骨的多孔介质弹性力学行为及力—电效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨作为一种多孔的材料结构系统,在生理环境中经常受到循环载荷的作用,例如日常生活中的行走、跑步、跳跃等活动。而这些活动(力)能够被骨“感受”并“适应’'(Wolff定理),那么这是通过怎样一个机制完成的呢?尽管现在还没有一个明确的定论,但是要弄清楚这种机制必须从骨的微观组成结构——骨单元水平着手。因为它可能与骨微观结构内部液体流动而产生的一系列效应有关,如骨内液体的压力分布、扩散、化学运输、流体剪应力、流动电位等等。这些效应还可能是骨生长和骨重建的诱导机制,因此本文以此背景为出发点建立了不同尺度的骨的多孔介质弹性力学模型,研究了外载荷的作用下其内部液体的压力分布及流动行为。
     骨的力-电效应根据机理又分为压电效应和流动电位效应(动电效应)。压电效应多存在与干骨中,而在湿骨或活体骨中主要以流动电位为主,所以本文又建立了骨小管及哈弗管的流动电位模型来揭示活体骨的力传导和力-电耦合机制。
     此外,本文还运用多孔介质弹性理论对骨材料结构(宏观尺度)进行了理论建模,研究了实验室条件下的多孔弹性响应。考虑到以前的实验都是在骨材料(小尺寸)水平进行的,而生命状态的骨大都是作为一个整体结构来承受外部载荷,如行走、跑步和跳跃等,因此致力于研究整体大段骨结构在动态载荷过程中产生的电位幅值及其分布特点,不仅是弄清楚电信号影响骨细胞生长机理的必要步骤,也是实现骨治疗和骨重建的生理基础。为此,结合建立的理论模型,我们利用INSTRON(8874)试验机对大段牛股骨进行了模拟人日常活动(行走、跑步)受力状态下的力-电效应的实验研究。
     综上,具体的工作清单及主要结论如下:
     (一)、应用多孔介质弹性力学原理分别建立了中空的和考虑哈弗液体的骨单元(~150μm)理论模型,研究了载荷变形下骨单元内部液体的压力分布及流动行为,从而架起了骨单元内液体压力场、流速场与外界载荷(轴向、周期)之间的桥梁。主要结论如下:
     (ⅰ)与中空(不考虑哈弗液体)骨单元模型相比,考虑哈弗(管)液体存在的骨单元模型中的液体压力场和流速场会明显增大。
     (ⅱ)一般来说,骨单元内液体的压力和流速幅值随着载荷幅值(应变幅值)和频率(考虑哈弗液体的骨单元除外)的增大而增大。
     (ⅲ)骨单元内液体的压力和流速幅值与应变率成正比,并且真正决定骨单元多孔介质弹性力学行为的是应变率。
     (ⅳ)在周期性的载荷作用下,骨单元内部液体的压力梯度呈现周期性的变化,这样导致液体的周期性往返流动。
     (ⅴ)在中空的骨单元模型中,渗透率对液体压力幅值的影响要大于流速幅值。
     (二)、在(一)的基础上建立了骨小管(~500nm)的流动电位模型,建立了外界载荷(轴向、周期)与骨小管内液体的流动及流动电位的关系,同时考察了载荷大小、频率等因素对这一流动电位的影响。主要结论如下:
     (ⅰ)骨小管内液体产生的流动电位随着外部载荷大小(应变幅值)和频率的增加而增大。
     (ⅱ)影响流动电位的决定因素是应变率,并且在应变率相同的情况下,含哈弗管液体的骨单元模型中,骨小管产生的流动电位要大于中空骨单元模型中产生的流动电位。
     (ⅲ)在周期性的载荷作用下,流动电位呈现周期性的变化,这主要是由于骨小管内液体的周期性往返流动造成的。
     (ⅳ)骨小管内的流动电位随小管半径的增大而增大,但是与骨小管的长度无关。
     (三)、应用多孔介质弹性力学原理建立了实验条件下的四种骨材料(~mm)理论模型,并研究了它们各自的多孔介质弹性力学行为,并得到了以下一些结论:
     (ⅰ)骨材料试件的多孔介质弹性力学行为与骨单元尺度下的相类似,骨内液体的压力和流速幅值均正比于外部载荷大小(应变幅值)、频率和应变率,但是决定骨材料内部液体的压力和流速特性的是载荷的应变率。
     (ⅱ)在周期性的载荷作用下,骨材料内部液体的压力梯度和流动行为呈现周期性的变化。
     (ⅲ)在骨材料尺度,渗透率对液体压强的影响要大于流速。
     (ⅳ)一维流动模型中产生的流动电位幅值正比于载荷幅值和频率,并由应变率决定;另外流动电位随着渗透率的增大而减小。
     (四)、对大段牛股骨结构(~cm)进行了人日常活动(行走、跑步)受力状态下的力-电效应实验研究,得到了在模拟人行走和跑步状态下的力-电电位,并与理论模型进行了对比。结论如下:
     (ⅰ)当牛股骨给以人正常行走和跑步状态下的载荷和频率时,它都会产生力-电效应,跑步状态下产生的电压较行走的大。据此说明人在行走或跑步时也会产生电信号,并且跑步时的电压较行走时大;行走和跑步过程中产生的电压随载荷和频率的增大而增大。
     (ⅱ)在行走和跑步的载荷状态下都将产生两个电位峰值,一个是脚后跟着地时(加载)所形成的负峰值,另一个是前脚掌离地时(卸载)所形成的正峰值,而且后一个峰值大于前一个峰值(绝对值)。
     (ⅲ)骨在受拉伸和压缩时力-电特性不相同,在相同的应变率或应力梯度下受拉伸时产生的压电电位大于受压缩时的值。
     (ⅳ)产生的电位幅值与载荷幅值、频率、应变率密切相关,实验曲线中近似地显示出正比例关系,与理论结果相符。
Cortical bone, as a poroelastic material and composite system, often bears cyclic loads that might come from walking, running or other daily activities. These activities can make bone "feel" and "adapt", but what is the mechanism? In order to explore it, researches should be conducted in the level of osteon, because the mechanism may be related with strain-derived fluid stimuli such as fluid shear stress, fluid pressure gradient, chemotransport and stress/strain-generalized potentials (SGP), etc. These effects may be the activated signals of bone growth and bone remodeling. Therefore, it is significant to propose a biomechanical osteon model to examine its intraosseous pressure characteristics and fluid flowing behavior.
