我国部分地区HIV-1毒株的分离培养与基因序列特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分离我国流行的HIV毒株并进行相关基因序列特征的分析是建立我国HIV毒种库,认识我国HIV的生物学特征、分析其流行和变异重组规律的重要基础;全基因组的序列测定有助于阐明毒株的进化特征,可以为有关病毒流行特征等方面的研究提供一个完整、清楚的遗传学和分子生物学背景。本研究首先对我国部分地区流行的HIV-1毒株进行分离培养,对其中的部分毒株进行了gag, pol, env基因特征进行分析,对2株病毒进行了全基因组序列测定和研究。
     目的分离我国部分地区流行的HIV-1毒株,了解分离毒株的生物学及基因序列特征。
     方法用外周血单核细胞(PBMCs)体外共培养的方法从我国HIV-1感染者中分离原代HIV-1毒株,分析毒株的体外生长动力学特征和融合诱导性。提取病毒基因组RNA,反转录PCR扩增病毒的gag,pol,env区基因并进行序列测定,使用软件Clustal,BioEdit version,MEGA3.1对基因序列特征进行分析。提取NX2、SH52两个HIV-1毒株的前病毒基因组DNA,套式PCR方法扩增全长基因组并分段测序,使用SimPlot软件进行基因序列重组分析。
     结果将本室冻存的67株初步分离呈阳性反应的毒株复苏传代,得到37株稳定传代的病毒;从5个省市的270名HIV-1感染者外周血中分离出58株HIV-1原代毒株。分离株的体外生长动力学呈现快/高、慢/高、慢/低三种类型。病毒载量越高分离的阳性率(HC=78.959,χ~2_((1)0.01)=6.63.P<0.01)越高、同时病毒分离株呈快高型生长的比例增大。
     52株分离株的序列呈现B(欧美B、泰国B’)、CRF01_AE重组、CRF_BC重组和G 4种亚型;以B亚型分布最广,CRF01_AE重组株主要分布在广西,上海发现G亚型病毒。V3环顶端四肽GPGR广泛的分布于B亚型和CRF_AE亚型中。CRF01_AE亚型毒株的V3环平均净电荷数略高于B亚型;基因离散率分析显示,env基因离散率远高于gag和pol基因;CRF01_AE亚型病毒pol和env区基因离散率均在三种亚型中最高。表型预测显示多数为利用CCR5辅助受体、M嗜性的毒株。
     扩增得到NX2 08BC重组亚型和SH52 G亚型全长基因组序列。NX2 CRF08_BC重组亚型在3个位置发生重组,分别位于gag,pol和nef区,重组位点位于1000nt,2600nt和9200nt。
     结论传代分离出我国部分地区的HIV-1流行毒株95株;毒株呈现多种体外复制动力学特征,并与血浆HIV-1病毒载量水平相关;毒株呈现多种亚型(B、CRF01_AE重组、CRF_BC和G),在不同传播途径和地区具有不同的分布;env基因离散率远高于gag和pol基因, HIV-1毒株多数是不致细胞病变的M嗜性、NSI表型;V3环序列变化较大。得到2株HIV-1毒株的全长基因组序列,亚型分别为CRF08_BC和G亚型。
Isolations and sequences analyses of HIV-1 strains circulating in China afford a solid basis to build the HIV strains stocks, acquire their biological features and analyze the rules of pandemic, diversities and recombinations.Full-length genomes sequencing play a important role in clarifying evolving characteristics of different clades, and supply a complete, clear genetics and molecular background to the virus epidemiology characters.In the research descried this article, we isoalted and cultured several HIV-1 strains from partional regions in China and analyze their important structural genes sequences such as gag, pol, env, in particular, full-length genome sequences analyses were also performed on the rare circulating isolates .
     Objective To isolate HIV-1 strains circulating in some regions of China, then learn their biological and sequence feature.
     Methods Primary HIV-1 strains were isolated from HIV-1 infected persons using PBMCs coculture method, then their growth dynamics feature and capacity of inducing syncytium were identified. Meanwhile, RNA was prepared and gag、pol、env gene was amplified by RT-PCR. Then the sequence was determined and sequence was analyzed by Clustal,BioEdit version,MEGA3.1 .The DNA of NX2 and SH52 were prepared and the full-length sequence was amplified by nested-PCR, sequence was analyzed by SimPlot.
