HIV-1B'亚型毒株全基因组分子克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
艾滋病又称获得性免疫缺陷综合症(acquired immunodeficiency syndrome, AIDS),引起艾滋病的病原体为人类免疫缺陷病毒(human immunodeficiency virus, HIV)。自美国1981年6月5日报告艾滋病,26年来艾滋病已在世界范围内迅速传播,给人类健康以巨大威胁。我国于1985年首次发现并报道了HIV-1感染者——一位来自境外的旅游者,随后在浙江发现因使用美国Amour公司的凝血因子VⅧ而感染HIV的感染者。研究发现,我国主要存在有B/C重组、B′、B、C、CRF01_AE等HIV-1亚型病毒流行株,但以B/C重组、B′为主。CRF_07和CRF_08 B/C重组亚型主要流行于我国西南省份地区和新疆等地的静脉注射吸毒人群中,B′亚型则是流行于华中地区河南省、湖北省及周边地区非法采供血人群中。
     90年代初,因为有偿献血行为,我国中部省份河南和湖北等地出现了HIV-1 B′亚型毒株的暴发流行。本文对2005年来自湖北省武汉地区的一位AIDS患者体内的HIV-1B′病毒进行了分离,该患者因垂直传播(母婴传播)感染HIV-1,而其母亲因有偿献血感染HIV-1,发展为艾滋病后病逝。随后对分离的病毒进行基因克隆,获得了一株来自我国中部地区HIV-1 B′流行株的全基因组分子克隆。
     1.通过与健康人外周血单核淋巴细胞(PBMCs)共培养,对患者体内的HIV-1 B′病毒进行分离。分别分离健康人和HIV-1感染者外周血单核淋巴细胞,将感染者PBMCs与用植物血球凝集素(PHA)刺激培养3天的健康人PBMCs共培养,在共培养体系中加入白细胞介素-2(IL-2),并且每隔3天更换50%新鲜培养液,收集培养上清测定逆转录酶活性或p24病毒抗原确定病毒的增殖。将分离的病毒株命名为05CNHB_hp。
     2.利用分别转染了辅助受体CXCR4和CCR5的细胞系细胞,接种05CNHB_hp病毒培养液,观察分离病毒株的细胞嗜性。分离的病毒株能在HOS-CD4-CXCR4细胞形成明显的合胞体,而在HOS-CD4-CCR5细胞则不能观察到合胞体的形成;在HOS-CD4-CXCR4细胞培养上清中能明显检测到p24病毒抗原,而在HOS-CD4-CCR5细胞培养上清中没有检测到p24病毒抗原。实验结果表明,分离的05CNHB_hp具CXCR4辅助受体细胞嗜性
     3.将分离的HIV-1 B'05CNHB_hp病毒培养液接种于PHA刺激培养3天的健康人PBMCs,在病毒增殖高峰期收集培养细胞,提取细胞基因组DNA,设计引物扩增病毒基因组3’端近全长序列并克隆到载体PCR(?)-XL-Vector,经测序得到该病毒LTR起始序列,设计引物扩增病毒基因组剩余5′端一相对短的片段序列,克隆到同样的载体,测序后获得整个基因组的核苷酸序列。根据测序结果找到合适的酶切位点,通过限制性酶切两个克隆然后将两个克隆片段连接得到具有完整HIV-1基因组的分子克隆。
     4.将测序的结果运用Bioedit软件与从HIV数据库(http://hiv-web.lanl.gov)下载的其他各亚型全长序列进行比对,并运用ClastalX1.83软件进行系统分析。从系统树分析来看,分离的病毒属于HIV-1 B′亚型。然后通过Simplot软件进行Bootscan分析,检测病毒是否存在重组现象。结果未发现重组现象。随后为了检测该病毒的耐药性突变,将病毒基因序列提交斯坦福大学的HIV耐药数据库(http://hivdb.stanford.edu/pages/ algs/HIVdb.html)分析病毒可能的基因型耐药突变。结果表明该病毒没有产生耐药突变,分离的病毒是一株能较好体现药物使用前流行的HIV-1 B′病毒,而且现有的抗艾滋病药物对这类病毒均具有较好的抑制作用。
     5.病毒全基因组分子克隆转染293T细胞研究。用Lipofectamine2000转染试剂将全长克隆质粒转染到293T细胞,而后收集转染细胞培养上清测定p24病毒抗原并感染用PHA刺激培养3天的健康人PBMCs,接着检测培养上清的p24病毒抗原。通过反复的感染试验,发现构建的该克隆不具备感染活性。
     本研究中提供的全基因组信息将对针对我国中部地区有效的疫苗和耐药性研究设计和发展提供参考,具有重要意义。
Acquired Immunodeficiency Syndrome (AIDS) is caused by Human Immunodeficiency Virus (HIV). It was firstly reported in American in 1981. During the last 26 years, AIDS has spread virtually every corner of the world. The first HIV-1 infection in China was reported in 1985. It was founded that there were two major HIV-1 subtypes in China:CRF07 and 08 in the IDU in Yunnan, Guangxi and Xinjiang, and subtype B'in the illegal paid blood donors (PBD) in central China, such as Henan and Hubei etc.