     Bone's Stress-Generated Potentials (SGP) mainly includes piezoelectric potential and streaming potential. The piezoelectric potential generally arouses in the loaded dry bone, while the streaming potential is in the wet or living bone. Therefore, we chose our task to model the streaming potential produced in bone canaliculi to explore the mechanisms of mechanotransduction and electromechanotransduction.
     Besides, the macroscopical bone material specimens were modeled by using the poroelasticity theory and its poroelastic responses were studied under laboratory conditions. Most previous experimental studies were conducted on the level of bone material. However, physiological bones bear the external dynamic loading as a whole structure, such as walking, running and jumping. Therefore, it has a more realistic reference value to test the SGP produced in the large whole bone structure. Thus, under simulated physiological loading states (walking and running), we examined the cattle femur (large bone structure)'s SGP by INSTRON (8847) testing machine.
     From the above, the more detailed task list and the main conclusion are as follows:
     (1) We respectively proposed a hollow and Haversian fluid (pressure) contained osteon model (~150μm) to examine its intraosseous pressure characteristics and fluid flowing behavior under the external loading environments. The relationship among the external loads (axial and cyclic), intraosseous pressure, and fluid velocity was established. Some conclusions are obtained below:
     (1) The fluid pressure amplitude in the Haversian fluid (pressure) considered osteon model is much higher than that in hollow osteon model.
     (ii) Generally, the increase of axial strain amplitude and frequency can result in the increase of fluid pressure and velocity amplitudes.
     (iii) Both the pore pressure and fluid velocity amplitudes are proportionate to the amplitude of strain rate.
     (iv) With an external cyclic loading, the induced fluid pressure gradient and flow behavior are also cyclic.
     (v) At the hollow osteon scale, the pressure is strongly affected by permeability variations whereas fluid velocity is not.
     (2) Base on (1), a streaming potential model produced in bone canaliculi (-500nm) was established and examined its influence of loading amplitude, frequency, and permeability, etc.
     (i) The streaming potential amplitude (SPA) is proportional to the pressure amplitude difference, strain amplitude, frequency and strain rate amplitude. However, the key loading factor governing the SP is the strain rate and it can be seen as a representative loading parameter under the physiological state.
     (ii) The SPA produced in the canaliculi of Haversian fluid contained osteon model is larger than that of hollow osteon (not considering Haversian fluid) model.
     (iii) With an external cyclic loading, the induced fluid pressure gradient and flow behavior are also cyclic.
     (iv) The larger canaliculi radius, the larger SPA produced, but the SPA is independent of the canaliculi length.
     (3) The macroscopical bone material specimens (-mm) were modeled by using the poroelasticity theory and its poroelastic responses were studied under laboratory conditions. Its poroelastic behaviors also have been compared with the osteon scale model.
     (i) The poroelastic behaviors of bone material specimens are similar to that of osteon scale:Both the pore fluid's pressure and velocity amplitudes are proportionate to the strain amplitude, frequency and strain rate amplitude. However, the key loading factor governing its poroelastic behavior is the strain rate.
     (ii) With an external cyclic loading, the induced fluid pressure gradient and flow behavior are also cyclic.
     (iii) At the bone material scale, the pressure is strongly affected by permeability variations whereas fluid velocity is not.
     (iv) In the one dimensional flow model, the streaming potential amplitude (SPA) is proportional to the pressure amplitude difference, strain amplitude, frequency and strain rate amplitude. Besides, the increase of the permeability results in the decrease of SPA.
     (4) Under simulated human physiological loading states (walking and running), we obtained the cattle femur's (large bone structure:-mm) SGP by INSTRON (8847) testing machine and made a comparison with theoretical analysis.
     (ⅰ) The cattle femur, being given the human's normal walking and running state of load and frequency, will generate electric potential. Voltage amplitude generated by running is larger than that of walk. The electric potential amplitude will become larger with the load and frequency increases.
     (ⅱ) There will have two electric potential peaks under the conditions of walking and running. One of them is a negative peak which is generated by heel landing (loading), the other is a positive peak generated when the front sole off the ground (unloading). The second potential peak is larger than that of the first one.
     (ⅲ) Bones have different electric properties in the condition of tension and compression. Under the same strain rate or stress gradient, the electric potential value generated by tensile is greater than that of compression.
     (ⅳ) The electric potential amplitude is approximately proportional to the loading amplitude, frequency, strain rate, which agrees with the conclusion of theoretical model.
引文
[1]. Piekarski K. Fracture of Bone. Journal of Applied Physics [J].1970,41,215-223.
    [2]. Qin YX, Kaplan T, Saldanha A, et al. A fluid pressure gradient, arising from oscillations in intramedullary pressure, is correlated with the formation of bone and inhibition of intracortical porosity [J]. J. Biomech.2003,36,1427-1437.
    [3]. Munro PA, Dunnill P, Lilly MD. Nonporous magnetic materials as enzyme supports:studies with immobilized chymotrypsin [J]. Biotechnol Bioeng.1977,19,10-24.
