铝合金高周疲劳的能量耗散模型及寿命预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
疲劳性能是工程材料最重要的力学性能之一,也是进行工程结构件设计及可靠性评估的基本数据。为了获得材料的疲劳性能需要进行耗时、昂贵的疲劳试验,这不仅延长了工程结构的设计和制造周期,同时增加了成本。针对疲劳试验耗时、昂贵的特点,在分析高周疲劳过程能量耗散特点的基础上,提出了高周疲劳寿命的预测方法。
     针对焊接接头组织和力学性能不均匀的特点,利用缺口疲劳试验获得了A7N01-T4铝合金焊接接头疲劳寿命的构成特点。试验结果表明,母材、焊缝和热影响区的疲劳断裂寿命差别较大,而疲劳裂纹萌生寿命差别不大,各微区疲劳裂纹萌生寿命占疲劳断裂寿命的比例不同,焊缝区内疲劳裂纹萌生阶段占据了疲劳断裂的大部分时间,疲劳裂纹萌生寿命不可忽略。
     针对焊接接头微区疲劳裂纹萌生寿命占疲劳总寿命比例较高的特点,为了准确预测疲劳寿命,基于连续损伤力学,提出了一个考虑载荷频率影响的高周疲劳损伤模型。该模型考虑了应变速率对高周疲劳损伤的影响。疲劳试验结果表明,该模型适用于对疲劳载荷频率敏感和不敏感材料的疲劳寿命预测。
     为了捕捉载荷频率增加引起的试件温度的变化,采用精密集成温度传感器AD592CN自行研制了一套疲劳试件温度实时测量装置,该装置配有4个AD592CN温度传感器,可以同时实现两路绝对温度和一路相对温度测量。该温度测量系统消除了测量过程中外界环境温度变化对测量结果的影响,可以对疲劳过程中试件温度的微小变化进行准确、稳定的实时测量和记录。
     根据高周疲劳过程中材料温度演化曲线的特点,从宏观和微观两个尺度分析了循环加载过程中疲劳试件温度演化曲线各阶段的能量耗散特点。分析发现,疲劳过程中材料内部缺陷的运动引起了试件温度的升高。绝热条件下,温度演化曲线第一阶段的储能变化较小,机械能大部分用于试件温度的升高,从而表现出较大的温度上升速率。随着循环周次的增加,试件内位错密度随之增大,从而导致储能的增加,引起了温度演化曲线第二阶段温升速率的减小。当试件进入失稳扩展阶段,裂纹尖端的能量快速释放,引起了试件温度的再次快速上升。在对温度演化曲线分析的基础上,提出了基于能量耗散的高周疲劳寿命预测方法和模型,所提出的模型具有明确的物理意义。该模型中的唯一参数——高周疲劳断裂极限温升,是一个与材料有关的常数,表征了材料抵抗高周疲劳断裂的能力。该常数表示绝热状态下,完美晶体材料高周疲劳断裂时试件所能达到的最高温度。利用所提出的试验方法,只需数千周的加载,通过测量试件的初始温升速率即可预测材料的高周疲劳寿命。
     利用自行研制的实时温度测量装置测量了A7N01-T4铝合金母材及其焊接接头试件的温度演化曲线。试验结果表明:温度上升速率随着应力幅和载荷频率的增加而增大,换热条件对温度演化曲线第二阶段的温度上升速率有较大影响。利用所得到的温度演化曲线及疲劳试验结果验证了所提出的基于能量耗散理论的高周疲劳寿命预测模型,并发现对于A7N01-T4铝合金母材及其焊接接头试件,在两种载荷频率下得到的模型参数接近,与理论分析结果吻合良好。疲劳断口分析表明,载荷频率的变化对A7N01-T4铝合金母材及其焊接接头的疲劳断裂特征没有显著影响。
Fatigue performance, as one of the most important mechanical properties ofengineering materials, is foundmental data for design and reliability assessment forengineering component. Fatigue test is required to obtain fatigue data, however,the test procedure is time-consuming and costly, which will prolong the design andproduction cycle as well as increasing cost. In the thesis, experimental andtheoretical methods for fatigue life prediction were studied based on the analysisof energy dissipation of high cycle fatigue.