     Results In 67 HIV-1 strains, 37 virus were subculturied steadily. 58 primary strains were isolated from 270 HIV-1 infected persons. It showed us three types growth dynamics that were rapid/high、slow/high、slow/low. It suggested that strains in samples of higher viral loads get a higher isolating rat(eH_C=78.959,χ~2_((1)0.01)=6.63.P<0.01),and the proportion of rapid/high strains in samples of higher viral loads were bigger than that in samples of lower viral loads. The sequence of 52 strains turned out to be 4 subtypes of B、CRF01_AE、CRF_BC and G. The strains of subtype B existed in the widest area. The subtype CRF01_AE strains mostly existed in Guangxi.Subtype G was found in shanghai.V3 loop central motif-GPGR mostly existed in the subtype B and subtype CRF01_AE The number of net charge in V3 loop in the subtype CRF01_AE is the higher in the subtype B.Genic diversity in env is bigger than gag and pol. Genic diversity in pol and env in subtype CRF01_AE is the biggest in three subtypes.Majority of the isolated strains were predicted to be M-tropism and CCR5 using strains.The full-length sequence of NX2 (subtype CRF_BC) and SH52(subtype G)was amplified by PCR.NX2 CRF08_BC showed three breakpoints located at positions at 1000 in gag、2600 in pol and 9200 in nef.
     Conclusion 95 HIV-1 strains circulating in some regions of China were subculturied and isolated; The replication dynamics of the isolated strains varied and related to HIV-1 viral loads in plasma; There existed many kinds of subtype as B、CRF01_AE、CRF07_BC and G, and the distribution of the subtype varied according to different regions and different transmission path; Genic diversity in env is bigger than gag and pol. Majority of the isolated strains were predicted to be M-tropism and NSI strains; The sequence variation of V3 regions were apparent.Two full-length sequence of subtype 08BC and G were amplified.
引文
1. http://www.unaids.org/en/HIV-data/2007 Global Report/default.asp
    2. 国家卫生部, 《二零零七年中国艾滋病防治联合评估报告》
    3. McCutchan FE:Global epidemiology of HIV. J. Med Virol 2006;78(Suppl):S7-S12
    4. Robertson DL, Anderson JP, Bradac JA, Carr JK, Foley B, Funkhouser RK. Et al: HIV-1 nomenclature proposal. Science 2000;288:55-56
    5. Zeng Y, Wu Z. Control of AIDS epidemic in China .Bull Chin Acad Sci, 2000, 14(2): 106-110.
    6. 邵一鸣, 赵全壁, 王斌,等。我国云南德宏地区 HIV 感染者 HIV 毒株膜蛋白的序列测定和分析. 病毒学报, 1994, 10(4): 291-299.
    7. Walker, BD, S.Chakrabarti, B. Moss, et al.. HIV specific cytotoxic T lymphocytes in seropositive individuals. Nature 1987 328:345–348.
    8. Koup, R. A., J. T. Safrit, Y. Cao, et al. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J. Virol. 1994. 68: 4650–4655.
    9. Moore, C. B., M. John, I. R. James, F. T. Christiansen, C. S. Witt, and S. A. Mallal. Evidence of HIV-1 adaptation to HLA-restricted immune responses at a population level. Science 2002. 296: 1439–1443.
    10. Letvin, N. L. Progress toward an HIV vaccine. Annu. Rev. Med. 2005. 56: 213–223.
    11. Fatkenheuer G, Theisen A, Rockstroh J, et al. Virological treatment failure of protease inhibitor therapy in an unselected cohort of HIV-infected patients. AIDS.1997 Nov 15;11(14):F113-6.
    12. Boden D, Hurley A, Zhang L, et al. HIV-1 drug resistance in newly infected individuals. JAMA. 1999 Sep 22-29;282(12):1135-41.
    13. Ralph Pantophlet. Dennis R.Burton. GP120:Target for Neutralizing HIV-1 Antibodies. Annu. Rev. Immunol. 2006.24:739-69.