     In the early 1990s, because of PBD, HIV-1 B'broke out circulation in central China. We isolated a strain of HIV-1 B' from a patient in Wuhan, Hubei province in 2005. We learned that the patient infected HIV-1 from his mother because of vertical infection, and his mother died of AIDS years ago. We constructed and characterized the full-length genome clone of the isolated virus HIV-1 B'.
     1.Normal donor's peripheral blood mononuclear cells (PBMCs) obtained from HIV-negative blood donors were isolated from buffy coats using the Ficollhypaque method. Immediately after isolation, PBMCs were stimulated with 0.5ug/ml phytohemagglutinin (PHA). PBMCs were maintained in RPMI1640 supplemented with 10% fetal bovine serum, 2mmol/L glutamine, and antibiotics. Briefly, the isolated PBMCs from AIDS patient were co-cultivated with HIV-negative PHA-stimulated donor's PBMCs in RPMI 1640 supplemented with 10% fetal bovine serum,20U/ml IL-2,2mM glutamine, and antibiotics. Medium was changed in half every 3 days post co-culture and virus stock was used to test the RT/p24 to confirm the virus isolated and was stored at-80℃. Then we named the virus isolated 05CNHB_hp, and it replicated it's peak 11 days post co-cultivation.
     2. With the cell lines transformed with CXCR4 and CCR5 respectively, inoculated with the virus 05CNHB_hp to determine its cell tropism. The virus could induce syncytium in HOS-CD4-CXCR4 cells, but it not in HOS-CD4-CCR5 cells. Also the p24 could be tested in HOS-CD4-CXCR4 but couldn't in HOS-CD4-CCR5. So, the result showed that the virus infected the cells with co-receptor CXCR4.
     3.The genome DNA was isolated from PBMCs infected with 05CNHB_hp, and the primers were designed to amplify the 3'terminal near full-length part of virus genome. Then the PCR product was cloned to T vector and sequenced. Based on the nucleotide sequenced, another pair of primers was designed to amplify the rest part of genome. The PCR product was cloned to the same vector and sequenced.
     4.The nucleotide sequence was aligned to the sequences of other HIV-1 subtype download from HIV Database in http://hiv-web.lanl.gov, then used the soft Clustal X1.83 to make phylogenetic tree using the neighbor-joining method and Kimura two-parameter model. From the phylogenetic tree, the virus 05CNHB_hp was confirmed to belonged to HIV-1 B'.And to investigate its possible recombination with other subtypes, we used soft Simplot to Bootscan with reference sequences HIV-1 Al, B', and C subtype. From the Bootscan, we learned that the isolated virus 05CNHB_hp didn't have any recombination with other subtypes. And no mutation associated with drug-resistance was detected when the nucleotide sequence was submitted to HIV DRUG RESISTANCE DATABASE at Stanford University, which means the drugs available domestically are effective to restrain the virus and the virus isolated could show the primaly HIV-1 B'before the use of drugs.
     5.At last, we transfected the full-length genome clone to 293T cells to test its infectivity. We retrieved the supernatant to test its p24 content and inoculated in PBMCs stimulated for 3 days by PHA. The full-length genome clone 05CNHB_hp3 we constructed could express p24 in 293T cells, but unfortunately, there was no p24 in the supernatant of PBMCs inoculated with transfected cells culture supernatant. That meant the clone 05CNHB_hp we constructed haven't got its infectivity.
     The full-length genome information in our research would have very important implications for future design and development of an effective vaccine, antiretroviral drugs, and of necessary assays and reagents for testing future candidate vaccine and antiretroviral drugs targeted at the HIV-1 B'strains circulating in central China.
引文
[1]Anthony SF. Twenty-five years of HIV/AIDS. Science,2006,313:409.
    [2]金奇主编.医学分子病毒学.北京:科学出版社,2001,659-690.
    [3]Heeney JL, Dalgleish AG, Weiss RA. Origins of HIV and the evolution of resistance to AIDS. Science, 2006,313:462-466.
