桥式起重机空腹式箱形主梁的有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桥式起重机是一种用途最广、数量最多、通用化程度较高的起重机械。目前在工程上广泛使用的是实腹式箱形结构桥架,桥架的重量一般占起重机自重的60%以上。采用合理的桥架构造形式减轻自重,其意义不仅在于节约本身所消耗的钢材和降低成本,同时还因此减轻了厂房建筑结构的受载而节省基建费用。减轻桥架的自重可以从多方面入手,本课题将就改变桥架腹板的形状,设计新型的金属桥架来达到减轻桥架自重的目的。本文是把传统箱形主梁腹板变为空腹式主梁腹板进行的研究。
     本文主要做了以下工作:
     1)采用经典力学理论说明空腹式箱形主梁的可行性;
     2)采用经典力学方法对空腹式箱形主梁进行结构分析,计算其开孔高度与它对应的应力与变形的关系,推导它需要满足的基本条件,为空腹式箱形主梁的设计提供依据;
     3)采用有限元方法对空腹式箱形主梁进行结构分析,并与理论计算结果进行对比,验证其正确性;
     4)对大连起重机器厂生产的一台桥式起重机的主梁进行工程实例分析,在它的腹板上进行开孔设计,并用经典力学方法和有限元软件ANSYS对空腹式箱形主梁和实腹式箱形主梁进行结构分析比较,验证空腹式箱形主梁的实用性。得到以下结论:
     1)空腹式箱形主梁可以节省钢材,减小自重,在风载荷作用下有更大的优越性;
     2)设计空腹式箱形主梁时,开孔高度x要满足文中五个基本条件;
     3)空腹式箱形主梁较实腹式箱形主梁在刚度和强度上都有所降低,但在一定条件下仍可以满足工程中的刚度和强度要求;
     4)对于不同开孔高度的空腹式箱形主梁,刚度和强度有不同程度的降低。对于不同工况的具体要求,应选择不同的开孔高度;
     5)利用本文的分析方法可以对桥式起重机主梁结构的应力与变形情况进行分析计算,对桥式起重机主梁结构的设计提供有益的参考。
Bridge crane is a kind of hoisting machinery that hold the widest use, the most quantity and upper generalized degree. At present, solid trunk loading structure is the widest use in engineering, whose weight is occupy 60% of crane weight. Significance of adopting logical loading structure construct modality is not just for lightening its weight, saving its wasting steels and reducing cost, but is also for lightening the load of workshop construction structure and saving capital construction expenses. There are many ways to reduce the weight of loading structure, and this paper will transfer the shape of loading structure’s web plate to design new-style metal loading structure and achieve the purpose of reducing the weight of loading structure. The paper is a study of transfer web plate of trunk girder into hollow one.
     The paper done these works:
     1) Explaining the feasibility of hollow trunk girder by using classical mechanics theory;
     2) Structural analysis of hollow trunk girder was done by using classical mechanics method, and the relationship of its holing height with its stress and transmutation was calculated, by which the basic conditions for holing height need to meet was derived. It provided gist for hollow trunk girder design;
     3) Structural analysis of hollow trunk girder was done by using finite element method. Then compared its results with academic calculated results, by which the correctness of results was validated;
     4) Engineering example analysis was put up to a bridge crane produced by Dalian factory of hoisting machinery. Holing in its web plate and structural analyzing and comparing the results by using classical mechanics method and finite element software ANSYS, by which practicability of hollow trunk girder was validated.
     These results were found:
     1) Hollow trunk girder could save steel and reduce its weight, and it has more superiority under wind load;
     2) When hollow trunk girder was designed, holing height x need to meet five basic conditions in the paper;
     3) Compared with solid trunk girder, rigidity and intensity of hollow trunk girder were reduced, but it still could meet the demand under some conditions;
     4) For hollow trunk girder of different holing height, rigidity and intensity were reduced in different extent. For meeting demand of different idiographic engineering conditions, different holing height should be chosen.
     5) By using the analysis method in the paper, stress and transmutation conditions of bridge crane could be analyzed and calculated. It provides beneficial references to the design of girder structure in bridge crane.
