虚拟样机技术在大轴重铁路罐车设计中应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁路机车车辆虚拟样机系统是虚拟样机技术在铁路机车车辆设计与制造行业的具体应用,它是一个全面支持高速动车组、重载货车、提速机车三大新型产品开发与设计的集成仿真系统。论文指出虚拟样机最核心的技术是性能仿真(CAE)。围绕虚拟样机性能仿真管理与支撑技术,论文开展了一系列研究。
     本文基于Hypermesh/Optistruct软件以及Ansys软件,以铁路罐车车体为研究对象,建立了1/2车体的有限单元模型,计算了车体的强度、刚度和屈曲;以此为基础,以各部分板的厚度为设计变量,以强度和刚度为约束,以车体重量最小为目标,建立了车体的优化数学模型,用可行方向法实现了多工况强度和刚度约束下车体重量最小化设计研究。对优化后的车体焊缝疲劳寿命和车体结构线性稳定性进行了评估,焊缝疲劳寿命评估采用ASME-2007标准主S-N曲线法,基于对网格不敏感的等效结构应力法,稳定性主要考虑了压缩载荷作用下的结构线性屈曲稳定性,研究内容和得到的结论如下:
     1、建立铁路罐车车体几何及有限元模型,进行静强度计算并对结果进行分析;
     2、对铁路罐车车体进行结构线性稳定性分析和主要焊缝疲劳寿命预测,从而确定是否具有充分的优化设计空间;
     3、建立尺寸优化模型,并进行结构优化设计
     4、对结构优化设计后的铁路罐车车体进行结构线性稳定性校核,并根据结构稳定性计算情况对优化结果进行修正,使其满足静力及结构稳定性要求;
     5、校核修正后的铁路罐车车体的主要焊缝的疲劳寿命。
     本文基于Hypermesh/Optistruct软件对铁路罐车进行结构优化设计最终使车体减重13.83%,并满足了强度、刚度及结构线性稳定性和焊缝疲劳强度的要求,达到了轻量化的目标,为铁路罐车车体的轻量化设计提供一个新的方法,基于本文的研究可以对铁路罐车进行包括更多工况、尺寸、形状一体化的涉及以及多学科的优化设计,以提高铁路罐车的设计水平。
Railway Vehicle Virtual Prototypingis VP technology's specific application in the design and manufacture of railway vehicle, as well as a integrated simulation system comprehensively supporting the development and design of high speed DMUs, over loading wagons and high speed locomotives. In this paper the author indicates the core technique of VP is performance simulation (CAE). Concerning its simulation management and supporting technique, this discourse carries out a series of study.
     In this paper, the finite element model of Railway Tank body is created, and the strength and stiffness of Railway Tank body under the multi-load is computed basing on Hypermesh/Optistruct and ansys Software; the thicknesss of plates for Railway Tank body are taken as design variables, the strength and stiffness of Railway Tank body are used as restrictions, the Railway Tank body weight is taken as the objective for minimum, a optimization design model is formulated, the feasible direction method is used to optimized the design variables, then the optimization designs considering multi-load strength and stiffness restrictions are achieved for reducing the Railway Tank body weight and improving the stress distribution.
     After optimization, the weld fatigue life and buckling stability of Railway Tank body are evaluated. The weld fatigue life is evaluated using structural stress method which is based on the mesh-insensitive, the stability analysis mainly considered buckling stability under compression load. The main research contents and conclusion are follows:
     1. The geometric model and finite element model of Railway Tank body are established, the static strength and stiffness are calculated;
     2. In order to determine whether there is enough design space for optimization, the buckling stability of the Railway Tank body was analysed and the main weld fatigue life was forecasted for Railway Tank body;
     3. The size optimization model and topology optimization model are formulated, then size and topology optimization designs are carried out for reducing the Railway Tank body weight;
     4. The buckling stability of the optimized Railway Tank body are evaluated, the optimized results are corrected basing on stability conditions, then static strength,stiffness and buckling stability are all met;
     5. The main weld fatigue life of the corrected Railway Tank body according to the buckling stability are evaluated.
     In this paper, the structure optimization design of Railway Tank body has been completed successfully basing on Hypermesh/Optistruct software and a mass reduction of a 18.37% for Railway Tank body is achieved, at the same time, static strength and stiffness, buckling stability and weld fatigue strength meet the requirements, the lightweight of Railway Tank body is achieved and a new method for lightweight design of railway Tank body is brought forward. Basing on this study, the integrated size, topology and shape and the multi-disciplinary optimization design including more load can be carried out to improve the design level of railway Tank body.