    [4]Zeng Y, Fan J, Zhang O, et al. Detection of antibody to LAV/HTLV-Ⅲ in sera from hemophiliacs in China. AIDS Res Hum Retroviruses,1986,2(Suppl 1):S147-S149.
    [5]贾俐挺,周祖木,章显传等.温州市HIV/AIDS流行现状及趋势分析.中国热带医学,2007,7(3):339-482.
    [6]Graf M, Shao Y, Zhao Q, et al. Cloning and characterization of a virtually full-length HIV type 1 genome from a subtype B'-Thai strain representing the most prevalent B-Clade isolate in China. AIDSRes Hum Retroviruses,1998,14:285-288.
    [7]Piyasirisilp S, Mccutchan FE, Carr JK, et al. A recent outbreak of human immunodeficiency virus type 1 infection in southern China was initiated by two highly homogeneous geographically separated strains circulating recombinant form AE and a novel BC recombinant. J Virol,2000,74: 11286-11295.
    [8]Su L, Graf M, Zhang Y, et al. Characterization of a virtually full-length human immunodeficiency virus type 1 genome of a prevalent inter subtype (C/B') recombinant strain in China. J Virol,2000, 74:11367-11376.
    [9]Su B, LIU L, Wang F, et al. HIV-1 subtype B'dictates the AIDS epidemic among paid blood donors in the Henan and Hubei provinces of China. AIDS,2003,17(17):2515-2520.
    [10]郑锡文,王哲,徐杰等.中国某县有偿献血员艾滋病病毒感染流行病学研究.中华流行病学杂志,2000,21:253-255.
    [11]Adachi A, Gendelman HE, Koenig S, et al. Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol,1986,59(2):284-291.
    [12]Earl PL, Doms RW, Moss B. Oligomeric structure of the human immunodeficiency virus type 1 envelope glycoprotein. Proc Natl Acad Sci USA,1990,87(2):648-652.
    [13]Ozel M, Pauli G, Gelderblom HR. The organization of the envelope projections on the surface of HIV.Arch Virol,1988,100(3-4):255-266.
    [14]Pinter A, Honnen WJ, Tilley SA, et al. Oligomeric structure of gp41, the transmembrane protein of human immunodeficiency virus type 1. J Virol,1989,63(6):2674-2679.
    [15]Camaur D, Trono D. Characterization of human immunodeficiency virus type 1 Vif particle incorporation. J Virol,1996,70(9):6106-6111.
    [16]Liu H, Wu X, Newman M, et al. The Vif protein of human and simian immunodeficiency viruses is packaged into virions and associates with viral core structures. J Virol,1995,69(12):7630-7638.
    [17]Welker R, Kottler H, Kalbitzer HR, et al. Human immunodeficiency virus type 1 Nef protein is incorporated into virus particles and specifically cleaved by the viral proteinase. Virology,1996, 219(1):228-236.
    [18]Weiss CD, Levy JA, White JM. Oligomeric organization of gp120 on infectious human immunodeficiency virus type 1 particles. J Virol,1990,64(11):5674-5677.
    [19]Tang H, Kuhen KL, Wong-Staal F. Lentivirus replication and regulation. Annu Rev Genet,1999,33: 133-170.
    [20]Frankel AD, Young JA. HIV-1:fifteen proteins and an RNA. Annu Rev Biochem,1998,67:1-25.
    [21]Jones KA, Peterlin BM. Control of RNA initiation and elongation at the HIV-1 promoter. Annu Rev Biochem,1994,63:717-743.
    [22]Zhou Q, Sharp PA. Tat-SF1:cofactor for stimulation of transcriptional elongation by HIV-1 Tat. Science,1996,274(5287):605-610.
    [23]Parada CA, Roeder RG. Enhanced processivity of RNA polymerase II triggered by Tat-induced phosphorylation of its carboxy-terminal domain. Nature,1996,384(6607):375-378.
    [24]Yang X, Herrmann CH, Rice AP. The human immunodeficiency virus Tat proteins specifically associate with TAK in vivo and require the carboxyl-terminal domain of RNA polymerase II for function.J Virol,1996,70(7):4576-4584.
    [25]Garcia-Martinez LF, Mavankal G, Neveu JM, et al. Purification of a Tat-associated kinase reveals a TFⅡH complex that modulates HIV-1 transcription. Embo J,1997,16(10):2836-2850.
    [26]Cujec TP, Cho H, Maldonado E. The human immunodeficiency virus transactivator Tat interacts with the RNA polymerase Ⅱ holoenzyme. Mol Cell Biol,1997,17(4):1817-1823.