     Aiming at the inhomogeneity in microstructure and mechanical performancefor welded joint, fatigue crack initiation characteristics of A7N01aluminium alloywelded specimen were investigated by notch fatigue test. The experimental resultsshow that the differences of fatigue life to failure among base metal, weld metaland heat affected zone (HAZ) are significant, but the difference of fatigue crackinitiation life is slight. There are distinguished differences on the ratio of fatiguecrack initiation life to fatigue life to failure for the three microzones. The stage offatigue crack initiation expends most of the whole fatigue life. Therefore,thefatigue crack initiation life cannot be ignored.
     Due to the high percentage of fatigue crack initiation life for fatigue failure, amodified high cycle fatigue model based on continuum damage mechanics wasproposed, which takes into account the influence of loading frequency on fatigueproperties. In the proposed model,the effect of strain rate on high-cycle fatiguedamage was considered. Fatigue test results indicate that the model can be appliedto both frequency-sensitive and frequency-insensitive materials.
     In order to monitor the temperature rise due to increasing of loadingfrequency, a real-time temperature detecting system based on accurate integratedtemperature sensor AD592was developed. The system consists of four AD592CNtemperature sensors, which can measure two actual temperatures and one relativetemperature simultaneously. The influence of variations of environmentaltemperature can be removed by the developed system. Meanwhile, the system,which has advantages of high precision and stability, is suitable to detect the sightchange of temperature during fatigue test in real time.
     According to the feature of temperature evolution curve, the characteristics ofenergy dissipation during high cycle fatigue were analyzed in macroscopic andmicroscopic scale. It is found that the temperature rise of the specimen is attributedto the movement of defects in materials. Under adiabatic conditions, the variationof internal storage energy in the first phase of the temperature evolution is slight and most of the expended mechanical energy transforms into heat which causestemperature of the specimen to increase rapidly. Thereafter, the increasing incycles causes a greater mobile dislocation density and an increasing in storageenergy. Correspondingly, the increasing rate of temperature falls in the secondphase of the temperature evolution. In the phase of crack instability propagation,the local energy at the crack tip releases quickly which causes a further rapidincrease immediately prior to failure. On the basis of the analysis of temperatureevolution, prediction method and model based on energy dissipation for high cyclefatigue life were proposed. The model has an explicit physics meaning. In addition,the only one parameter in the model is a material dependent constant called"limiting temperature rise for high cycle fatigue failure", which characterizes thecapacity for resisting high cycle fatigue failure. The physics meaning of theparameter can be expressed as the maximum temperature rise of material whenfatigue failure occurs for perfect crystal in adiabatic condition. Consequently, highcycle fatigue life can be determined by measuring the initial slope of thetemperature in several thousands of cycles using the proposed experimentalmethod.
     Temperature evolution of A7N01-T4aluminium alloy and the weldedspecimens under high-cycle fatigue load were obtained by the developedtemperature detecting system. Experiment results show that the temperature riserate increases with increasing stress amplitude and cyclic frequency. Thetemperature rise rate in the second phase of the temperature evolution is influencedby the heat transfer conditions. The proposed fatigue life prediction model wasverified by the measured temperature evolution and fatigue test data. The resultsshow that the parameters at frequency10Hz and128Hz are almost equal, which isin accord with analyses in theory. Fractographic observations of fatigue specimensshow that the influence of cyclic frequency on fatigue failure mode is insignificantfor both A7N01-T4aluminium alloy and the welded specimens.
引文
[1]钟群鹏,赵子华.断口学[M].北京:高等教育出版社,2006:1,242.
    [2] Lema tre J. A Course on Damage Mechanics[M]. Berlin:Springer,1996:8-12.
    [3]王德尊.金属力学性能[M].哈尔滨:哈尔滨工业大学出版社,1993:178.
    [4] Stephens R I, Fatemi A, Stephens R R, et al. Metal Fatigue inEngineering[M]. New York:John Wiley&Sons,2000:46.