    [4]. Weinbaum S, Cowin SC, Zeng YA. Case for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses[J]. J. Biomech.1994,27,339-360.
    [5]. Pienkowski D, Pollack SR. The origin of stress-generated potentials in fluid saturated bone [J]. J Orthop Res.1983,1,30-41.
    [6]. Otter M, Goheen S, Williams WS.1988.Streaming potentials in chemically modified bone [J]. J Orthop Res.6(3),346-59.
    [7]. MacGinitite LA, Stanley GD, Bieber WA, et al. bone streaming potentials and currents depend on anatomical structure and loading orientation [J]. J. Biomech.1997,11/12(30),1133-1139
    [8]. Cowin SC, Doty SB. Tissue Mechanics. Springer New York [M].2007.
    [9]. Atkinson PJ, Hallsworth AS. The spatial structure of bone [M]. In:Harrison, R.J., Navaratman, V. (Eds.), Progress in Anatomy, Vol.2. Cambridge University Press, Cambridge,1982,179-199.
    [10]. Cooper RR, Milgram JW, Robinson RA. Morphology of the osteon. An electron microscopic study [J]. Journal of Bone and Joint Surgery 48 A,1966,1239-1271.
    [11].Boyde A. Scanning electron microscope studies of bone [M]. In:Bourne, G.H. (Ed.), The Biochemistry and Physiology of Bone. Academic Press, New York,1972,290.
    [12].候振德,陈金龙,王国安等.湿骨内动态力-电电位的因素分析[J].实验力学,2002,17,234-241.
    [13].Biot MA. Theory of elasticity and consolidation for a porous anisotropic solid [J]. Journal of Applied Physics.1955,26,182-185.
    [14].Cheng A.H.-D. Material coefficients of anisotropic poroelasticity [J]. International Journal of Rock Mechanics and Mining Sciences.1997,2(34),199-205.
    [15].Cowin SC. Bone poroelasticity [J]. J. Biomech.1999,32,217-238.
    [16].Gu WY, Mao XG, Rawlins BA, et al.Streaming potential of human lumbar anulus fibrosus is anisotropic and affected by disc degeneration [J]. Journal of Biomechanics,1999,32:1177-1182
    [17]. Singh S, Saha S. Electrical properties of bone [J]. Clinical Orthopedics and Related Research,1984, 186:249-271
    [18].Aschero G, Gizdulich P, Mango F. Statistical characterization of coefficient d23 in cow bone [J]. Journal of Biomechanics,1999,32:573-577
    [19].侯振德,高瑞亭.骨的力电性质[J].力学进展.1995,25(1):85-101.
    [20].武晓刚,陈维毅.骨的力-电效应研究方法与进展[J].力学进展.2010,40(5):563-573.
    [21].Gross D, Williams WS. Streaming potentials and the electromechanical response of physiologically moist bone [J]. Journal of Biomechanics,1982,15:277-295.
    [22].Guzelsu N, Walsh WR. Streaming potential of intact wet bone [J]. Journal of Biomechanics.1990, 23:673-685.
    [23].Yixian Qin, Wei Lin, Clinton Rubin. The Pathway of Bone Fluid Flow as Defined by In Vivo intramedullary Pressure and Streaming Potential Measurements [J]. Biomechanical Engineering, 2002,30:693-702
    [24].Pfeiffer, B. Local piezoelectric polarization of human cortical bone as a function of stress frequency [J].J.Biomech,1977,10,53-57.
    [25].Reinish G B, Nowick A S, Piezoelectric properties of bone as functions of moisture content [J], Nature, 1975,253:626-627.
    [26].Petrov N. On the electromechanical interaction in physiologically wet bone [J]. Biomechanics.1975,2, 43-52.
    [27].Silva C C, Thomazini D, Pinheiro A G, et al. Collagen-hydroxyapatite films:piezoelectric properties [J]. Materials Science and Engineering.2001,B86,210-218
    [28]. Williams W, Breger L. Piezoelectricity in tendon and bone [J]. J. Biomech.1975,8,407-413.
    [29].Fukada E, Hara K. Piezoelectric effect in blood vessel walls [J]. J. Phys. Soc. Jpn 1969,26,777-780.
    [30].Pienkowski D, Pollack SR. The origin of stress-generated potentials in fluid saturated bone [J]. J Orthop Res,1983,1,30-41.
    [31].Andrew C. Ahn, Alan J. Grodzinsky. Relevance of collagen piezoelectricity to "Wolff's Law":A critical review [J]. Medical Engineering & Physics.2009,31,733-741
    [32].Otter M, Goheen S, Williams WS. Streaming potentials in chemically modified bone [J]. J Orthop Res 1988; 6(3):346-59.
    [33].Gross D, Williams WS. Streaming potentials and the electromechanical response of physiologically moist bone [J]. Journal of Biomechanics,1982,15:277-295.
    [34]. Rubin CT, Lanyon LE. Regulation of bone formation by applied dynamic loads [J]. J Bone Joint Surg Am 1984; 66(3):397-402.
    [35].Cowin SC.2002. Mechanosensation and fluid transport in living bone [J]. J Musculoskel Neuron Interact.2(3),256-260.
    [36]. Go Murasawa, Hideo Cho, Kazuma Ogawa. Nonlinear electric reaction arising in dry bone subjected to 4-point bending. Mechanics of Materials,2009,41,810-819.
    [37].Ting Wang, Zude Feng, Yuxing Song, et al. Piezoelectric properties of human dentin and some influencing factors, Dental Materials,2007,23,450-453.
    [38].富东慧,侯振德,秦庆华等.湿度对骨内压电信号的影响.2009,24(5):473-478.