    [27]Truant R, Cullen BR. The arginine-rich domains present in human immunodeficiency virus type 1 Tat and Rev fuction as direct importin beta-dependent nuclear localization signals. Mol Cell Biol, ,1999,19(2):1210-1217.
    [28]Malim MH, Tiley LS, McCarn DF, et al. HIV-1 structural gene expression requires binding of the Rev trans-activator to its RNA target sequence. Cell,1990,60(4):675-683.
    [29]Iwai S, Pritchard C, Mann DA, et al. Recognition of the high affinity binding site in rev-response element RNA by the human immunodeficiency virus type-1 rev protein. Nucleic Acids Res,1992, 20(24):6465-6472.
    [30]Wen W, Meinkoth JL, Tsien RY, et al. Identification of a signal for rapid export of proteins from the nucleus. Cell,1995.82(3):463-473.
    [31]Meyer BE, Meinkoth JL, Malim MH. Nuclear transport of human immunodeficiency virus type 1, visna virus, and equine infectious anemia virus Rev proteins:identification of a family of transferable nuclear export signals. J Virol,1996,70(4):2350-2359.
    [32]Cohen EA, Subbramanian RA, Gottlinger HG. Role of auxiliary proteins in retroviral morphogenesis. Curr Top Microbiol Immunol,1996,214:219-235.
    [33]Lamb RA, Pinto LH. Do Vpu and Vpr of human immunodeficiency virus type 1 and NB of influenza B virus have ion channel activities in the viral life cycles? Virology,1997,229(1):1-11.
    [34]Kerkau T, Bacik I, Bennink JR. The human immunodeficiency virus type 1 (HIV-1) Vpu protein interferes with an early step in the biosynthesis of major histocompatibility complex (MHC) class I molecules. J Exp Med,1997,185(7):1295-1305.
    [35]MangasarianA, Trono D. The multifaceted role of HIV Nef. Res Virol,1997,148(1):30-33.
    [36]Le Gall S, Heard JM, Schwartz 0. Analysis of Nef-induced MHC-I endocytosis. Res Virol,1997, 148(1):43-47.
    [37]Simon JH, Malim MH. The human immunodeficiency virus type 1 Vif protein modulates the postpenetration stability of viral nucleoprotein complexes. J Virol,1996,70(8):5297-5305.
    [38]Madani N, Kabat D. An endogenous inhibitor of human immunodeficiency virus in human lymphocytes is overcome by the viral Vif protein. J Virol,1998,72(12):10251-10255.
    [39]Simon JH, Gaddis NC, Fouchier RA, et al. Evidence for a newly discovered cellular anti-HIV-1 phenotype. Nta Med,1998,4(12):1397-1400.
    [40]Sheehy AM, Gaddis NC, Choi JD, et al. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature,2002,418(6898):646-650.
    [41]Harris RS, Bishop KN, Sheehy AM, et al. DNA deamination mediates innate immunity to retroviral infection. Cell,2003,113(6):803-809.
    [42]Mangeat B, Turelli P, Caron G, et al. Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature,2003,424(6944):99-103.
    [43]Marin M, Rose KM, Kozak SL, et al. HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation. Nat Med,2003,9(11):1398-1403.
    [44]Sheehy AM, Gaddis NC, Malim MH. The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat Med,2003,9(11):1404-1407.
    [45]Zhang H, Yang B, Pomerantz RJ, et al. The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature,2003,424(6944):94-98.
    [46]Emerman M. HIV-1, Vpr and the cell cycle. Curr Biol,1996,6(9):1096-1103.
    [47]Mansky LM. The mutation rate of human immunodeficiency virus type 1 is influenced by the vpr gene. Virology,1996,222(2):391-400.
    [48]Freed EO, Englund G, Martin MA. Role of the basic domain of human immunodeficiency virus type 1 matrix in macrophage infection. J Virol,1995,69(6):3949-3954.
    [49]Mammano F, Kondo E, Sodroski J, et al. Rescue of human immunodeficiency virus type 1 matrix protein mutants by envelope glycoproteins with short cytoplasmic domains. J Virol,1995,69(6): 3824-3830.
    [50]Gamble TR, Yoo S, Vajdos FF, et al. Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein. Science,1997,278(5339):849-853.
    [51]Luban J. Absconding with the chaperone:essential cyclophilin-Gag interaction in HIV-1 virions. Cell,1996,87(7):1157-1159.