引文
[1]杨长驳.起重机械[M].北京,机械工业出版社,1982, 1~2
    [2]须雷.桥式起重机国内外发展概况[J].起重运输机械,1997, 3, 1~2
    [3]吴丽萍.我国起重机新技术的进展与国外发展动向[J].山西机械,2002, 3, 51~52
    [4]刘云峰.桥式起重机箱形主梁腹板新型结构研究[D].昆明理工大学,2001, 7~10
    [5]左斌.起重机结构疲劳剩余寿命评估方法研究[D].太原科技大学,2007, 1~2
    [6]须雷.起重机的现代设计方法[J].起重运输机械,1996,8,3~7
    [7]张健荣竺伯铭等.机电产品学(机械产品)[M].物资出版社, 1984,272~281
    [8] Tussman T, Klaus-Jurgen B. A finite element formulation for nonlinear incompressible elastic and inelastic analysis [J]. Computers and Structures, 1990, 26, 2, 234
    [9] Mei G. Stability analysis of long-span continuous rigid Frame bridges with high pier [J]. Journal of Xi′an Jiaotong University, 1999, 19, 3, 31 ~ 38
    [10] Benbouzid H. Finite element modeling of giant mag-netostriction in thin films [J]. IEEE Transaction on Magnetics, 1995, 31, 6, 63 ~ 65
    [11]刘鸿文.第三版.材料力学(上册)[M].北京,高等教育出版社,1992,9,144~145
    [12]姚河省,马崇山.材料力学教程[M].太原,山西教育出版社,1998,108~113
    [13]徐克晋.第二版.金属结构[M].北京,机械工业出版社,1990,18~19,33
    [14]《起重机设计规范》编写组.国家标准GB3811-83《起重机设计规范》[S].北京,国家标准出版社,1983
    [15]吴小珍.铸造起重机主梁结构的疲劳寿命研究[D].武汉科技大学,2003,20
    [16]刘尔烈,崔恩第,徐振铎.有限单元法及程序设计[M].天津,天津大学出版社,1999,1~2
    [17]张朝晖.ANSYS8.0结构分析及实例解析[M].北京,机械工业出版社,2006,1~3
    [18]博弈创作室.ANSYS9.0经典产品基础教程与实例详解[M].北京,中国水利水电出版社,2006,52~53
    [19]白葳,喻海良.通用有限元分析ANSYS8.0基础教程[M].北京,清华大学出版社,2005,6~7
    [20]梁清香,张根全.有限元与MARC实现[M].北京,机械工业出版社,2005,234~243
    [21]崔佳,魏明钟,赵熙元等.钢结构设计规范理解与应用[M].北京,中国建筑工业出版社,2004,72~74
    [22]夏志斌,姚谏.钢结构—原理与设计[M].北京,中国建筑工业出版社,2003,227~230
    [23]王国周,陈绍蕃,张耀春等.《钢结构设计规范》应用讲解[M].北京,中国计划出版社,2003,147
    [24]徐克晋.金属结构习题集[M].北京,机械工业出版社,1992,31~33
    [25]尚晓江,邱峰,赵海峰等.ANSYS结构有限元高级分析方法与范例应用[M].北京,中国水利水电出版社,2005,108~116
    [26]余伟,高炳军,陈洪军等.ANSYS在机械与化工装备中的应用[M].北京,中国水利水电出版社,2006, 43~45
    [27]高素荷.宝钢120t/30t/10t×27.6m桥式起重机主梁有限元分析[J].重型机械科技,2006, 1, 17~20
    [28]高素荷.宝钢120t桥式起重机主梁有限元分析[J].重工科技,2005, 1, 8~11
    [29] Yi-Feng Zhong, Rui Wang, Xue-Gang Ying, Huai Chen. Finite Element Model for Arch Bridge Vibration Dynamics Considering Effect of Suspender Length Adjustment on Geometry Stiffness Matrix [J]. Journal of Chongqing University, 2006, 5, 4
    [30]迟毅林,刘道玉.波形腹板梁结构研究及其有限元分析[J].机械设计与制造,2005, 2, 20~22
    [31]方子帆,舒刚,朱大林.大跨度箱形梁的有限元计算分析[J].起重运输机械,2006,9, 25~27
    [32]黄纲华.桥式起重机的有限元强度分析[J].宝钢技术,1990,2,56~59
    [33]薛继忠,易传云,王伏林.桥式起重机桥架结构的三维有限元分析[J].机械与电子,2004, 8, 13~15
    [34]杨先勇,刘安中,李友荣等.桥式起重机主梁焊缝有限元计算子模型[J].起重运输机械,2005,4,8~10
    [35] I. I. Koksharov, A. E. Burov. Comparative analysis of the load-carrying capacity of sections of metal structures using an automated system of calculating strength and cracking resistance [J]. Strength of Materials, 1994, 26,4,311~314
    [36]谭积青,徐伟,张肖宁. Finite Element Simulation and Optimal Analysis of Surfacing on Steel Orthotropic Bridge Deck [J]. Journal of Southeast University (English Edition), 2006, 22, 4
    [37]陈道礼,黄永生.桥吊空腹副桁架主梁的剩余寿命估算[J].港口装卸,2001, 5, 4~6
    [38]王浩,李爱群,缪长青.Finite Element Model Updating and Validating of Runyang Suspension Bridge Based On SHMS [J]. Journal of Southeast University (English Edition), 2005, 21, 4
    [39]罗辉,易海鹏,罗会信.桥式起重机主梁有限元分析[J].建筑机械,2007, 2, 67~69
    [40]阳云华,金光振.桥式起重机三维有限元分析[J].湖北工学院学报,2003, 18, 2, 82~83
    [41]陈道礼.桥式起重机结构的随机有限元分析[J].起重运输机械,2002, 10, 17~19
    [42]高素荷.宝钢25t-27.5m桥式起重机主梁有限元分析[J].工程设计学报,2005, 12, 5,313~317
    [43]催华伟,徐长生.桥式起重机桥架结构参数化设计与有限元分析[J].起重运输机械,2007, 7, 21~23
    [44]杨竞,姚莉莉,何小兵.桥式起重机结构有限元分析[J].机电产品开发与创新,2007, 20, 4, 46~47
    [45]黄鹏鹏,涂秋艳,熊运星.基于Pro/MECHANICA桥式起重机箱形主梁的结构分析[J].起重运输机械,2007, 2, 44~45
    [46]宁朝阳,周华祥.箱形主梁结构优化设计[J].长沙交通学院学报,2007, 23, 2, 61~63

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700