    [39]. Fukada E, Yasuda I. On the piezoelectric effect of bone. J. Pbys. Soc. Japan,1957,12,1158-1162.
    [40].Aschero G, Gizdulich P, Mango F, et al. Converse piezoelectric effect detected in fresh cow femur bone. Journal of Biomechanics,1996,29:1169-1174
    [41].Bernhard Schmidt-Rohlfmg, Ulrich Schneider, Hans Goost, Jiri Silny. Mechanically induced electrical potentials of articular cartilage. Journal of Biomechanics.2002,35:475-482
    [42].MacGinitite L A, Stanley G D, Bieber W A, et al. bone streaming potentials and currents depend on anatomical structure and loading orientation. J. Biomechanics.1997,11/12(30); 1133-1139
    [43]. Junghwa Hong, Sang Ok Ko, Gon Khang, et al. Intraosseous pressure and strain generated potential of cylindrical bone samples in the drained uniaxial condition for various loading rates. J Mater Sci Mater Med,2008,19:2589-2594
    [44].徐莲云,侯振德,钟声,王泓.加载速率对骨的流动电位的影响.实验力学.2009,4(24):320-326
    [45]. Yasuda I. Fundamental aspects of fracture treatment. J K Yoto Med Soc,1953,44:396-406
    [46].Gu WY, Mao XG, Rawlins BA, et al.Streaming potential of human lumbar anulus fibrosus is anisotropic and affected by disc degeneration. Journal of Biomechanics,1999,32:1177-1182
    [47].Lemaire T, Capiez-Lernout E, Kaiser J, Naili S, Sansalone V. What is the importance of multiphysical phenomena in bone remodelling signals expression? A multiscale perspective [J]. J Mech Behav Biomed Mater.2011,4(6):909-20.
    [1]. Qin, Y.X., Kaplan, T., Saldanha, A., Rubin, C.2003.Fluid pressure gradients, arising from oscillations in intramedullary pressure, is correlated with the formation of bone and inhibition of intracortical porosity. J. Biomech.36,1427-1437.
    [2]. Munro, P. A., Dunnill, P., Lilly, M. D.,1977. Nonporous magnetic materials as enzyme supports: studies with immobilized chymotrypsin. Biotechnol Bioeng.19,101-24.
    [3]. Weinbaum,S.,Cowin,S.C.,Zeng,Y. A.1994. Case for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J. Biomech.27,339-360.
    [4]. Pienkowski, D., Pollack, SR.,1983. The origin of stress-generated potentials in fluid saturated bone. J Orthop Res.1,30-41.
    [5]. Otter, M., Goheen, S. Williams, W.S.1988.Streaming potentials in chemically modified bone. J Orthop Res.6(3),346-59.
    [6]. MacGinitite, L.A., Stanley,G.D.,1997. Bieber,W.A., et al. bone streaming potentials and currents depend on anatomical structure and loading orientation. J. Biomech.11/12(30),1133-1139
    [7]. Cowin, S.C.1999.Bone poroelasticity. J. Biomech.32,217-238.
    [8]. Biot, M.A.,1955. Theory of elasticity and consolidation for a porous anisotropic solid. Journal of Applied Physics.26,182-185.
    [9]. Remond, A., Naili, S.2005.Transverse isotropic poroelastic osteon Case under cyclic loading. Mechanics Research Communications.32,645-651
    [10].Remond, A., Naili, S., Lemaire, T.,2008, Interstitial fluid flow in the osteon with spatial gradients of mechanical properties:a finite element study. Biomech Case Mechanobiol.7,487-495.
    [11].Nguyen, V.H., Lemaire, T., Naili. S.,2009a. Anisotropic poroelastic hollow cylinders with damaged periphery under harmonically axial loadings:relevance to bone osteons. Multidiscipline Caseing in Materials and Structures.5,205-222
    [12].Nguyen, V.H., Lemaire, T., Naili. S.,2009b. Numerical study of deformation-induced fluid flows in periodic osteonal matrix under harmonic axial loading. Comptes Rendus Mecanique.337,268-276
    [13].Nguyen, V.H., Lemaire, T., Naili. S.,2010. Poroelastic behaviour of cortical bone under harmonic axial loading:A finite element study at the osteonal scale. Medical Engineering & Physics.32, 384-390
    [14].Nguyen, V.H., Lemaire, T., Naili. S.,2011. Influence of interstitial bone microcracks on strain-induced fluid flow. Biomechanics and Caseing in Mechanobiology,10(6):963-972.
    [15].Abousleiman, Y., Cui, L.1998. Poroelastic solutions in transversely isotropic media for wellbore and cylinder. Journal of Solids Structures.35,4905-4929.
    [16].Turner, C.H., Forwood, M.R., Otter, M.W.1994. Mechanotransduction in bone:do bone cells act as sensors of fluid flow? FASEB.8,875-878.
    [17].Beno T, Yoon Y-J, Cowin SC, Fritton SP.2006.Estimation of bone permeability using accurate microstructural measurements. J Biomech 39:2378-2387
    [18].Cowin, S.C.2002. Mechanosensation and fluid transport in living bone. J Musculoskel Neuron Interact.2(3),256-260
    [1]. Currey, J. D.,1969. The relationship between the stiffness and the mineral content of bone. J Biomech. 2,477-80.
    [2]. Piekarski, K.,1973. Analysis of bone as a composite material. International Journal of Engineering Science.11,557-65.
    [3]. Hogan, H.,1992.Micromechanics modeling of Haversian cortical bone properties. J Biomech. 25,549-556.
    [4]. Braidotti,P., Branca,F.P., Sciubba,E., et al.1995. An elastic compound tube model for a single osteon. J Biomech.28,439-444.