    [52]Kondo E. Gottlinger HG. A conserved LXXLF sequence is the major determinant in p6 gag required for the incorporation of human immunodeficiency virus type 1 Vpr. J Virol,1996,70(1):159-164.
    [53]Lu YL, Bennett RP, Wills JW, et al. A leucine triplet repeat sequence (LXX)4 in p6gag is important for Vpr incorporation into human immunodeficiency virus type 1 particles. J Virol,1995,69(11): 6873-6879.
    [54]Checroune E, Yao XJ, Gottlinger HG, et al. Incorporation of Vpr into human immunodeficiency virus type 1:role of conserved regions within the P6 domain of Pr55gag. J Acquir Immune Defic Syndr Hum Retrovirol,1995,10(1):1-7.
    [55]Huang M, Orenstein JM, Martin MA, et al. p6Gag is required for particle pruduction from full-length human immunodeficiency virus type 1 molecular clones expressing protease. J Virol, 1995,69(11):6810-6818.
    [56]Kaplan AH, Manchester M, Swanstrom R. The activity of the protease of human immunodeficiency virus type 1 is initiated at the membrane of infected cells before the release of viral proteins and is required for release to occur with maximum efficiency.J Virol,1994,68(10):6782-6786.
    [57]Erickson JW, Gulnik SV, Markowitz M. Protease inhibitors:resistance, cross-resistance, fitness and the choice of initial and salvage therapies. AIDS,1999,13 SupplA:p. S189-204.
    [58]Miller V. International perspectives on antiretroviral resistance. Resistance to protease inhibitors. J Acquir Immune Defic Syndr,2001,26 Suppl 1:S34-50
    [59]Oude Essink BB, Das T, Berkhout B. HIV-1 reverse transcriptase discriminates against non-self tRNA primers. JMolBiol,1996,264(2):243-254.
    [60]Huang Y, Wang J, Shalom A, et al. Primer tRNA3Lys on the viral genome exists in unextended and two-base extended forms within mature human immunodeficiency virus type I. J Virol,1997, 71(1):726-728.
    [61]Esnouf R, Ren J, Ross C, et.al. Mechanism of inhibition of HIV-1 reverse transcriptase by non-nucleoside inhibitors. Nat Struct Biol,1995,2(4):303-308.
    [62]Miller MD, Wang Q, Bushman FD. Human immunodeficiency virus type 1 preintegration complexes containing discontinuous plus strands are competent to integrate in vitro. J Virol,1995, 69(6):3938-3944.
    [63]Clapham PR, Weiss RA. Immunodeficiency viruses, Spoilt for choice of co-receptors. Nature,1997, 388(6639):230-231.
    [64]Shaheen F, Collman RG. Co-receptor antagonists as HIV-1 entry inhibitors. Curr Opin Infect Dis, 2004,17(1):7-16.
    [65]Doms KW, Trono D. The plasma membrane as a combat zone in the HIV battlefield. Genes Dev. 2000,14:2677-2688.
    [66]Pantaleo G, Graziosi C, Demarest JF, et al. Role of lymphoid organs in the pathogenesis of human immunodeficiency virus(HIV) infection. Immunol. Rev.1994,140:105-130.
    [67]Geijtenbeek TB, Kwon DS, Torensma R, et al. DC-SIGN, a dendritic-cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 2000,100:587-597.
    [68]Thomson MM, Delgado E, Manjon N, et al. HIV-1 genetic diversity in Galicia Spain:BG intersubtype recombinant viruses circulating among injecting drug users. AIDS,2001,15(4): 509-516.
    [69]Delgado E, Thomson MM, Villahermosa ML, et al. Identification of a newly characterized HIV-1 BG intersubtype circulating recombinant forth in Galicia, Spain, which exhibits a pseudotype-like virion structure. JAcquir Immune Defic Syndr,2002,29(5):536-543.
    [70]Esteves A, Parreira R, Venenno T, et al. Molecular epidemiology of HIV type 1 infection in Portugal: high prevalence of non-B subtypes. AIDS Res Hum Retroviruses,2002,18(5):313-325.
    [71]Robertson DL, Anderson P, Bradac JA, et al. HIV-1 nomenclature proposal. Science,2000, 288(5463):55-56.
    [72]Vidal N, Peeters M, Mulanga-Kabeya C, et al. Unprecedented degree of human immunodeficiency virus type 1 (HIV-1) group M genetic diversity in the Democratic Republic of Congo suggests that the HIV-1 pandemic originated in Central Africa. J Virol,2000,74(22):10498-10507.