    14. Cilliers T, Morris L. Coreceptor usage and biological phenotypes of HIV-1 isolates. Clin Chem Lab Med. 2002 Sep; 40(9): 911-917.
    15. Polzer S, Dittmar MT, Schmitz H, et al. The N-linked glycan g15 within the V3 loop of the HIV-1 external glycoprotein gp120 affects coreceptor usage, cellular tropism, and neutralization. Virology. 2002 Dec 5; 304(1): 70-80.
    16. Fantuzzi L, Belardelli F, Gessani S. Monocyte/macrophage-derived CCchemokines and their modulation by HIV-1 and cytokined: a complex network of interactions influencing viral replication and AIDS pathogenesis. J Leukoc Biol. 2003 Nov; 74(5): 719-25. Epub 2003 Aug 21.
    17. Kato K, Sato H, Takebe Y. Role of naturally occurring basic amino acis substitutions in the human immunodeficiency virus type 1 subtype E envelope V3 loop on viral coreceptor usage and cell tropism. J Virol. 1999 Jul; 73(7): 5520-6.
    18. Nolan KM, Jordan AP, Hoxie JA. Effects of partial deletions within the human immunodeficiency virus type 1 V3 loop on coreceptor tropism and sensitivity to entry inhibitors.J Virol. 2008 Jan;82(2):664-73.
    19. Monde K, Maeda Y, Tanaka Y, Harada S, Yusa K. Gp120 V3-dependent impairment of R5 HIV-1 infectivity due to virion-incorporated CCR5. J Biol Chem.2007 Dec21;282 (51):36923-32.
    20. Peeters M, Liegeois F, Torimiro N, et al. Characterization of a highly replicative intergroup M/O human immunodeficiency virus type 1 recombinant isolated from a Cameroonian patient. J Virol. 1999 Sep; 73(9): 7368-75.
    21. Morner A, Bjorndal A, Albert J, et al. Primary human immunodeficiency virus type 2(HIV-2) isolates, like HIV-1 isolates, frequently use CCR5 but show promiscuity in coreceptor usage. J Virol. 1999 Mar; 73(3): 2343-9.
    22. Hollinger, F. Blaine. ACTG Virology Mannual for HIV Laboratories. Version 2.0, 1993.
    23. J.Brooks Jackson, Robert W.Coombs,Kim Sannerud, et al. Rapid and Sensitive Viral Culture Method for Human Immunodeficiency Virus Type 1. J. Clin. Microbiol. 1988,26:1416-1418.
    24. 李敬云 《艾滋病检测方法与应用》2006.3 .135-136.
    25. Licastro F, Morini MC, Bolognesi A, et al. Ricin induces the production of tumour necrosis factor-alpha and interleukin-1 beta by human peripheral-blood mononuchear cells. Biochem J. 1993, 294(Pt2): 517-520.
    26. Wu, L., W.A.Paxton, N.Kassam, et al. CCR5 levels and expression pattern correlate with infectability by macrophage-tropic HIV-1, in vitro. J. Exp. Med. 1997, 185(9): 1681-1691.
    27. Moore,J.P. Coreceptors: implications for HIV pathogenesis and therapy. Science, 1997, 276(5309): 51-52.
    28. Kitchen, S.G., and J.A.Zack. CXCR4 expression during lymphopoiesis:implications for human immunodeficiency virus type 1 infection of the thymus. J. Vriol. 1997, 71(9): 6928-6934.
    29. Kabat, D, S.L.Kozak, K.Wehrly, et al. Differences in CD4 dependence for infectivity of laboratory-adapted and primary patient isolates of human immunodeficiency virus type 1. J. Virol. 1994, 68(4): 2570-2577.
    30. Lacey,S.F., K.J.Weinhold, C.H.Chen, et al. Herpesvirus saimiri transformation of HIV type 1 suppressive CD8+ lymphocytes from an HIV type 1-infected asymptomatic individual. AIDS Res. Hum. Retrovir. 1998, 14(6): 521-531.
    31. Leith ,J.G., K.F.Copeland, P.J. McKay, et al. T cell-derived suppressive activity : evidence of autocrine noncytolytic control of HIV type 1 transcription and replication. AIDS Res. Hum. Retrovir. 1999, 15(17): 1553-1561.
