改善喇嘛甸油田萨一组油层开发效果注水方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国绝大多数油田采取注水开发方式进行开发,特别是喇嘛甸油田自1973年采取油井投产同步注水开发方式,有效的保证了油田开发初期的开发效果,喇嘛甸油田最高产油量曾达到1350×104t,为缓解全国的能源紧张形势起到了较大的作用。但随着油田开发的逐步深入,油层的层间矛盾日益突出,特别是采取不断提高注采比和注水压力的做法后,虽然较大幅度的改善了低含水、薄差油层的开发效果,但是也造成了各类油层间的压力差异过大的矛盾日益突出。目前,萨一组成片套损已成为困扰喇嘛甸油田持续稳产的重要问题,截止2007年9月,喇嘛甸油田萨零组~萨Ⅱ4段的套损总数已经达到了226口井,占喇嘛甸油田历年套损井数的29.2%。为有效防止和控制套损,接近70%的注水井点采取了停注和控注措施,导致目前萨一组油层采出程度只有32.6%。因此,开展萨一组基于预防套损的合理注水方式研究,有助于解决各类油层合理注采比、注采压力的合理技术界限的确定,从而进一步提高萨一组及各类油层的开发效果,为保持油田高效持续稳产提供有效的经验和技术支持。
     通过对喇嘛甸油田北北块萨一组油层有效注水方法的研究,取得以下几方面成果:
     1、萨一组每个沉积单元都发育少量的水下河道砂体,尤其是萨Ⅰ3、4、5沉积单元发育的水下分流河道砂体相对较多,连通性也好于萨Ⅰ1、2沉积单元。
     2、萨一组储层敏感性研究表明,萨一组储层为弱速敏、强水敏~极强水敏储层、强酸敏性和偏强~强碱敏性。
     3、从地层压力与采收率的变化关系确定萨I组合理的地层压力为10.7MPa;从套损、断层复合以及油层破裂的角度,得到的最大的合理注水压力为12.8MPa。从地层压力与流动压力的关系,得到合理流压界限为5.2 MPa。
     4、在达到在最优注采平衡状态时,水井的注入强度不变,地层压力保持在10.7MPa,而油井的采液强度则为4.1m3/(d﹒m),比目前采液强度提高1.7m3/(d﹒m)。
     5、萨一组恢复注水压力应控制在12.5MPa以下,折算有效厚度的注水强度应控制在5.0m3/d·m以内。
     6、萨一组油层可以温和恢复注水,但必须严格控制注水压力和注水强度。
     7、喇11-163萨一组温和注水试验区资料表明,在严格控制注水压力及注水强度下,可有效控制套损,改善萨一组开发效果。
The vast majority of oilfields In China have applied water injection development method, especially since 1973 Lamadian Oilfield simultaneously applied water injection and well putting into production to ensure the development effects effectively in the early epoch of oilfield development, oil output in Lamadian Oilfield have reached a maximum of 1350×104t, which plays a larger role to ease energy tension.
     However, with the gradual deepening of oilfield development, contradictions of oil layers become increasingly prominent. particularly, after improving the method of the injection-production ratio and water injection pressure continuously, though it greatly improves the development effect of the low water cut production and thin oil layer, it also lead to increasingly conspicuous contradiction of large pressure difference between oil reservoirs.
     At present, the film sets of the composition loss of Savimbi one group has become a important issues to oil Lamadian’s persistent stable production, until September 2007, Casing damage of Lamadian Oilfield Group Savimbi zero group~ Savimbi 4 section have reached a total of 226 wells, accounting for 29.2% of the total number of the over years loss wells in Lamadian oilfield .
     In order to prevent and control the casing damage effectively, nearly 70% of the injection wells have taken measures of stop and control injection, caused a result that the reservoir recovery of Savimbi one group is only 32.6%. Therefore, launch a study reasonable injection water methods in Savimbi one group based on the prevention of casing damage, has much favor of solve various types of reasonable oil injection-production ratio and the determine of the reasonable technology boundaries of the rational pressure injection-production, so as to further enhance Savimbi one Group and the development of various types of reservoir effect, and provide efficient experience and technical support for the oilfield persistent stable production.
     Through the study of the effective water injection method in the north group Savimbi of Lamadian oil fields, main results achieved as follows:
     1、Savimbi one-group develops a small number of underwater channel sand body in each sedimentary unit, especially underwater channel sand body which the SaⅠ3、4、5 sedimentary units developed are much more, and connectivity is better than in SaⅠ1,2 sedimentary units .