    [73]Thomson MM, Villahermosa ML, Vazquez-de-Parga E,. et al.Widespread circulation of a B/F intersubtype recombinant form among HIV-1-infected individuals in Buenos Aires, Argentina. AIDS,2000,14(7):897-899.
    [74]Thomson MM, Delgado E, Herrero I, et al. Diversity of mosaic structures and common ancestry of human immunodeficiency virus type 1 BF intersubtype recombinant viruses from Argentina revealed by analysis of near full-length genome sequences. JGen Virol,2002,83(Pt 1):107-119.
    [75]Thomson MM, Najera R. Travel and the introduction of human immunodeficiency virus type 1 non-B subtype genetic forms into Western countries. Clin Infect Dis,2001,32(12):1732-1737.
    [76]Myers G. Assimilating HIV sequences. AIDS Res Hum Retroviruses,1993,9(7):697-702.
    [77]Louwagie J, McCutchan FE, Peeters M, et al. Phylogenetic analysis of gag genes from 70 international HIV-1 isolates provides evidence for multiple genotypes. AIDS,1993,7(6):769-780.
    [78]Kalish ML. The evolving molecular epidemiology of HIV-1 envelope subtypes in injecting drug users in Bangkok, Thailand:implications for HIV vaccine trials. AIDS,1995,9(8):851-857.
    [79]Buonaguro L, Del Guadio E, Monaco M, et al. Heteroduplex mobility assay and phylogenetic analysis of V3 region sequences of human immunodeficiency virus type 1 isolates from Gulu, northern Uganda. The Italian-Ugandan Cooperation AIDS Program. J Virol,1995,69(12): 7971-7981.
    [80]Arnold C, Barlow KL, Kaye S, et al. HIV type 1 sequence subtype G transmission from mother to infant:failure of variant sequence species to amplify in the Roche Amplicor Test. AIDS Res Hum Retroviruses,1995,11(8):999-1001.
    [81]Fouchier RA, Groenink M, Kootstra NA, et al. Phenotype-associated sequence variation in the third variable domain of the human immunodeficiency virus type 1 gp120 molecule. J Virol,1992,66(5): 3183-3187.
    [82]De Jong JJ, De Ronde A, Keulen W, et al. Minimal requirements for the human immunodeficiency virus type 1 V3 domain to support the syncytium-inducing phenotype:analysis by single amino acid substitution. J Viral,1992,66(11):6777-6811.
    [83]Smith TF, Srinivasan A, Schochetman G, et al. The phylogenetic history of immunodeficiency viruses. Nature,1988,333(6173):573-575.
    [84]Sharp PM. Origins of human virus diversity. Cell,2002,108(3):305-312.
    [85]Fukasawa M, Miura T, Hasegawa A, et al. Sequence of simian immunodeficiency virus from African green monkey, a new member of the HIV/SIV group. Nature,1988,333(6172):457-461.
    [86]Wyand MS, Manson K, Montefiori DC, et al. Protection by live, attenuated simian immunodeficiency virus against heterologous challenge. J Viral,1999,73(10):8356-8363.
    [87]Letvin NL, Barouch DH, Montefiori DC. Prospects for vaccine protection against HIV-1 infection and AIDS. Annu Rev Immunol,2002.20:73-99.
    [88]UN Epidemiological Fact Sheets on HIV/AIDS and Sexually Transmitted Infections,2002.
    [89]China UN Theme Group on HIV/AIDS for the UN Country Team in China, HIV/AIDS:China's Titanic Peril (2001 Update of the AIDS situation and Needs Assessment Report, UNAIDS, Beijing).2001.
    [90]Kaufman J, Jing J. AIDS:China and AIDS--The Time to Act is Now. Science,2002,296(5577): 2339-2340.
    [91]Pen S, Cheng H, Zhang J. Surveillance report of HIV in Yunnan. Chinese Journal of Prevention and control of STD & AIDS,1997,3:244-246.
    [92]Wu Z, Detels R, Zhang J, et al. Community-based trial to prevent drug use among youths in Yunnan, China. Am J Public Health,2002,92(12):1952-1957.
    [93]Xia M, Kreiss J, Holmes K. Risk factors for HIV infection among drug users in Yunnan Province, China:association with intravenous drug use and protective effect of boiling reusable needles and syringes. AIDS,1994.8:1701-1706.
    [94]Yu XF, Chen J, Shao Y, et al. Emerging HIV infections with distinct subtypes of HIV-1 infection among injection drug users from geographically separate locations in Guangxi Province, China.J Acquir Immune Defic Syndr,1999,22(2):180-188.