    [5] Basinski Z S, Pascual R, Basinski S J. Low Amplitude Fatigue of CopperSingle Crystals—I. The Role of the Surface in Fatigue Failure[J]. ActaMetallurgica,1983,31(4):591-602.
    [6] Hunsche A, Neumann P. Quantitative Measurement of Persistent SlipBand Profiles and Crack Initiation[J]. Acta Metallurgica,1986,34(2):207-217.
    [7] Ma B T, Laird C. Overview of Fatigue Behavior in Copper SingleCrystals—I. Surface Morphology and Stage I Crack Initiation Sites forTests at Constant Strain Amplitude[J]. Acta Metallurgica,1989,37(2):325-336.
    [8] Ma B T, Laird C. Overview of Fatigue Behavior in Copper SingleCrystals—Ii. Population, Size Distribution and Growth Kinetics of Stage ICracks for Tests at Constant Strain Amplitude[J]. Acta Metallurgica,1989,37(2):337-348.
    [9] Suresh S. Fatigue of Materials[M]. Cambridge:Cambridge UniversityPress,1998:107.
    [10] Chan K S, Tian J W, Yang B, et al. Evolution of Slip Morphology andFatigue Crack Initiation in Surface Grains of Ni200[J]. Metallurgical andMaterials Transactions A,2009,40(11):2545-2556.
    [11] Payne J, Welsh G, Christ Jr R J, et al. Observations of Fatigue CrackInitiation in7075-T651[J]. International Journal of Fatigue,2010,32(2):247-255.
    [12] Zheng Z Q, Cai B, Zhai T, et al. The Behavior of Fatigue Crack Initiationand Propagation in Aa2524-T34Alloy[J]. Materials Science andEngineering: A,2011,528(4–5):2017-2022.
    [13] Wang Q G, Apelian D, Lados D A. Fatigue Behavior of A356-T6Aluminum Cast Alloys. Part I. Effect of Casting Defects[J]. Journal ofLight Metals,2001,1(1):73-84.
    [14] Yuri T, Ogata T, Saito M, et al. Effect of Welding Structure on High-Cycleand Low-Cycle Fatigue Properties for Mig Welded A5083AluminumAlloys at Cryogenic Temperatures[J]. Cryogenics,2001,41(7):475-483.
    [15]崔约贤,王长利.金属断口分析[M].哈尔滨:哈尔滨工业大学出版社,1998:94.
    [16] Liaw P K, Wang H, Jiang L, et al. Thermographic Detection of FatigueDamage of Pressure Vessel Steels at1,000Hz and20Hz[J]. ScriptaMaterialia,2000,42(4):389-395.
    [17]洪友士,赵爱国,钱桂安.合金材料超高周疲劳行为的基本特征和影响因素[J].金属学报,2009(07):769-780.
    [18] Meininger J M, Gibeling J C. Low-Cycle Fatigue of Niobium[J].Metallurgical Transactions A,1992,23(11):3077-3084.
    [19] Sakamoto H, Takezono S. Fatigue Crack Propagation under Step Variationof Stress Frequency in Orthotropic Material[J]. Engineering FractureMechanics,1988,31(3):463-474.
    [20] Takeo Y, Kiyoshi S. The Effect of Frequency on Fatigue CrackPropagation Rate and Striation Spacing in2024-T3Aluminium Alloy andSm-50Steel[J]. Engineering Fracture Mechanics,1976,8(1):81-88.
    [21] Wang Q Y, Berard J Y, Dubarre A, et al. Gigacycle Fatigue of FerrousAlloys[J]. Fatigue&Fracture of Engineering Materials&Structures,1999,22(8):667-672.
    [22]倪金刚.超声疲劳试验技术的应用[J].航空动力学报,1995(03):42-45+107.
    [23]王弘.40cr、50车轴钢超高周疲劳性能研究及疲劳断裂机理探讨[D].成都:西南交通大学博士学位论文,2004:75-78.
    [24] O.H.Basquin. The Exponential Law of Endurance Tests[J]. Proceedings ofthe American Society for testing and Materials,1910,10:625-630.