     2、Studies of Savimbi one-group reservoir sensitivity have shown that Savimbi reservoir is weak-speed sensitive, strong water-sensitive ~highly water-sensitive reservoir,strong acid sensitivity ~ strong alkali sensitivity.
     3、From the changes in the relationship between formation pressure and oil recovery that determined the reasonable pressure group of Savimbi one group as 10.7MPa; and from the casing damage, fault rupture compound, as well as the perspective of oil have been the biggest reasonable water injection pressure as 12.8MPa. The relationship between formation pressure and flow pressure a reasonable limit of pressure and flow as 5.2 MPa.
     4、When the optimal injection-production balance is achieved,the injection intensity in wells is not changed, layer pressure maintains at 10.7MPa, while the liquid production per unit thickness of oil well is 4.1m3/(d﹒m), which is 1.7m3/(d﹒m) Improvement more than the current oil production intensity.
     5、Savimbi one group to resume water injection pressure should be controlled in the following 12.5MPa, the effective thickness of water equivalent strength shall be controlled at 5.0m3 / d·m.
     6、Savimbi one-group reservoir can restore water injection moderately, but we must strictly control the water pressure and water intensity within5.0m3/d?m.
     7、Moderate water injection in pilot area of La 11-163 Savimbi one group have shown that the strict control of water injection pressure and injection intensity can effectively control the casing damage and improve the development effect of Savimbi one group
引文
[1] Anderson,R.A Ingram,D.S Determining Fracture Gradient from Well Logs[J].JPT,Nov.1993
    [2] BowersGL.Pore pressure estimation from velocity data:Accounting for over pressure mechanisms besides under compaction[M].paper IADCPSPE Conference,Dallas,Texas,Feb.1994.191-195.
    [3]蔡国华,王先荣.高压注水对油田套管的损坏及防治分析[J].石油机械,2001,29(3):32-34.
    [4]曹言光.应用断裂力学理论建立油气井压裂时岩石破裂压力计算模型[J].西安石油学院学报(自然科学版),2003,18(4):36-39.
    [5]邓金根,黄荣樽.流变地层中套管外载的计算方法[J].石油钻探技术,2003.22(4):41-43.
    [6]杜春常,谢光平,刘崇建.深井套管抗挤强度分析及计算[J].西南石油学院学报,1999,21(3):37-40.
    [7] Eaton,B,A.Fracture Gradient Prediction and Its Application in Oilfield Operation[J].JPT 21,pp.1353-1360.
    [8]房军,赵怀文,岳伯谦等.非均匀地应力作用下套管与水泥环的受力分析[J].石油学报,1995,9(6):52-57.
    [9]葛洪魁,林英松.岩石力学特性通用预测模型及地球物理评价方法.第六次全国岩石力学与工程学术人会论文集(C).武汉:中国科学技术出版社,2000.125-131.
    [10] Hubbert,M.K.and Willis,D.G.Mechanics of Hydraulic Fracturing[J].Trans.AIME Vol.210,1997.153-163.
    [11]黄荣樽,庄锦江.一种新的地层破裂压力预测方法[J].石油钻采工艺,1996,8(3):9-13.
    [12] Holbrook,P,W.Discussion of A New simple Method to Estimate Fracture Pressure Gradients[M].SPE Drilling&Completion,March,1997.251-267.
    [13]李传亮,孔祥言著.多孔介质的双重有效应力[J].自然杂志,1999,21(5):288-292.
    [14]练章华,张先普,李斌等.套管变形预防措施的计算机仿真分析[J].石油机械.2004,23(4):20-24.
    [15]陆蔚刚,石成方.控制压力平衡是减缓套损趋势的有效途径[J].大庆石油地质与开发,2002,21(2):56-58.
    [16] Matthews,W.R.and Kelly,J.How to Predict Formation Pressure and Fracture Gradient[J].Oil and Gas,65(8),pp.92-106.
    [17]聂采军,赵军,夏宏权.地层破裂压力测井预测的统计模式研究[J].天然气地球科学,2004,(06):52-57.
    [18]王仲茂,卢万恒,胡江明.油田油水井套管损坏机理及防止[M].北京:石油工业出版社,1999.59-82.
    [19]杨凤波,梁文福.喇嘛甸油田合理地层压力研究[J].大庆石油地质与开发,2003,4(06):68-73.
    [20]郑俊德,张艳秋,王文军等.非均匀载荷下套管强度的计算[J].石油学报,2002,19(1):19-123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700