J. Lin, Inhibitory effect of recombinant endostatin on angiogenesis and tumor growth of hepatoma, J. Huazhong Univ. Sci. Technol. Med. Sci. 23 (2003) 223– 226.
    [64] D. Abraham, S. Abri, M. Hofmann, W. Holtl, S. Aharinejad, Low dose carboplatin combined with angiostatic agents prevents metastasis in human testicular germ cell tumor xenografts, J. Urol. 170 (2003) 1388– 1393.
    [65] M.T. Beck, N.Y. Chen, K.J. Franek, W.Y. Chen, Prolactin antagonistendostatin fusion protein as a targeted dual-functional therapeutic agent for breast cancer, Cancer Res. 63 (2003) 3598–3604.
    [66] R.F. Wilson, M.A. Morse, P. Pei, R.J. Renner, D.E. Schuller, F.M. Robertson, S.R. Mallery, Endostatin inhibits migration and invasion of head and neck squamous cell carcinoma cells, Anticancer Res. 23 (2003) 1289– 1295.
    [67] S.R. Mallery, M.A. Morse, R.F. Wilson, P. Pei, G.M. Ness, J.E. Bradburn, R.J. Renner, D.E. Schuller, F.M. Robertson, AIDS-related Kaposi’s sarcoma cells rapidly internalize endostatin, which colocalizes to tropomysin microfilaments and inhibits cytokine-mediated migration and invasion, J. Cell. Biochem. 89 (2003) 133– 143.
    [68] D. Prox, C. Becker, S.R. Pirie-Shepherd, I. Celik, J. Folkman, O. Kisker, Treatment of human pancreatic cancer in mice with angiogenic inhibitors, World J. Surg. 27 (2003) 405–411.
    [69] W.D. Beecken, A. Fernandez, A.M. Joussen, E.G. Achilles, E. Flynn, K.M. Lo, S.D. Gillies, K. Javaherian, J. Folkman, Y. Shing, Effect of antiangiogenic therapy on slowly growing, poorly vascularized tumors in mice, J. Natl. Cancer Inst. 93 (2001) 382– 387.
    [70] H. Xia, L.M. Luo, Y.F. Fan, W.C. Tong, J.X. Wen, Inhibitory effect of recombinant human endostatin on angiogenesis and lung metastasis of mouse lung adenocarcinoma LA795, Diyi Junyi Daxue Xuebao 23 (2003) 30–33.
    [71] M. Sund, Y. Hamano, H. Sugimoto, A. Sudhakar, M. Soubasakos, U. Yerramalla, L.E. Benjamin, J. Lawler,M. Kieran, A. Shah, R. Kalluri, Function of endogenous inhibitors of angiogenesis as endotheliumspecific tumor suppressors, Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 2934– 2939.
    [72] T.S. Zorick, Z. Mustacchi, S.Y. Bando, M. Zatz, C.A. Moreira-Filho, B. Olsen, M.R. Passos-Bueno, High serum endostatin levels in Down syndrome: implications for improved treatment and prevention of solid tumours, Eur. J. Hum. Genet. 9 (2001) 811–814.
    [73] S.S. Yoon, H. Eto, C.M. Lin, H. Nakamura, T.M. Pawlik, S.U. Song, K.K. Tanabe, Mouse endostatin inhibits the formation of lung and liver metastases, Cancer Res. 59 (1999) 6251–6256.
    [74] I. Peroulis, N. Jonas, M. Saleh, Antiangiogenic activity of endostatin inhibits C6 glioma growth, Int. J. Cancer 97 (2002) 839– 845.
    [75] R. Satchi-Fainaro, R. Mamluk, L. Wang, S.M. Short, A. Nagy Janice, M. Dvorak Ann, H.F. Dvorak, M. Puder, D. Mukhopadhyay, J. Folkman, Inhibition of vessel permeability by TNP-470 and its polymer conjugate, caplostatin, Cancer Cell 7 (2005) 251–261.
    [76] K.J. Pulkkanen, J.M. Laukkanen, J. Fuxe, M.I. Kettunen, M. Rehn, J.M. Kannasto, J.J. Parkkinen, R.A. Kauppinen, R.F. Pettersson, S. Yla-Herttuala, The combination of HSV-tk and endostatin gene therapy eradicates orthotopic human renal cell carcinomas in nude mice, Cancer GeneTher. 9 (2002) 908– 916.
    [77] M. Oga, K. Takenaga, Y. Sato, H. Nakajima, N. Koshikawa, K. Osato, S. Sakiyama, Inhibition of metastatic brain tumor growth by intramuscular administration of the endostatin gene, Int. J. Oncol. 23 (2003) 73– 79.
    [78] R. Ohlfest John, et al., Combinatorial antiangiogenic gene therapy by nonviral gene transfer using the sleeping beauty transposon causes tumor regression and improves survival in mice bearing intracranial human glioblastoma, Mol. Ther. (2005).
    [79] X. Luo, J.M. Slater, D.S. Gridley, Enhancement of radiation effects by pXLG-mEndo in a lung carcinoma model, Int. J. Radiat. Oncol. Biol. Phys. (2005).
    [80] Y. Wu, L. Yang, B. Hu, J.Y. Liu, J.M. Su, Y. Luo, Z.Y. Ding, T. Niu, Q. Li, X.J. Xie, Y.J. Wen, L. Tian, B. Kan, Y.Q. Mao, Y.Q. Wei, Synergistic anti-tumor effect of recombinant human endostatin adenovirus combined with gemcitabine, Anti-cancer Drugs 16 (2005) 551– 557.