    [5]. Zeng, Y., Cowin, S.C., Weinbaum, S.1994. A fiber matrix model for fluid flow and streaming potentials in the canaliculi of an osteon. Ann. Biomed. Eng.22 (3):280-292.
    [6]. Zhang, D., Weinbaum, S., Cowin, S.C.1998. On the calculation of bone pore water pressure due to mechanical loading.Int. J. Solids Struct.35 (34-35),4981-4997.
    [7]. Turner, C.H., Forwood, M.R., Otter, M.W.1994. Mechanotransduction in bone:do bone cells act as sensors of fluid flow? FASEB.8,875-878.
    [8]. Remond, A., Naili, S.2005.Transverse isotropic poroelastic osteon model under cyclic loading. Mechanics Research Communications.32,645-651
    [9]. Nguyen, V.H., Lemaire, T., Naili. S.,2009a. Anisotropic poroelastic hollow cylinders with damaged periphery under harmonically axial loadings:relevance to bone osteons. Multidiscipline Modeling in Materials and Structures.5,205-222
    [10].Nguyen, V.H., Lemaire, T., Naili. S.,2009b. Numerical study of deformation-induced fluid flows in periodic osteonal matrix under harmonic axial loading. Comptes Rendus Mecanique.337,268-276
    [11].Nguyen, V.H., Lemaire, T., Naili. S.,2010. Poroelastic behaviour of cortical bone under harmonic axial loading:A finite element study at the osteonal scale. Medical Engineering & Physics.32, 384-390
    [12].Nguyen, V.H., Lemaire, T., Naili. S.,2011. Influence of interstitial bone microcracks on strain-induced fluid flow. Biomechanics and Modeling in Mechanobiology,10(6):963-972.
    [13].Biot, M.A.,1955. Theory of elasticity and consolidation for a porous anisotropic solid. Journal of Applied Physics.26,182-185.
    [14].Abousleiman, Y., Cui, L.1998. Poroelastic solutions in transversely isotropic media for wellbore and cylinder. Journal of Solids Structures.35,4905-4929.
    [15].Lanyon, L.E., Hampson, W.G.J., Goodship, A.E., Shah, J.S.,1975. Bone deformation recorded in vivo from strain gauges attached to the human tibial shaft. Acta Orthopedica Scandinavica.46,256-268.
    [16].Burr, D.B., Milgrom, C., Fyhrie, D., et al.1996. In vivo measurement of human tibial strains during vigorous activity. Bone.18 (5),405-410.
    [17].Fritton, S.P., Kenneth, J.M., Rubin, C.T.,2000. Quantifying the Strain History of Bone:spatial Uniformity and Self-similarity of Low Magnitude Strains. Journal of Biomech.anics.33,317-325.
    [18].Cowin, S.C.2002. Mechanosensation and fluid transport in living bone. J Musculoskel Neuron Interact.2(3),256-260
    [19].Remond, A., Naili, S., Lemaire, T.,2008, Interstitial fluid flow in the osteon with spatial gradients of mechanical properties:a finite element study. Biomech Model Mechanobiol.7,487-495.
    [20].Weinbaum,S.,Cowin,S.C.,Zeng,Y. A.1994. Model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J. Biomech.27,339-360.
    [21]. You, L, Cowin S.C, Schaffler M, Weinbaum S.2001. A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix. J Biomech.34,1375-1386.
    [22].Rubin, C.T., McLeod, K.J.,1994. Promotion of bony ingrowth by frequency specific, low amplitude mechanical strain. Clinical Orthopedics and Related Research.298,165-174.
    [23].Knothe Tate, M.L.2003. "Whither flows the fluid in bone?" An osteocyte's perspective. Journal of Biomechanics.36,1409-1424
    [24].Johnson, M.W., Chakkalakal, D.A., Harper, R.A., Katz, J.L.,1980. Comparison of the electromechanical effects in wet and dry bone. Journal of Biomechanics.13,437-442.
    [25].Gross, D., Williams, W.S.,1982. Streaming potential and the electromechanical response of physiologically moist bone. Journal of Biomechanics.15,277-295.
    [26].Otter, M., Schoenung, J., Williams, W.S.,1985. Evidence for different sources of stress-generated potentials in wet and dry bone. Journal of Orthopaedic Research.3,321-324.
    [27].Salzstein, R.A., Pollack, S.R.,1987a. Electromechanical potentials in cortical bone—I. A continuum approach. Journal of Biomechanics.20,261-270.
    [28].Salzstein, R.A., Pollack, S.R.,1987b. Electromechanical potentials in cortical bone—Ⅱ. Experimental analysis. Journal of Biomechanics.20,271-280.
    [29].Cowin, S.C.1999. Bone poroelasticity. J. Biomech.32,217-238.
    [1]. Weinbaum,S.,Cowin,S.C.,Zeng,Y. A.1994. Model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J. Biomech.27,339-360.
    [2]. Qin, Y.X., Kaplan, T., Saldanha, A., Rubin, C.,2003.Fluid pressure gradients, arising from oscillations in intramedullary pressure, is correlated with the formation of bone and inhibition of intracortical porosity. J. Biomech.36,1427-1437.
    [3]. Munro, P. A., Dunnill, P., Lilly, M. D.,1977. Nonporous magnetic materials as enzyme supports: studies with immobilized chymotrypsin. Biotechnol. Bioeng.19,101-124.
    [4]. Yasuda, I.1964.Piezoelectricity of living bone. Kyoto Furitsu Ika Daigaku Zasshi,53,2019-2024.
    [5]. Basset, C., Becker, R.,1962. Generation of electric potentials by bone in response to mechanical stress. Science 137,1063-1064.