    32. Anders Karlsson, Katarina Parsmyr, Eric Sandstrom, et al. MT-2 cell tropism as prognostic marker for disease progression in human immunodeficiency virus type 1 infection. J Clin Mic, 1994, 32(2): 364-370.
    33. Asjo, B., L. Morfeldt-Mansson, J.Albert, et al. Replicative capacity of human immunodeficiency virus from patients with varying severity of HIV infection. Lancet, 1986, 2(8508): 660-662.
    34. Briggs DR, Tuttle DL, Sleasman JW, et al. Envelope V3 amino acid sequence predicts HIV-1 phenotype (co-receptor usage and tropism for macrophages). AIDS 2000, 14(18): 2937-2939.
    35. Leitner T, Escanilla D, Franzen C, et al. Accurate reconstruction of a known HIV-1 transmission history by phylogenetic tree analysis. Proc Natl Acad Sci USA, 1996, 93(20): 10864-10869.
    36. Kuiken CL, Goudsmit J. Silent mutation pattern in V3 sequences distinguishes virus according to risk group in Europe. AIDS Res Hum Retroviruses, 1994, 10(3): 319-320.
    37. Kato K, Shiino T, Kusagawa S, et al. Genetic similarity of HIV-1 subtype E in a recent outbreak among injecting drug users in northern Vietnam to strains in Guangxi province of southern China. AIDS Res Hum Retroviruses, 1999, 15(13): 1157-1168.
    38. 陆彬, 邢辉, 赵全壁, 等. 我国 HIV-1 B’/重组流行株 Tat 蛋白的表达、纯化及功能分析. 病毒学报, 2002, 18(4): 297-301.
    39. Liang H, WeiM, Chen Z, et al. Sequence variation in the env V3-V4 region ofHIV type 1 predominant subtype B and C strains circulating in China. Chin J Exp Clin Virol, 2003, 17(2): 153-158.
    40. Liang H, Xing H, Jonathan Z.Li, et al. Identification of signature amino acids in the env V3-V4 and flanking regions of human immunodeficiency virus type 1 predominant strains in China.Natl Med J China, 2005, April 85(13): 897-902.
    41. Connor.R., K.Sheridan, D.Ceradini, Change in corceptor use correlates with disease progression in HIV-1-infected individuals. J. Exp. Med. 1997, 185(4): 621-628.
    42. Shiino,T. ,Kato,K., Kodaka,N., A Group of V3 Sequences from Human Immunodeficiency Virus Type 1 Subtype E Non-Syncytium-Inducing, CCR5- Using Variants Are Resistant to Positive Selection Pressure. J. Virol. 2000 Feb; 74(3): 1069-1078.
    43. Jiang S, et al. HIV-1 coreceptor binding. Nature Med, 1997, 3(4): 367-368.
    44. Helseth E, Kowalske M, Gabuzda D, et al. Rapid complementation assays measuring replicative potential human immunodeficiency virus type 1 envelope glycoprotein mutants. J Virol, 1990, 64(5): 2416.
    45. Wang WK, Dudek T, Zhao YJ, et al. CCR5 coreceptor utilization involves a highly conserved arginine residue of HIV type 1 gp120. Proc Natl Acad Sci USA, 1998, 95(10): 5740.
    46. Bieniasz P D, Fridell RA, Aramori I, et al. HIV-1-induced cell fusion is mediated by multiple regions within both the viral envelope and the CCR5 co-receptor. EMBO J, 1997, 16(10): 2599-2609.
    47. Wang W K, Dudek T, Essex M, et al. Hypervariable region 3 residues of HIV type 1 gp120 involved in CCR5 coreceptor utilization: therapeutic and prophylactic implications. Proc Natl Acad Sci USA, 1999, 96(8): 4558.
    48. Bandres J C, Wang QF, O’Leary J, et al. Human immunodeficiency virus (HIV) envelope binds to CXCR4 independently of CD4, and binding can be enhanced by interaction with soluble CD4 or by HIV envelope deglycosylation. J Virol,1998, 72(3):2500.