引文
[1]阎开印.基于多系统的机车车辆设计自动化.西南交通大学学报,2007
    [2]梅竹.磁浮列车的动力学分析.国防科学技术大学,2005
    [3]刘春明.基于虚拟样机技术的铁路起重机主动控制仿真.大连交通大学,2005
    [4]刘坚,张晓峰.基于虚拟样机技术的电液控制配气机构特性研究.中国人民解放军某部队.2007
    [5]舒歌群,李小倩,马维忍等.基于虚拟样机技术轴系扭振特性仿真和试验研究.大连理工大学.2007
    [6]段秀兵,郝志勇,岳东鹏等.基于虚拟样机技术的车用柴油机曲轴系统动态特性研究.西南交通大学.2003
    [7]潘亦苏,黎杰,罗征志等.基于虚拟样机技术的柴油机建模与动力学仿真.西南交通大学.2006
    [8]戎瑞亚.船舶柴油机曲轴系的动力学仿真.浙江海洋学院船舶与建筑工程学院.2004
    [9]谭加才,胡亚群,杨成福.基于虚拟样机的曲轴系统力学特性研究.湖南工程学院机械工程学院.2003
    [10]楼华山,楼江燕,杨靖.虚拟样机技术在柴油机中的应用.东北大学.2009
    [11]钟相强,蒋立军,梁利东.基于虚拟样机技术的S195柴油机建模与仿真研究.沈阳工业大学.2006
    [12]姚寿广,包国治,许江涛.基于虚拟样机的柴油机配气机构运动学动力学仿真分析.江苏科技大学船舶与海洋工程学院.2009
    [13]徐建锋,宁晓斌,谢伟东等.4WS整车虚拟样机建模与动力学仿真.浙江工业大学机械制造及其自动化教育部重点实验室.2003
    [14]陈广彦,薛继超.基于ADAMS软件的汽车四轮转向动力学研究.天津工程师范学院汽车工程系.2006
    [15]许小侠,赵静斌,韩英淳.基于虚拟样机的轿车天窗运动机构的设计.上海交通大学.2003
    [16]姬鹏.基于虚拟样机的汽车操纵稳定性评价分析.河北工程大学.2006
    [17]邬勇民,阮米庆.基于虚拟样机技术的扭杆悬架汽车平顺性仿真.南京航空航天大学能源与动力学院.2007
    [18]赵波,赵晓昱,范平清.基于虚拟样机技术的汽车发动机盖锁设计.上海工程技术大学汽车工程学院.2007
    [19]刘文婷,王波.基于虚拟样机技术的蛇行试验仿真分析.湖南大学.2007
    [20]黄兰晴,柴红阳.汽车空调压缩机虚拟样机的设计研究.重庆大学动力工程学院.2006
    [21]王婕芬,常晓华,李楠.虚拟样机技术在汽车起重机起重臂振动分析中的应用.湘潭大学.2005
    [22]郝云堂,金烨,季辉.虚拟样机技术及其在ADAMS中的实践.上海交通大学CIM研究所.2007
    [23]Mrzyglod Miroslaw, Osyczka Andrzej. Optimization of railway vehicle structures using evolutionary algorithms and parallel computing techniques. Collection of Technical Papers-11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference.2006,2:1036-1041
    [24]吕永涛.离散变量结构尺寸优化方法研究.华中科技大学硕士学位论文.2006(6):38-40
    [25]佟维,刘晓雪.高速动车组铝合金车体结构优化策略.计算力学学报.2009,26(3):424-427
    [26]卢耀辉,曾京,邬平波. 钢结构焊缝疲劳强度分析技术的最新进展.机械强度.2005,21
    [27]高永芳.集装箱平车车体机构优化设计研究.北京交通大学硕士学位论文.2007
    [28]王晓伟.低边耐候钢敞车车体轻量化研究.大连交通大学硕士学位论文.2007
    [29]Yung J.Y and Lawrence F.V. Analytical and graphical aids for the fatigue design weldments. Fatigue Fracture and Engineering Material and Structure,1985,8(3):223-241
    [30]Niu X, Glinka G. The weld Profile effect on stress intensity factor in weldments. International Journal of Fracture,1987,35:3-20
    [31]Pong H.L.J. Analysis of weld toe Profiles and weld toe cracks. International of Fatigue,1993, 15(1):31-36
    [32]刘德刚,候卫星,王凤州等.基于有限元技术的构件疲劳寿命计算.北京:铁道学报.2004,4:48-52
    [33]刘敬辉,王成国.转8A型货车转向架摇枕的基于有限元的疲劳数值分析.铁道机车车辆.2003,23(S2):80-83
    [34]李晓峰,谢素明,时慧焯等.车辆焊接结构疲劳寿命评估方法研究.中国铁道科学.2007,28(3):74-77
    [35]张锁怀,李永春,孙军帅.地铁车辆转向架构架有限元强度计算与分析.机械设计与制造.2009(1):45-47
    [36]张永昌.MSC. Nastran有限元分析理论基础与应用,科学出版社,2004
    [37]程育仁,缪龙秀等.疲劳强度.北京:中国铁道出版社,1990.
    [38]周昌玉.有限元分析的基本方法及工程应用.化学工业出版社,2006:23-30
    [39]元艳玲. CRH5动车组车体的结构分析与轻量化研究.北京交通大学硕士学位论文.2009
    [40]杨化仁,郭晓光.焊接结构疲劳强度理论.沈阳:东北大学出版社,2002.
    [41]吕澎民,严隽髦.焊接转向架结构可靠性疲劳寿命预估方法研究.兰州铁道学院学报,1995,9:80-86.
    [42]吕澎民,赵邦华.货车铸钢侧架随机载荷谱下的疲劳寿命预估研究.铁道学报,1994,3:101-107.
    [43]王成国,孟光伟,原亮明等.新型高速客车技术构架的疲劳寿命数值仿真分析.中国铁道科学,2001(3):94-98.
    [44]刘德刚,候卫星,王凤州等.基于有限元技术的构件疲劳寿命计算.铁道学报,2004,4:48-52.
    [45]吕永涛.离散变量结构尺寸优化方法研究.华中科技大学硕士学位论文.2006
    [46]阳光武.机车车辆零部件的疲劳寿命预测仿真.西南交通大学,博士论文,2005,7:1-134.
    [47]中华人民共和铁道部.TB1335-1996铁道车辆强度设计及试验鉴定规范.北京:中国铁道出版社,1996.
    [48]宁涛,余强.ANSYS有限元分析基础教程.北京:清华大学出版社,2006.
    [49]British Standards. PD5500-2006 Specification for unfired fusion welded pressure vessels. London: British Standards Institution,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700