    [6]. Steinberg, M.E. et al.,1968. Electrical potentials in stressed bone. Clin. Orthop. Relat. Res.61, 294-300.
    [7]. Qin, Q.-H., Ye, J.-Q.,2004. Thermoelectroelastic solutions for internal bone remodeling under axial and transverse loads. Int. J. Solids Struct.41,2447-2460.
    [8]. Anderson, J.C., Eriksson, C.,1968. Electrical properties of wet collagen. Nature 218,166-168.
    [9]. Yokota, H., Tanaka, S.M.,2005. Osteogenic potentials with joint-loading modality. J. Bone Mineral Metabol.23,302-308.
    [10].Pienkowski, D., Pollack, SR.,1983. The origin of stress-generated potentials in fluid saturated bone. J. Orthop. Res.1,30-41.
    [11].Gross, D., Williams, W.S.,1982. Streaming potential and the electromechanical response of physiologically moist Bone. J. Biomech.15,277-295.
    [12].Salzstein, R.A., Pollack, S.R.,1987. Electromechanical potentials in cortical bone—Ⅰ&Ⅱ. A continuum approach. J. Biomech.20,261-270&271-280.
    [13].Cowin, S. C., S. Weinbaum, and Y. Zeng.1995. A case for the bone canaliculi as the anatomical site of strain generated potentials. J. Biomech.28:1281-1297.
    [14].Ahn, A.,& Grodzinsky, A.2009. Relevance of collagen piezoelectricity to Wolff's law:A critical review. Med. Eng. Phys.,31,733-741.
    [15].Petrov, N., Pollack, S., Blagoeva R.1989.A discrete model for streaming potentials in a single osteon. J. Biomechanics 22:517-521;
    [16].Cowin SC, Doty SB. Tissue Mechanics. Springer New York [M].2007.
    [17]. Atkinson PJ, Hallsworth AS. The spatial structure of bone [M]. In:Harrison, R.J., Navaratman, V. (Eds.), Progress in Anatomy,Vol.2. Cambridge University Press, Cambridge,1982,179-199.
    [18]. Cooper RR, Milgram JW, Robinson RA. Morphology of the osteon. An electron microscopic study[J]. Journal of Bone and Joint Surgery 48A,1966,1239-1271.
    [19].Boyde A. Scanning electron microscope studies of bone [M]. In:Bourne, G.H. (Ed.), The Biochemistry and Physiology of Bone. Academic Press, New York,1972,290.
    [20].候振德,陈金龙,王国安,等.湿骨内动态力-电电位的因素分析.实验力学,2002,17:234-241.
    [21].Pollack, S., Petrov, N., Salzstein, R., Brankov, G.,& Blagoeva, R.1984. An anatomical model for streaming potentials in osteons. J. Biomech.,17,627-636.
    [22].Zeng, Y, Cowin, S.C., Weinbaum, S.1994. A fiber matrix model for fluid flow and streaming potentials in the canaliculi of an osteon. Ann. Biomed. Eng.22 (3),280-292.
    [23].Nguyen, V.H., Lemaire, T., Naili. S.,2009a. Numerical study of deformation-induced fluid flows in periodic osteonal matrix under harmonic axial loading. C.R. Mecanique.337,268-276
    [24].Nguyen, V.H., Lemaire, T., Naili. S.,2009b. Anisotropic poroelastic hollow cylinders with damaged periphery under harmonically axial loadings:relevance to bone osteons. Multidiscipline Model. Mater. Struct.5,205-222
    [25].Nguyen, V.H., Lemaire, T., Naili. S.,2010. Poroelastic behaviour of cortical bone under harmonic axial loading:A finite element study at the osteonal scale. Med. Eng. Phys.32,384-390
    [26].Knapp, H.F., Reilly, G.C., Stemmer, A., Niederer, P., Knothe Tate, M.L.,2001. Development of preparation methods for and insights obtained from atomic force microscopy of fluid spaces in cortical bone. Scanning 24,25-33.
    [27].Reilly, G, Knapp, H., Stemmer, A., Niederer, P., Knothe Tate, M.L.,2001. Investigation of the lacunocanalicular system of cortical bone using atomic force microscopy. Annals of Biomedical Engineering 29,1074-1081.
    [28].Hung C.T., Allen F.D., Pollack S.R., et al. What is the role of the convective current density in the real-time calcium response of cultured bone cells to fluid flow? J Biomech 1996; 29,1403-1409
    [29].Beretta, D., Pollack, S.1986. Ion concentration effects on the zeta potential of bone. J. Orthop. Res.,4, 337-341.
    [30].Chakkalakal, D. A., M. W. Johnson, R. A. Harper, and J. L.Katz.1980. Dielectric properties of fluid-saturated bone. IEEE Trans. Biomed. Eng.27,95-100.
    [31].Remond, A., Naili, S.2005.Transverse isotropic poroelastic osteon model under cyclic loading. Mech Res Commun.32,645-651
    [32].Remond, A., Naili, S., Lemaire, T,2008. Interstitial fluid flow in the osteon with spatial gradients of mechanical properties:a finite element study. Biomech. Model Mechanobiol.7,487-495.
    [33].Turner, C.H.,1998. Three rules for bone adaptation to mechanical stimuli. Bone.23,399-407.
    [34].Beno, T., Yoon, Y-J., Cowin, S.C.,2006. Fritton SP, Estimation of bone permeability using accurate microstructural measurements. J Biomech.39:2378-2387.
    [35].Lanyon, L.E., Hampson, W.G.J., Goodship, A.E., Shah, J.S.,1975. Bone deformation recorded in vivo from strain gauges attached to the human tibial shaft. Acta. Orthop. Scand.46,256-268.