    49. Mondor I, Moulard M, Ugolini S, et al. Interactions among HIV gp120, CD4, and CXCR4: Dependence on CD4 expression level, go120 viral origin, comservation of the gp120 COOH- and NH2-termini and V1/V2 and V3 loops, and sensitivity to neutralizing antibodies. Virology, 1998, 248(2): 394-405.
    50. Verrier F, Borman AM, Brand D,et al. Role of the HIV type 1 glycoprotein 120V3 loop in determining coreceptor usage. AIDS Res Hum Retroviruses, 1999, 15(8): 731.
    51. Sakaida H,Hori T,Yonezawa A,et al. T-tropic human immunodeficiency virus type 1 (HIV-1) derived V3 loop peptides directly bind to CXCR-4 and inhibit T-tropic HIV-1 infection. J Virol, 1998, 72(12):9763-9770.
    52. Collman R, et al. An infectious molecular clone of an unusual macrophage-tropic and highly cytopathic strain of human immunodeficiency virus type1. J Virol, 1992, 66(12): 7517-7521.
    53. Hoffman, N. G., F. Seillier-Moiseiwitsch, et al. Variability in the human immunodeficiency virus type 1 gp120 Env protein linked to phenotype- associated changes in the V3 loop. J. Virol, 2002, 76(8): 3852-64.
    54. Xiao L, Owen SM, Goldman I, et al. CCR5 coreceptor usage of non- syncytium- inducing primary HIV-1 is independent of phylogenetically distinct global HIV-1 isolates: Delineation of consensus motif in the V3 domain that predicts CCR5 usage. Virology, 1998, 240(1): 83-92.
    55. Yu SF, Wang Z, Vlahov D, et al. Infection with dual-tropic human immunodeficiency virus type 1 variants associated with rapid total T cell decline and disease progression in injecting drug users. J Infect Dis, 1998, 178(2): 338-396.
    56. Subbarao S, Vanichseni S, Hu DJ, et al. Genetic characterization of incident HIV type 1 subtype E and B strains from a prospective cohort of injecting drug users in Bangkok, Thailand. AIDS Res Hum Retroviruses, 2000, 16(8): 699-707.
    57. Peeters M, Vincent R, Perret JL, et al. Evidence for differences in MT2 cell tropism according to genetic subtypes of HIV-1 viruses. J Acquir Immune Defic Syndr Hum Retrovirol, 1999, 20(2): 115-121.
    58. Page,K.A., S.M.Stearns, and D.R. Littman.Analysis of mutations in the V3 domain of gp160 that affect fusion and infectivity. J Virol, 1992, 66(1): 524-533.
    59. Grimaila. R.J., B. A. Fuller, P. D. Rennert, et al. Mutations in the principal neutralization determinant of human immunodeficiency virus type affect syncytium formation, virus infectivity, growth kinetics, and neutralization. J Virol, 1992, 66(4): 1875-1883.
    60. Stamatatos,L., and C.Cheng-Mayer. Evidence that the structural conformation of envelope gp120 affects human immunodeficiency virus type 1 infectivity, host range, and syncytium-forming ability. J Virol, 1993, 67(9): 5635-5639.
    61. Ou CY, Takebe Y, Weniger BG, et al. Independent introduction of two major HIV-1 genotypes into distinct high risk populations in Thailand. Lancet, 1993, 341(8854): 1171-1174.
    62. 邢辉, 梁浩, 洪坤学, 等. 我国 HIV-1 主要流行株外膜蛋白(env)基因 V3~V4区变异及其与生物学特性的关系. 中华微生物和免疫学杂志, 2005, 25(3): 185-189.
    63. Milich, L., B.Margolin, and R. Swanstrom. V3 loop of the human immuno- deficiency virus type 1 Env protein: interpreting sequence variability. J Virol, 1993, 67(9): 5623-5634.
    64. Gkikas Magiorkinis, Dimitris Paraskevis, Emmanouil Magiorkinis, et al.Reanalysis of the HIV-1 Circulating Recombinant Form A/E (CRF01_AE): Evidence of A/E/G Recombination. 2002, JAIDS 30:124-129
    65. Paraskevis D, Magiorkinis M, Vandamme A-M, et al. Reanalysis of human immunodeficiency virus type 1 isolates from Cyprus and Greece, initially designated ‘subtype I,’ reveals a unique complex A/G/H/K/? mosaic pattern. J Gen Virol 2001;82(Part 3):575–80.