    [95]Yu XF, Liu W, Chen J, et al. Maintaining Low HIV Type 1 Env Genetic Diversity among Injection Drug Users Infected with a B/C Recombinant and CRF01_AE HIV Type 1 in Southern China. AIDS Res Hum retroviruses,2002,18(2):167-170.
    [96]Zheng XW. A preliminary study on the behavior of 225 drug user and the risk factors of HIV infection in Ruili county Yunnan Province, China. Chinese J Epidemiology,1991,12:12-14.
    [97]Zheng X, Zhang J, Wang X, et al. The natural history of HIV infection among IDUs in Ruili, Yunnan province, China. Zhonghua Liu Xing Bing Xue Za Zhi,2000,21(1):17-18.
    [98]Zheng X, Zhang JP, Qu SQ. A cohort study of HIV infection among intravenous drug users in Ruili and other two counties in Ysnnan Province, China,1992-1995. Zhonghua Liu Xing Bing Xue Za Zhi,1997,18(5):259-262.
    [99]Wu Z, Liu Z, Detels R. HIV-1 infection in commercial plasma donors in China. Lancet,1995,346: 61-62.
    [100]Wu Z, Rou K, Detels R. Prevalence of HIV infection among former commercial plasma donors in rural eastern China. Health Policy Plan,2001,16(1):41-46.
    [101]李允文,邵一鸣,罗小光等.湖北省HIV-1流行毒株的基因序列测定和亚型分析.中华流行病学杂志.1997,18(4):217-219.
    [102]Nerurkar VR, Wu Z, Dashwood WM, et al. Complete nef gene sequence of HIV type 1 subtype B' from professional plasma donors in the People's Republic of China. AIDS Res Hum Retroviruses, 1998,14(5):461-464.
    [103]Salminen MO, Koch C, Eric SB, et al. Recovery of virtually full-length HIV-1 provirus of diverse subtypes from primary virus cultures using the polymerase chain reaction. Virology,1996,213: 80-86.
    [104]Zhang L, Chen Z, Cao Y, et al. Molecular characterization of human immunodeficiency virus type 1 and hepatitis C virus in paid blood donors and injection drug users in china. J Virol,2004,78(24): 13591-13599.
    [105]Zheng X, Mei Z, Wang C, et al. Residual risk research of HIV infection after blood screening in one county in China. Zhonghua Liu Xing Bing Xue Za Zhi,2000,21:13-14.
    [106]Zheng X, Wang Z, Xu J, et al. The epidemiological study of HIV infection among paid blood donors in one county of China. Zhonghua Liu Xing Bing Xue Za Zhi,2000,21:253-255.
    [107]Piyasirisilp S, McCutchan FE, Carr JK, et al. A recent outbreak of human immunodeficiency virus type 1 infection in southern China was initiated by two highly homogeneous, geographically separated strains, circulating recombinant form AE and a novel BC recombinant. J Virol,2001, 74(23):11286-11295.
    [108]冯福明,鲍作义,庄道民等.河南省分离的HIV-1B-Thai亚型流行株全基因组克隆及序列分析.中华实验和临床病毒学杂志,2004,18(4):356-359.
    [109]Beach MV. "Blood heads" and AIDS haunt China's countryside.2001, Lancet,357(9249):49.
    [110]Shan H, Wang JX, Ren FR, et al. Blood banking in China.2002, Lancet,360(9347):1770-1775.
    [111]Angus GD, Peter CL, Paul RC, et al. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature,1984,312:763-766.
    [112]Doranz BJ, Rocker J, YiY, et al. A dual-tropic primary HIV-1 isolate that used fusin & the β-chemokine receptors CCR5, CCR3, and CCR-2b as fusion coreceptor. Cell,1996,85: 1149-1158.
    [113]Bates P. Chemokine receptors and HIV-1:an attractive pair. Cell,1996,86:123.
    [114]Feng Y, Broder CC, Kennedy PE, et al. HIV-1 entry cofactor:functional cDNA cloning of a STM, Gprotein-coupled receptor. Science,1996,272:872-877.
    [115]Cilliers T, Willey S, Sullivan WM, et al. Use of alternate coreceptors on primary cells by two HIV-lisolates. Virology,2005,339:136-144.
    [116]Kusagawa S, Sato H, Tomita Y, et al. Isolation and characterization of replication-competent molecular DNA clones of HIV type 1 CRFO 1_AE with different coreceptor usages. AIDS Res Hum Retroviruses,2002,18(2):115-122.