    [36].Burr, D.B., Milgrom, C., Fyhrie, D., et al.1996. In vivo measurement of human tibial strains during vigorous activity. Bone.18 (5),405-410.
    [37].Fritton, S.P., Kenneth, J.M., Rubin, C.T.,2000. Quantifying the Strain History of Bone:spatial Uniformity and Self-similarity of Low Magnitude Strains. J. Biomech.33,317-325.
    [38].Cowin, S.C.2002. Mechanosensation and fluid transport in living bone. J Musculoskel Neuron Interact.2(3),256-260
    [39].Rubin, C.T, Lanyon, L.E.1984. Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am,66(3):397-402.
    [40].Fritton, S. P., K. J. McLeod, and C. T. Rubin.1996. Cross-species spectral similarity in the strain history of bone. In:Transactions of 42nd Annual Meeting, Orthopaedic Research Society, Feb.19-22, Atlanta, Georgia, p.132-22.
    [41].Black, J. Mattson, R.U.1982.Relationship between porosity and mineralization in the Haversian osteon.Calcif. Tissue Int.34,332-336
    [1]. Abousleiman, Y., Cui, L.1998. Poroelastic solutions in transversely isotropic media for wellbore and cylinder. Journal of Solids Structures.35,4905-4929.
    [2]. Remond, A., Naili, S.2005.Transverse isotropic poroelastic osteon model under cyclic loading. Mechanics Research Communications.32,645-651
    [3]. Nguyen, V.H., Lemaire, T., Naili. S.,2009a. Anisotropic poroelastic hollow cylinders with damaged periphery under harmonically axial loadings:relevance to bone osteons. Multidiscipline Modeling in Materials and Structures.5,205-222
    [4]. Nguyen, V.H., Lemaire, T., Naili. S.,2009b. Numerical study of deformation-induced fluid flows in periodic osteonal matrix under harmonic axial loading. Comptes Rendus Mecanique.337,268-276
    [5]. Nguyen, V.H., Lemaire, T., Naili. S.,2010. Poroelastic behaviour of cortical bone under harmonic axial loading:A finite element study at the osteonal scale. Medical Engineering & Physics.32, 384-390
    [6]. Nguyen, V.H., Lemaire, T., Naili. S.,2011. Influence of interstitial bone microcracks on strain-induced fluid flow. Biomechanics and Modeling in Mechanobiology,10(6):963-972.
    [7]. Lanyon, L.E., Hampson, W.G.J., Goodship, A.E., Shah, J.S.,1975. Bone deformation recorded in vivo from strain gauges attached to the human tibial shaft. Acta Orthopedica Scandinavica.46,256-268.
    [8]. Burr, D.B., Milgrom, C., Fyhrie, D., et al.1996. In vivo measurement of human tibial strains during vigorous activity. Bone.18 (5),405-410.
    [9]. Fritton, S.P., Kenneth, J.M., Rubin, C.T.,2000. Quantifying the Strain History of Bone:spatial Uniformity and Self-similarity of Low Magnitude Strains. Journal of Biomech.anics.33,317-325.
    [10].Cowin, S.C.2002. Mechanosensation and fluid transport in living bone. J Musculoskel Neuron Interact.2(3),256-260
    [11].Piekarski, K.,1973. Analysis of bone as a composite material. International Journal of Engineering Science.11,557-65.
    [12].Zeng,Y., Cowin, S.C., Weinbaum, S.1994. A fiber matrix model for fluid flow and streaming potentials in the canaliculi of an osteon. Ann. Biomed. Eng.22 (3):280-292.
    [13]. Junghwa Hong, Sang Ok Ko, Gon Khang, et al. Intraosseous pressure and strain generated potential of cylindrical bone samples in the drained uniaxial condition for various loading rates. J Mater Sci Mater Med,2008,19:2589-2594
    [14].Salzstein, R.A., Pollack, S.R.,1987a. Electromechanical potentials in cortical bone—Ⅰ A continuum approach. Journal of Biomechanics.20,261-270.
    [15].Scheidegger, A. E.,(1974) The physics of flow through porous media. University of Toronto Press, Toronto.
    [16].徐莲云,侯振德,钟声,王泓.加牧速率对骨的流动电位的影响.实验力学.2009,4(24):320-32.
    [17].Deligianni. D. D., Apostolopoulos. C. A.,2008, Multilevel finite element modeling for the prediction of local cellular deformation in bone. Biomechan Model Mechanobiol,7:151-159
    [18].Rouhana SW, Johnson MW, Chakkalakal DA, Haper RA. Permeability of the osteocyte lacuno-canalicular compact bone. Joint ASME-ASCE Conf. Biomech Symp AMD,1981, 43:169-172
    [19].Cowin, S.C.1999.Bone poroelasticity. J. Biomech.32,217-238.
    [20].Liu, M., Yang, J.,2009, Electrokinetic effect of the endothelial glycocalyx layer on two-phase blood flow in small blood vessels. Microvasc Res 78,14-19.
    [21].Das, S.,Chakraborty, S.,2006. Analytical solutions for velocity, temperature and concentration distribution in electroosmotic microchannel flows of a non-Newtonian biofluid. Anal. Chim. Acta.559, 15-24
    [22].Srivastava, V.P., Saxena, M.,1995. A two-fluid model of non-Newtonian blood flow induced by peristaltic waves. Rheol. Acta 34,406-414.
    [23].Hung, C.T., Allen, F.D., Pollack, S.R., Brighton, C.T., What is the role of the convective current density in the real-time calcium response of cultured bone cells to fluid flow? J Biomech,1996, 29(11):1403-1409
    [1]. Yasuda I. Fundamental aspects of fracture treatment. J. K Yoto Med Soc1953,44:396-406.