    66. Ronbertson DL, Hahn BH, Sharp PM. Recombination in AIDS viruses.Journal of Molecular Evolution. 1995, 40(3):249-259
    67. Kishi M. Tokunaga K, Zheng YH, et al. Superinfection of a defectve human immunodeficiency virus type 1 provirus-carrying T cell clone with vif or vpu matants gives cytopathics virus particles by homologous recombination. AIDS Res Hum Retroviruses. 1995 Jan; 11(1):45-53
    68. Kampinga GA, Simonon A, Van de Perre P, et al. Primary infections with HIV-1 of women and their offspring in Rwanda: findings of heterogeneity at seroconversion, coinfection, and recombinants of HIV-1 subtypes A and G. Virology. 1997 Jan 6; 227(1):63-76.
    69. urke DS. Recombination in HIV: an important viral evolutionary strategy. Emerg Infect Dis.1997 Jul-Sep; 3(3):253-9
    70. Cornelissen M, Kampinga G, Zorgedrager F, er al. Human immunodeficiency virus type 1 subtypes defines by env show high frequency of recombinant gag genes. THE UNAIDS Network for HIV Isolation and Characterization. J Virol. 1996, 70(11):8209-12
    71. ZHU GW, Liu ZQ, Joag SV, et al. Pathogenesis of lymphocyte-tropic andmacrophage-tropic SIV mac infection in the brain. J Neurovirol. 1995 Mar; 1(1):78-91
    72. Graham NM. Metabolic disorders among HIV-infected patients treated with protease inhibitors: a review. J Acquir Immune Defic Syndr ,2000 :25 (Suppl1) :S4-11
    73. Kijak GH and McCutchan FE: HIV diversity, molecular epidemiology, and the role of recombination. Curr Infect Dis Rep 2005; 7:480-488.
    74. Dario A, Alehandro M, Leonardo L, et al. HIV type 1 genetic diversity surveillance among newly diagnosed individuals from 2003 to 2005 in Buenos Aires, Argenitna. AIDS Res Hum Retroviruses 2007; 23:1201-1207
    75. Qiu Z, Xing H, Wei M, et al. Characterization of five nearly full-length genomes of early HIV type 1 strains in Ruili city: Implications of the genesis of CRF07_BC and CRF08_BC circulating in China. AIDS Res Hum Retroviruses 2005; 21:1051-1056.
    76. Parren P, Gauduin MC, Koup RA, et al. Relevance of the antibody response against human immunodeficiency virus type 1 envelope to vaccine design. Immunol. Lett. 57:105-112.
    77. Flynn NM, Forthal DN, Harro CD, et al. Placebocontrolled phase 3 trial of a recombinant glycoprotein 120 vaccine to prevent HIV-1 infection.2005; J. Infect. Dis. 191:654-665.
    78. Dacheux L, Moreau A, Ataman-Onal Y, et al. Evolutionary dynamics of glycan shield of the human immuodeficiency viruns envelope during natural infecgtion and implications for exposure of the 2G12 epitope. J. Virol.78:12625-37.
    1. Ronberson DL, Anderson JP, Bradac JA, et al. HIV-1 nomenclature proposal. Science 2000;288:55-56.
    2. Fabio T, Filippa B, Anna MP, et al.Genetic diversity of HIV-1 non-B strains in Sicily: evidence of intersubtype recombinants by sequence analysis of gag, pol, and env genes. AIDS Res Hum Retroviruses.2007;23:1131-1138.
    3. AJ Kandathil, S Ramalingam, R Kannangai , et al. Molecular epidemiology of HIV. Indian Journal of Medical Research , 2005 ,121 ,1664, Pg333 ,12pgs.
    4. Kanki PJ, Harnel DJ, Sankale JL, et al. Human immunodeficiency virus type 1 subtypes differ in disease progression. J Infect Dis ,1999 , 179 :68-73.