    [81] F.H. Barnett, M. Scharer-Schuksz, M. Wood, X. Yu, T.E. Wagner, M. Friedlander, Intra-arterial delivery of endostatin gene to brain tumors prolongs survival and alters tumor vessel ultrastructure, Gene Ther. 11 (2004) 1283–1289.
    [82] G.F. Fu, X. Li, Y.Y. Hou, Y.R. Fan, W.H. Liu, G.X. Xu, Bifidobacterium longum as an oral delivery system of endostatin for gene therapy on solid liver cancer, Cancer Gene Ther. 12 (2005) 133–140.
    [83] C.J. Kuo, F. Farnebo, E.Y. Yu, R. Christofferson, R.A. Swearingen, R. Carter, H.A. von Recum, J. Yuan, J. Kamihara, E. Flynn, R. D’Amato, J. Folkman, R.C. Mulligan, Comparative evaluation of the antitumor activity of antiangiogenic proteins delivered by gene transfer, Proc. Natl. Acad. Sci. U. S. A. 98 (2001) 4605–4610.
    [84] R. Pawliuk, T. Bachelot, O. Zurkiya, A. Eriksson, Y. Cao, P. Leboulch, Continuous intravascular secretion of endostatin in mice from transduced hematopoietic stem cells, Mol. Ther. 5 (2002) 345–351.
    [85] I. Celik, O. Surucu , C. Dietz, J.V. Heymach, J. Force, I. Hoschele, C.M. Becker, J. Folkman, O. Kisker, Therapeutic efficacy of endostatin exhibits a biphasic dose-response curve, Cancer Res. 65 (23) (2005) 11044– 11050.
    [86] W. Eisterer, X. Jiang, T. Bachelot, R. Pawliuk, C. Abramovich, P. Leboulch, D. Hogge, C. Eaves, Unfulfilled promise of endostatin in a gene therapy—Xenotransplant model of human acute lymphocytic leukemia, Mol. Ther. 5 (2002) 352– 359.
    [87] E. Jouanneau, L. Alberti, M. Nejjari, I. Treilleux, I. Vilgrain, A. Duc, V. Combaret, M. Favrot, P. Leboulch, T. Bachelot, Lack of antitumor activity of recombinant endostatin in a humanneuroblastoma xenograft model, J. Neuro-oncol. 51 (2001) 11– 18.
    [88] F.R. Steele, Can‘‘negative’’be positive? Mol. Ther. 5 (2002) 338–339.
    [89] R. Cui, K. Takahashi, F. Takahashi, K.K. Tanabe, Y. Fukuchi, Endostatin gene transfer in murine lung carcinoma cells induces vascular endothelial growth factor secretion resulting in up-regulation of in vivo tumorigenecity, Cancer Lett. (2005).
    [90] S. Indraccolo, Undermining tumor angiogenesis by gene therapy: an emerging field, Curr. Gene Ther. 4 (2004) 297–308.
    [91] M.S. O’Reilly, L. Holmgren, Y. Shing, C. Chen, R.A. Rosenthal, M. Moses, W.S. Lane, Y. Cao, E.H. Sage, J. Folkman, Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma, Cell 79 (1994) 315–328.
    [92] M.L. Wahl, D.J. Kenan, Gonzalez-Gronow, S.V. Pizzo, Angiostatin’s molecular mechanism: aspects of specificity and regulation elucidated, J. Cell. Biochem. 96 (2005) 242–261.
    [93] A. Bratt, O. Birot, I. Sinha, N. Veitonmaki, K. Aase, M. Ernkvist, L. Holmgren, Angiomotin regulates endothelial cell–cell junctions and cell motility, J. Biol. Chem. 280 (2005) 34859–34869.
    [94] S.A. Wickstrom, K. Alitalo, J. Keski-Oja, Endostatin associates with integrin alpha5beta1 and caveolin-1, and activates Src via a tyrosyl phosphatase-dependent pathway in human endothelial cells, Cancer Res. 62 (2002) 5580– 5589.
    [95] A. Sudhakar, H. Sugimoto, C. Yang, J. Lively, M. Zeisberg, R. Kalluri, Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by alpha v beta 3 and alpha 5 beta 1 integrins, Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 4766–4771.
    [96] Y. Yu, K.S. Moulton, M.K. Khan, S. Vineberg, E. Boye, V.M. Davis, P.E. O’Donnell, J. Bischoff, D.S. Milstone, E-selectin is required for the antiangiogenic activity of endostatin, Proc. Natl. Acad. Sci. U. S. A. 101 (2004) 8005– 8010.
    [97] P. Nyberg, P. Heikkila, T. Sorsa, J. Luostarinen, R. Heljasvaara, U.H. Stenman, T. Pihlajaniemi, T. Salo, Endostatin inhibits human tongue carcinoma cell invasion and intravasation and blocks the activation of matrix metalloprotease-2, -9, and -13, J. Biol. Chem. 278 (2003) 22404–22411.
    [98] M. Shichiri, Y. Hirata, Antiangiogenic signals by endostatin, FASEB J. 15 (2001) 1044–1053.
    [99] L. Ma, P. del Soldato, J.L. Wallace, Divergent effects of new cyclooxygenase inhibitors on gastric ulcer healing: shifting the angiogenic balance, Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 13243–13247.
    [100] M. Nagashima, G. Asano, S. Yoshino, Imbalance in production between vascular endothelial growth factor and endostatin in patients with rheumatoid arthritis, J. Rheumatol. 27 (2000) 2339–2342.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700