    [25] Coffin L F. A Study of the Effects of Cyclic Thermal Stress on a DuctileMetal[J]. Transactions of the American Society of Mechanical Engineers,1954,76:931-950.
    [26] Manson S S. Behavior of Materials under Conditions of Thermal Stress. InNational Advisory Commission on Aeronautics: Report1170. Lewis FlightPropulsion Laboratory, Cleveland1954:9-57
    [27] Griffith A A. The Phenomena of Rupture and Flow in Solids[J].Philosophical Transactions of the Royal Society of London, Sereis A,1921,221:163-199.
    [28] Irwin. G R. Analysis of Stresses and Strains near the End of a CrackTransfering of a Plate[J]. Journal of Applied Mechanics,1957,24(4):361-364.
    [29] P.C.Paris M P G, W.P.Anderson. A Rational Analytic Theory of Fatigue[J].The Trend in Engineering,1961,13:9-14.
    [30] Paris P, Erdogan F. A Critical Analysis of Crack Propagation Laws[J].Journal of Basic Engineering,1963,85(4):528-533.
    [31] Elber W. The Significance of Fatigue Crack Closure[M]. Philadelphia:American Society for Testing and Materials,1971:230-242.
    [32] Evans P R V, Owen N B, McCartney L N. Mean Stress Effects on FatigueCrack Growth and Failure in a Rail Steel[J]. Engineering FractureMechanics,1974,6(1):183-193.
    [33] Bulloch J H. Fatigue Crack Growth Characteristics of a80Ni-20Cr Alloy:The Effects of Mean Stress and Microstructural Porosity[J]. InternationalJournal of Pressure Vessels and Piping,1995,61(1):13-24.
    [34] Forman R G. Study of Fatigue Crack Initiation from Flaws Using FractureMechanics Theory[J]. Engineering Fracture Mechanics,1972,4(2):333-345.
    [35] Druce S G, Beevers C J, Walker E F. Fatigue Crack Growth RetardationFollowing Load Reductions in a Plain C-Mn Steel[J]. EngineeringFracture Mechanics,1979,11(2):385-395.
    [36] Chaboche J L. Une Loi Differentielle D'endommagement De Fatigue AvecCumulation Non Lineaire[J]. Revue Francaise de Mechanique,1974,50:71-82.
    [37] June W. A Continuum Damage Mechanics Model for Low-Cycle FatigueFailure of Metals[J]. Engineering Fracture Mechanics,1992,41(3):437-441.
    [38] Lemaitre J, Sermage J P, Desmorat R. A Two Scale Damage ConceptApplied to Fatigue[J]. International Journal of Fracture,1999,97(1-4):67-81.
    [39] Xiao Y C, Li S, Gao Z. A Continuum Damage Mechanics Model for HighCycle Fatigue[J]. International Journal of Fatigue,1998,20(7):503-508.
    [40]李兆霞.损伤力学及其应用[M].北京:科学出版社,2002:26-28.
    [41]余天庆,钱济成.损伤理论及其应用[M].北京:国防工业出版社,1993:63-64.
    [42] Guang-Xu C, Jian-Zheng Z, Zhi-Wen L, et al. Continuum Damage Modelof Low-Cycle Fatigue and Fatigue Damage Analysis of Welded Joint[J].Engineering Fracture Mechanics,1996,55(1):155-161.
    [43]邬华芝.钛合金焊接接头疲劳损伤模型研究[D].南京:南京航空航天大学博士学位论文,2003:26-29.
    [44]邬华芝,郭海丁,高德平.焊接接头低周疲劳损伤分形演化模型[J].焊接学报,2003(01):88-90+80.
    [45] Botny R, Kaleta J. A Method for Determining the Heat Energy of theFatigue Process in Metals under Uniaxial Stress: Part1. Determination ofthe Amount of Heat Liberated from a Fatigue-Tested Specimen[J].International Journal of Fatigue,1986,8(1):29-33.
    [46] Allen D H. A Prediction of Heat Generation in a ThermoviscoplasticUniaxial Bar[J]. International Journal of Solids and Structures,1985,21(4):325-342.