    5. Cccilia D, Kulkarni SS, Tripathy SP, et al. Absence of coreceptor switch with disease progression in human immunodeficiency virus infections in India.Virology, 2000, 271: 253-258.
    6. Mehendale SM, Bollinger RC, Kulkarni SS, et al. Rapid disease progression in human immunodeficiency virus type-1 infected seroconverters in India. AIDS Res Hum Retroviruses, 2002, 18 : 1175 -1179.
    7. Vasan A, Renjifo B, Hertzmark E, et al. Different rates of disease progression of HIV type 1 infection in Tanzania based on infection subtype. Clin Infect Dis 2006;42:843-852
    8. Baeten JM, Chohan B, Lavreys L, et al. HIV-1 Subtype D infection is associated with faster disease progression than A in spite of similar plasema HIV-1 load. J Infect Dis 2007; 195:1177-1180.
    9. Donald JH, Jean-louis S, Geoffrey E, et al. Twenty years of prospective molecular epidemiology in Senegal: change in HIV diversity. AIDS Res Hum Retroviruses 2007;23:1189-1196.
    10. Kaul R, T Dong, Plummer FA, et al. CD8+ lymphocytes respond to different HIV epitopes in seronegative and infected subjects. J. Clin. Investig. 2001;107:1303-1310.
    11. Skurnick JH, Palumbo P, et al. Correlates of nontransmission in US women at high risk of human immunodeficiency virus type 1 infection through sexual exposure. J Infect Dis. 2002;185:428–438.
    12. Takaichi H, Kazuhiro M, Yurina H, et al. A single-nucleotide synonymous mutation in the gag gene controlling human immunodeficiency virus type 1 virion production. J Virol. 2007;81:1528-1533
    13. June KM, Melissa B, Keri LS, et al. Degeneracy and repertoire of human HIV-1 gag p1777-85 CTL response. J Immunol. 2006.6690-6701.
    14. Fatkenheuer G, Theisen A, Rockstroh J, et al. Virological treatment failure of protease inhibitor therapy in an unselected cohort of HIV-infected patients. AIDS.1997 Nov 15;11(14):F113-6.
    15. Boden D, Hurley A, Zhang L, et al. HIV-1 drug resistance in newly infected individuals. JAMA. 1999 Sep 22-29;282(12):1135-1141.
    16. Ibá?ez A, Clotet B, Martínez MA. Human immunodeficiency virus type 1 population bottleneck during indinavir therapy causes a genetic drift in the env quasispecies. J Gen Virol. 2000 Jan;81(Pt 1):85-95.
    17. Misse D, Gajardo J, Oblet C, et al. Soluble HIV-1 gp120 enhances HIV-1 replication in non-dividing CD4+ T cells, mediated via cell singaling and Tatcofactor over expression. AIDS. 2005; 19(9):897-905.
    18. Shankarappa R, Margolick JB, Gange SJ, et al. Consistent viral evolutionary changes associated with the progression of human immunodeficiency virus type 1 infection. J Virol. 1999;73:10489-10502.
    19. Cole KS, Steckbeck JD, Rowles JL, et al. Removal of N-linked glycosylation sites in the V1 region of simian imunodeficiency virus gp120 results in redirection of B-cell responses to V3. J Virol .78:1525-1539.
    20. Draenert R, Allen TM, Liu Y, et al. Constrains on HIV-1evolution and immunodominance revealed in monozygotic adult twins infected with the same virus. J Exp Mcd. 2006 203:529-539.
    21. Forst SD, Dumaurier MJ, Hobson S, et al. Neutralizing antibody responses drive the evolution of human immunodeliciency virus type 1 envelope during recent HIV infection. Proc Natl Acad Sci. USA 98:6975-6980.
    22. Nijhuis M, Boucher CA, Schipper P, et al. Stochastic processes strongly influence HIV-1 evolution during suboptimal protease-inhibitor therapy. Proc Natl Acad Sci USA. 1998 Nov 24;95(24):14441-14446.
    23. Rouzine IM, Coffin JM. Linkage disequilibrium test implies a large effective population number for HIV in vivo. Proc Natl Acad Sci USA. 1999 Sep 14;96(19):10559-10561.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700