    [117]Tebit DM, Zekeng L, Kaptue L, et al. Construction and characterization of a full-length infectious molecular clone from a fast replicating, X4-tropic HIV-1 CRF02.AG primary isolate. Virology, 2003,313:645-652.
    [118]周海舟.HIV-1包膜糖蛋白入侵靶细胞作用机制研究进展.2004,27(4):231-233.
    [119]Karlsson A, parsmyr, K, Sandstrom, E, et al. MT-2 cell tropism as prognostic marker for disease progression in human immunodeficiency virus type 1 infection. J Clin Micro,1994,32(2): 364-370.
    [120]Rodriguez MA, Chen Y, Craigo JK, et al. Construction and characterization of an infectious molecular clone of HIV-1 subtype A of Indian origin. Virology,2006,345(2):328-336.
    [121]Tebit DM, Zekeng L, Kaptue L, et al. Construction and characterization of an HIV-1 group O infectious molecular clone and analysis of vpr-and nef-negative derivatives. Virology,2004,326: 329-339.
    [122]Grisson RD, Chenine AL, Yeh LY, et al. Infectious molecular clone of a recently transmitted pediatric human immunodeficiency virus clade C isolate from Africa:evidence of intraclade recombination. J Virol,2004,78(24):14066-14069.
    [123]Papathanasopoulos MA, Cilliers T, Morris L, et al. Full-length genome analysis of HIV-1 subtype C utilizing CXCR4 and intersubtype recombinants isolated in south Africa. AIDS Res Hum Retroviruses,2002,18(12):879-886.
    [124]Harmelen JV, Williamson C, Kim B, et al. Characterization of full-length HIV type 1 subtype C sequences from South Africa. AIDS Res Hum Retroviruses,2001,17(16):1527-1531.
    [125]Rodenburg CM, Li Y, Trask SA, et al. Near full-length clones and reference sequences for subtype C isolates of HIV type 1 from three different continents. AIDS Res Hum Retroviruses,2001,17(2): 161-168.
    [126]Ndungu T, Renjifo B, Essex M. Construction and analysis of an infectious human immunodeficiency virus type 1 subtype C molecular clone. J Virol,75(11):4946-4972.
    [127]Lole KS, Bollinger RC, Paranjape RS, et al. Full-length human immunodeficiency virus type genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J Virol,1999,73(1):152-160.
    [128]Gao F, Robertson DL, Carruthers CD, et al. A comprehensive panel of near-full-length clones and reference sequences for non-subtype B isolates of human immunodeficiency virus type 1. J Virol, 1998,72(7):5680-5698.
    [129]Gao F, Robertson DL, Morrison SG, et al. The heterosexual human immunodeficiency virus type 1 epidemic in Thailand is caused by an intersubtype (A/E) recombinant of African origin. J Virol, 1996,70(10):7013-7029.
    [130]刘利.中国中部地区人类免疫缺陷病毒流行株HIV-1 B′的全长基因组序列比较分析及其侵染性克隆的构建.武汉大学博士学位论文(单行本),2005.
    [131]苏擘.华中地区Ⅰ型人类免疫缺陷病毒(HIV-1)分子流行病学及耐药基因型的研究.武汉大学博士学位论文(单行本),2005.
    [132]冯福民.我国艾滋病病毒B′,B/C亚型流行株的表型分析、全基因组克隆及gp41主要杭原表位研究.中国人民解放军军事医学科学院博士学位论文(单行本),2003.
    [133]韩晓旭.我国部分地区HIV耐药变异和结构基因特征的研究.中国医科大学博士学位论文(单行本),2006.
    [134]尹春煜.中国HIV-1主要结构基因的序列变异性以及耐药相关性突变分析.复旦大学博士学位论文(单行本),2005.
    [135]张静.山东省HIV-1主要流行株基因变异和人群HIV-1抗性基因的研究.山东大学博士学位论文(单行本),2004.
    [136]李书峰.河南省某市艾滋病流行特征及有偿献血员HIV感染现况的研究.山东大学硕士学位论文(单行本),2005.
    [137]孙峥嵘.HIV-1生物学特性及宿主遗传背景与疾病进展关系的研究.中国医科大学博士学位论文(单行本),2003.
    [138]王琪.中国HIV感染者/艾滋病患者免疫学特征与疾病进展关系的研究.中国医科大学博士学位论文(单行本),2005.
    [139]罗皓.广西HIV-1重组流行株基因变异的研究和快速基因分型方法的建立.广西医科大学硕士学位论文(单行本),2005.
    [140]韩梅.重庆市HIV感染的分子流行病学研究.第三军医大学硕士学位论文(单行本),2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700