    [47] Kallivayalil J, Zehnder A. Measurement of the Temperature Field Inducedby Dynamic Crack Growth in Beta-C Titanium[J]. International Journal ofFracture,1994,66(2):99-120.
    [48] Dillon Jr O W, Tauchert T R. The Experimental Technique for Observingthe Temperatures Due to the Coupled Thermoelastic Effect[J].International Journal of Solids and Structures,1966,2(3):385-391.
    [49] Holmes J W, Shuler S F. Temperature Rise During Fatigue ofFibre-Reinforced Ceramics[J]. Journal of Materials Science Letters,1990,9(11):1290-1291.
    [50] Jacobsen T K, S rensen B F, Br ndsted P. Measurement of Uniform andLocalized Heat Dissipation Induced by Cyclic Loading[J]. ExperimentalMechanics,1998,38(4):289-294.
    [51] Beghi M G, Bottani C E, Caglioti G, et al. Energy Balance Via ThermalEmission in Copper under Stress[J]. Materials Letters,1988,6(4):133-137.
    [52] Wong A K, Kirby III G C. A Hybrid Numerical/Experimental Techniquefor Determining the Heat Dissipated During Low Cycle Fatigue[J].Engineering Fracture Mechanics,1990,37(3):493-504.
    [53] Harvey II D P, J. Bonenberger R, Wolla J M. Effects of Sequential Cyclicand Monotonic Loadings on Damage Accumulation in Nickel270[J].International Journal of Fatigue,1998,20(4):291-300.
    [54] Harvey II D P, Bonenberger R J. Detection of Fatigue Macrocracks in1100Aluminum from Thermomechanical Data[J]. Engineering FractureMechanics,2000,65(5):609-620.
    [55] Wang X G, Crupi V, Guo X L, et al. Quantitative ThermographicMethodology for Fatigue Assessment and Stress Measurement[J].International Journal of Fatigue,2010,32(12):1970-1976.
    [56] Audenino A L, Crupi V, Zanetti E M. Correlation between Thermographyand Internal Damping in Metals[J]. International Journal of Fatigue,2003,25(4):343-351.
    [57] Maquin F, Pierron F. Heat Dissipation Measurements in Low Stress CyclicLoading of Metallic Materials: From Internal Friction toMicro-Plasticity[J]. Mechanics of Materials,2009,41(8):928-942.
    [58] Wells A A. The Mechanics of Notch Brittle Fracture[J]. WeldingResearch,1953,7(2):34r–56r.
    [59] D ll W. Application of an Energy Balance and an Energy Method toDynamic Crack Propagation[J]. International Journal of Fracture,1976,12(4):595-605.
    [60] Jordan E H. Notch-Root Plastic Response by Temperature Measurement[J].Experimental Mechanics,1985,25(1):24-31.
    [61] Pandey K N, Chand S. Deformation Based Temperature Rise: A Review[J].International Journal of Pressure Vessels and Piping,2003,80(10):673-687.
    [62] Gross T, Weertman J. Calorimetric Measurement of the Plastic Vtork ofFatigue Crack Propagation in4140Steel[J]. Metallurgical Transactions A,1982,13(12):2165-2172.
    [63] Kuo T Y, Lin H S, Lee H T. The Relationship between of FractureBehaviors and Thermomechanical Effects of Alloy Aa2024of T3and T81Temper Designations Using the Center Crack Tensile Test[J]. MaterialsScience and Engineering: A,2005,394(1–2):28-35.
    [64] Lee H T, Shaue G H. The Thermomechanical Behavior for AluminumAlloy under Uniaxial Tensile Loading[J]. Materials Science andEngineering: A,1999,268(1–2):154-164.
    [65] Xue H, Wagner D, Ranc N, et al. Thermographic Analysis in UltrasonicFatigue Tests[J]. Fatigue&Fracture of Engineering Materials&Structures,2006,29(7):573-580.
    [66] Jiang L, Brooks C R, Liaw P K, et al. High-Frequency Metal Fatigue: TheHigh-Cycle Fatigue Behavior of Ultimet Alloy[J]. Materials Science andEngineering: A,2001,314(1-2):162-175.