    [2]. Noris-Suarez, Karem, Lira-Olivares, et al. Electrochemical influence of collagen piezoelectric effect in bone healing. Proceedings of the 8th International Symposium on Eco-Materials Processing and Design,2007,981-984
    [3]. Anderson JC, Eriksson C. Electrical properties of wet collagen. Nature,1968,21:167-168.
    [4]. Gloria B Reinish, Arthur S Nowick. Piezoelectric properties of bone as functions of moisture content [J]. Nature,1975,253:626-627.
    [5].富东慧,侯振德,秦庆华,等.卢晨霞湿度对骨内压电信号的影响.实验力学,2009,24:473-478.
    [6]. Gross D, Williams WS. Streaming potentials and the electromechanical response of physiologically moist bone. Journal of Biomechanics,1982,15:277-295.
    [7]. Guzelsu N, Walsh WR. Streaming potential of intact wet bone. Journal of Biomechanics.1990, 23:673-685.
    [8]. Yixian Qin, Wei Lin, Clinton Rubin. The Pathway of Bone Fluid Flow as Defined by In Vivo Intramedullary Pressure and Streaming Potential Measurements. Biomechanical Engineering, 2002,30:693-702
    [9]. Hong Junghwa, Ko Sang Ok, Khang Gon, et al. Intraosseous pressure and strain generated potential of cylindrical bone samples in the drained uniaxial condition for various loading rates [J]. Journal of Materials Science:Materials in Medicine.2008,19(7):2589-2594.
    [10].徐莲云,侯振德,钟声,王泓.加载速率对骨的流动电位的影响.实验力学.2009,4(24):320-326
    [11].Silva CC, Pinheiro AG, Thomazini D, et al. Effect of pH on the piezoelectric properties of collagen films. Materials Science and Engineering,2001,83:165-172.
    [12]. Martin A, Martinez F, Malfeito J, et al. Zeta potential of membranes as a function of pH optimization of isoelectric point evaluation. Journal of Membrane Science,2003,213:225-230.
    [13].Kowalchuk RM, Pollack SR, Corcoran TA. Zeta potential of bone from particle electrophoresis: solution composition and kinetic effects. J Biomed Mater Res,1995,29:47-57.
    [14].赵隆茂,阎庆荣,杨桂通.高应变率下骨的力电效应的实验研究.中国生物医学工程学报,1993,12:28-34.
    [15].陈维毅,张全有,于杰,等.密质骨力电效应的实验研究.太原理工大学学报,2005,36:113-115
    [16].吴文周,王清雨.高应变率下骨的力电效应的理论研究.生物力学进展.1994.120-123.
    [17].侯振德,钱民全.骨动态压电响应的测试研究.中国生物医学工程学报,2002,21:501-505.
    [18].赵均海,孙家驹,毛晓岗,等.人密质骨的撞击实验研究.中国生物医学工程学报,2001,20:170-174.
    [19].Lwis JL, Goldamith W. A biaxial split Hopkinson bar for simultaneous torsion and compression. Rev Sci instrum,1973,44:811-813.
    [20].武晓刚.模拟生理受力状态下大段牛股骨力-电效应的实验研究.硕士学位论文.2009
    [21].戴克戎,等译.骨骼系统的生物力学基础.上海:学林出版社,1985:117-182
    [22].李艳霞,刘颖韩涛,等.肥胖青年平地自然行走时足底压力分析与步态特征.中国组织工程研究与临床康复,2008,12(15):2870-2874
    [23].Simon M. Hsiang, Chienchi Chang. The effect of gait speed and load carrying on the reliability of ground reaction forces. Safety Science,2002,639-657.
    [24].Douglas R P, Richard A B, Dwight T D. pelcic muscle and acetabular contact forces during gait. J Biomechanics 1997,959-965.
    [25].Noble PC, Alexander JW, Lindahl LJ, et al. The anatomic basis femoral component design. Clin Orthop Relat Res,1988,(235):148-165.
    [26].朱乐,赵红平,宋延龄,等.羚牛股骨密质骨力学性能的实验研究.清华大学学报,2006,46(2):301-304.
    [27].Cowin SC. Bone poroelasticity. Journal of Biomechanics,1999,32,217-238.
    [28].Hillsley MV, Frangos JA. Bone tissue engineering:the role of interstitial fluid flow. Biotechnol Bioeng 1994,43:573-81.
    [29].Turner CH, Forwood MR, Otter MW. Mechanotransduction in bone:do bone cells act as sensors of fluid flow? FASEB J 1994,8:875-8.
    [30].Weinbaum S, Guo P, You L. A new view of mechanotransduction and strain amplification in cells with microvilli and cell processes. Biorheology 2001,38:119-42.
    [31].You L, Cowin SC, Schaffler MB, Weinbaum S. A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix. J Biomech 2001,34:1375-86.
    [32].Piekarski K, MunroM. Transport mechanism operating between blood supply and osteocytes in long bones. Nature 1977,269:80-2.
    [33].Knothe Tate ML, Knothe U. An ex vivo model to study transport processes and fluid flow in loaded bone. J Biomech 2000,33:247-54.
    [34].Knothe Tate ML, Knothe U, Niederer P. Experimental elucidation of mechanical load-induced fluid flow and its potential role in bone metabolism and functional adaptation. Am J Med Sci 1998, 316:189-195.
    [35].Malachanne E, Dureisseix D, Canadas P, Jourdan F. Experimental and numerical identification of cortical bone permeability. J Biomech 2008; 41:721-725
    [1]. Junghwa Hong, Sang Ok Ko, Gon Khang, et al. Intraosseous pressure and strain generated potential of cylindrical bone samples in the drained uniaxial condition for various loading rates. J Mater Sci Mater Med,2008,19:2589-2594

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700