    [67] Naderi M, Khonsari M M. A Thermodynamic Approach to FatigueDamage Accumulation under Variable Loading[J]. Materials Science andEngineering: A,2010,527(23):6133-6139.
    [68] Li X D, Zhang H, Wu D L, et al. Adopting Lock-in Infrared ThermographyTechnique for Rapid Determination of Fatigue Limit of Aluminum AlloyRiveted Component and Affection to Determined Result Caused by InitialStress[J]. International Journal of Fatigue,2012,36(1):18-23.
    [69] Charkaluk E, Constantinescu A. Dissipative Aspects in High CycleFatigue[J]. Mechanics of Materials,2009,41(5):483-494.
    [70]陈胜红.疲劳损伤过程热耗散与微观形貌的同步测量[D].西安:西北工业大学硕士学位论文,2007:32-37.
    [71]曾伟.疲劳过程中能量耗散的实验分析及其应用研究[D].长沙:湖南大学硕士学位论文,2008:18-23.
    [72] Farren W, Taylor G. The Heat Developed During Plastic Extension ofMetals[J]. Proceedings of the Royal Society of London. Series A,1925,107(743):422-451.
    [73] Taylor G I, Quinney H. The Latent Energy Remaining in a Metal afterCold Working[J]. Proceedings of the Royal Society of London. Series A,1934,143(849):307-326.
    [74] Ranc N, Palin-Luc T, Paris P C. Thermal Effect of Plastic Dissipation atthe Crack Tip on the Stress Intensity Factor under Cyclic Loading[J].Engineering Fracture Mechanics,2011,78(6):961-972.
    [75] Charles J A, Appl F J, Francis J E. Using the Scanning Infrared Camera inExperimental Fatigue Studies[J]. Experimental Mechanics,1975,15(4):133-138.
    [76] Ummenhofer T, Medgenberg J. On the Use of Infrared Thermography forthe Analysis of Fatigue Damage Processes in Welded Joints[J].International Journal of Fatigue,2009,31(1):130-137.
    [77] Fan J, Guo X, Wu C. A New Application of the Infrared Thermography forFatigue Evaluation and Damage Assessment[J]. International Journal ofFatigue,2012,44(1):1-7.
    [78] Meneghetti G, Ricotta M. The Use of the Specific Heat Loss to Analysethe Low-and High-Cycle Fatigue Behaviour of Plain and NotchedSpecimens Made of a Stainless Steel[J]. Engineering Fracture Mechanics,2012,81:2-16.
    [79] Fargione G, Geraci A, La Rosa G, et al. Rapid Determination of theFatigue Curve by the Thermographic Method[J]. International Journal ofFatigue,2002,24(1):11-19.
    [80] Crupi V. An Unifying Approach to Assess the Structural Strength[J].International Journal of Fatigue,2008,30(7):1150-1159.
    [81] Amiri M, Khonsari M M. Rapid Determination of Fatigue Failure Basedon Temperature Evolution: Fully Reversed Bending Load[J]. InternationalJournal of Fatigue,2010,32(2):382-389.
    [82] Amiri M, Khonsari M M. Life Prediction of Metals Undergoing FatigueLoad Based on Temperature Evolution[J]. Materials Science andEngineering: A,2010,527(6):1555-1559.
    [83] La Rosa G, Risitano A. Thermographic Methodology for RapidDetermination of the Fatigue Limit of Materials and MechanicalComponents[J]. International Journal of Fatigue,2000,22(1):65-73.
    [84] Pilkey W D, Peterson R E. Peterson's Stress Concentration Factors[M].New York:Wiley,1997:89.
    [85] Chaboche J L. Continuum Damage Mechanics: Part I-General Concepts[J].Journal of Applied Mechanics,1988,55(1):59-64.
    [86] Wang G S. The Plasticity Aspect of Fatigue Crack Growth[J]. EngineeringFracture Mechanics,1993,46(6):909-930.
    [87] Wang G S, Blom A F. A Strip Model for Fatigue Crack Growth Predictionsunder General Load Conditions[J]. Engineering Fracture Mechanics,1991,40(3):507-533.
    [88] Ould Chikh B, Imad A, Benguediab M. Influence of the Cyclic PlasticZone Size on the Propagation of the Fatigue Crack in Case of12nc6Steel[J]. Computational Materials Science,2008,43(4):1010-1017.
    [89] Nicholls D J, Martin J W. An Examination of the Reasons for theDiscrepancy between Long and Small Fatigue Cracks in Al Li Alloys[J].Materials Science and Engineering: A,1990,128(2):141-145.
    [90] Bathias C, Pelloux R. Fatigue Crack Propagation in Martensitic andAustenitic Steels[J]. Metallurgical and Materials Transactions B,1973,4(5):1265-1273.
    [91] Saxena A, Antolovich S. Low Cycle Fatigue, Fatigue Crack Propagationand Substructures in a Series of Polycrystalline Cu-Al Alloys[J].Metallurgical and Materials Transactions A,1975,6(9):1809-1828.
    [92]许慧姿. Al Zn Mg合金焊接性能的研究[J].宇航材料工艺,1982(2):11-21.
    [93]陈凌,蒋家羚.一种新的低周疲劳损伤模型及实验验证[J].金属学报,2005(02):157-160.
    [94]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997:1-7.
    [95] Lemaitre J. A Course on Damage Mechanics [M]. Berlin:Springer-Verlag,1996:39-94.
    [96] Lemaitre J. How to Use Damage Mechanics[J]. Nuclear Engineering andDesign,1984,80(2):233-245.
    [97] Mayer H, Papakyriacou M, Pippan R, et al. Influence of LoadingFrequency on the High Cycle Fatigue Properties of Alznmgcu1.5Aluminium Alloy[J]. Materials Science and Engineering: A,2001,314(1-2):48-54.
    [98] Morrissey R J, Nicholas T. Fatigue Strength of Ti–6al–4v at Very LongLives[J]. International Journal of Fatigue,2005,27(10-12):1608-1612.
    [99] Kofto D G. Effect of Loading Frequency and Cycle Asymmetry on theFatigue Resistance of Alloy Amg,6n[J]. Strength of Materials,1990,22(2):283-289.
    [100] Papakyriacou M, Mayer H, Pypen C, et al. Influence of LoadingFrequency on High Cycle Fatigue Properties of B.C.C. And H.C.P.Metals[J]. Materials Science and Engineering: A,2001,308(1-2):143-152.
    [101] Kuz'menko V A, Ishchenko I I, Troyan I A, et al. Effect of LoadingFrequency, Temperature, and Cycle Asymmetry on the Endurance ofHeat-Resistant Steels1kh2m and Kh18n9. Part1[J]. Strength ofMaterials,1980,12(4):439-444.
    [102] G M. Analysis of the Fatigue Strength of a Stainless Steel Based on theEnergy Dissipation[J]. International Journal of Fatigue,2007,29(1):81-94.
    [103] Lee H T, Chen J C, Wang J M. Thermomechanical Behaviour of Metals inCyclic Loading[J]. Journal of Materials Science,1993,28(20):5500-5507.
    [104] Feltner C E, Morrow J D. Microplastic Strain Hysteresis Energy as aCriterion for Fatigue Fracture[J]. Journal of Basic Engineering,1961,83(1):15-22.
    [105] Jiang L, Wang H, Liaw P, et al. Characterization of the TemperatureEvolution During High-Cycle Fatigue of the Ultimet Superalloy:Experiment and Theoretical Modeling[J]. Metallurgical and MaterialsTransactions A,2001,32(9):2279-2296.
    [106] Humphreys F J. Recrystallization and Related Annealing Phenomena[M].Oxford:Elsevier,2004
    [107]李玉春,姚卫星.高周疲劳裂纹萌生的非线性微观力学模型[J].南京航空航天大学学报,1998,30(3):26-31.
    [108] Tchankov D S, Vesselinov K V. Fatigue Life Prediction under RandomLoading Using Total Hysteresis Energy[J]. International Journal ofPressure Vessels and Piping,1998,75(13):955-960.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700