PD-L1/PD-1信号通路在同种异体移植免疫反应中作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
器官移植是治疗多种终末期疾病的有效手段。FK506等免疫抑制剂的问世,对预防移植物发生排斥反应、延长移植物存活起了重要的作用。但是,现有免疫抑制剂的毒副作用仍困扰着病人,导致许多病人死于全身免疫抑制剂的毒副作用,如严重的感染以及肿瘤等。移植物的慢性排斥反应仍未得到有效地控制,长期存活率并未能得到明显提高。于是,如何诱导移植物特异的免疫耐受成为目前移植免疫研究的热点。随着研究的不断深入,人们已揭示出影响同种异体免疫反应过程的一些信号传导机制。如果能够发现启动同种异体免疫反应的关键分子通路,并对其及相关配体进行有效地调控将会更有效地调控移植免疫反应的强度,并且有可能诱导移植物免疫耐受。
     PD-L1是PD-1的配体。目前已知它在激活T细胞及造成T细胞无反应性的过程中起关键性作用。该分子可能是我们要寻找并研究的靶点。PD-L1,与B7同源。它可表达于多种组织及细胞上。这些细胞包括T细胞,如CD4、CD8、NKT细胞、B细胞、APC。PD-L1可负向调节T细胞功能,阻止T细胞在胸腺内阳性选择和发育,在调节外周耐受中起关键性作用。目前已知,用PD-L1免疫球蛋白合成蛋白刺激能诱导PD-1分子活性增强,继而可促进胰岛移植物长期存活。应用PD-L1单克隆抗体阻断PD-L1,可促进皮肤移植物发生排斥反应。同样,该方法也可引起心脏移植物产生动脉血管性疾病。但是,不同细胞亚型上的PD-L1分子在调节同种异体免疫反应中的确切作用目前尚不得而知。
     实验目的:验证PD-L1/PD-1信号通路在同种异体移植免疫反应中的作用及其作用机制。
     实验方法:应用PD-L1基因敲除小鼠和同种异体心脏移植模型,(1)通过流式细胞技术比较了PD-L1-/-小鼠及野生型B6小鼠脾脏T细胞及其各亚型的表型特征;(2)通过MLR研究PD-L1-/-小鼠外周T淋巴细胞及APC的功能特点;(3)通过ELISPOT实验研究T细胞及APC上的PD-L1分子在同种异体免疫反应中诱导辅助性T细胞产生细胞因子的特点:(4)在体内实验中,在MHC完全错配的小鼠品系间进行心脏移植,检查PD-L1/PD-1信号通路对同种异体心脏移植物存活的影响。采用ELISPOT、MLR、CTL和流式细胞技术来评价移植受体的免疫功能状态。
     实验结果:(1)与野生型对照组相比,PD-L1-/-小鼠脾脏中,CD11c+DC明显升高(5.44±2.2vs3.54±1.1,P<0.05),CDllb+巨噬细胞也明显升高(12.7-4.7vs5.44±0.4,P<0.05),但是,其Foxp3+CD4+T调节细胞显著降低(5.7±1.9vs 7.3±1.5,P<0.05)所有CD4+CD25+T细胞均表达Treg的特异转录因子Foxp3。在野生型小鼠中这些Treg表达较高的PD-L1。PD-L1在PD-L1敲除小鼠中并不表达。CD11c+DC在野生型小鼠表达较高的PD-L1,但PD-L2表达并不升高。PD-L1-/-小鼠CD11c+DC中CD80、CD95L. OX40L、PD-L2和MHCⅡ(IAb)表达轻度升高。(2)与野生型对照组相比,体外实验中PD-L1-/-小鼠T细胞同种异体免疫反应较强。并且,PD-L1-/-APC对同种异基因T细胞的激活能力亦显著增强。(3)PD-L1-/-小鼠T细胞产生Th1(IFN-γ)及Th2(IL-4,IL-10)型细胞因子明显增加(与野生型对照组相比,IFN-γ,P<0.05;IL-4,P<0.01;IL-10,P<0.05)。由同种异基因PD-L1-/-小鼠脾细胞刺激的T细胞可造成IFN-γ水平升高,IL-4水平降低(与野生型对照组相比,P<0.05)。IL-10及IL-2水平两组间无显著差异。(4)与野生型小鼠对比,PD-L1-/-小鼠无论作为供体还是受体均发生了加速的急性排斥反应。C3H受体PD-L1-/-移植物平均生存时间(mean survival time,MST)为9.3±1.1天,而对照组为36±37天(P<0.01);PD-L1-/-受体的C3H移植物MST为8.54±0.6天,而对照组为13.3±1.3天(P<0.01)。相似地,在B6与BALB/c小鼠间进行心脏移植实验中,BALB/c受体PD-L1-/-移植物在术后第7天出现排斥反应。这早于对照组的134±1.9天(P<0.01)。同样,PD-L1-/-受体BALB/c移植物也发生了加速的排斥反应,其MST为7.0±0.8天。对照组为13±1.6天(P<0.001)。(5)于移植术后第7天MLR实验结果显示:与野生型对照组相比,PD-L1-/-受体及PD-L1-/-小鼠作供体的受体中T细胞增殖反应均明显增高(P<0.05)。(6)细胞毒T细胞及NK细胞活性实验表明:两组受体脾细胞的抗供体CTL活性(抗EL-4[H2b]及R1.1[H2k])均显著增强(前者P<0.01,后者P<0.05)。但是,NK细胞活性增加仅体现在PD-L1-/-小鼠作受体时,并未发生在PD-L1-/-小鼠作供体的受体小鼠中。(7)于移植术后第7天ELISPOT实验结果显示:与野生B6小鼠对比,PD-L1-/-小鼠无论作供体或受体,细胞因子分泌均产生了变化。PD-L1-/-小鼠受体T细胞中Thl(IL-2,P<0.05;IFN-γ,P<0.05)及Th2(IL-4,P<0.05)的细胞因子水平显著增加。但是,PD-L1-/-小鼠作供体的受体,其T细胞中仅Thl的细胞因子(IFN-γ,P<0.05)水平显著升高。而且,在PD-L1-/-小鼠心脏移植物及其受体脾脏的冰冻切片免疫组化染色中显示:IFN-γ分泌水平显著升高。但是,与野生型对照组相比,PD-L1-/-小鼠作受体的心脏移植物及脾脏中,IL-2产生明显升高。
     实验结论:(1)PD-L1基因缺陷改变了外周淋巴细胞各亚系之间的比例平衡,PD-L1-/小鼠外周Foxp3 +CD4+T调节细胞下降,APC增多并表达较强的共刺激分子。(2)PD-L1-/T细胞对同种异基因刺激产生的特异性增殖免疫反应明显增强。(3)PD-L1-/- APC激活同种异基因T细胞反应的能力显著增强。(4)PD-L1-/-APC促进T细胞产生Th1细胞因子,同时抑制产生Th2细胞因子。(5)PD-L1-/-小鼠作为心脏移植的供体或受体,均可加速心脏移植物的急性排斥反应,移植物存活时间明显缩短。(6)PD-L1-/-介导的心脏移植物加速排斥反应与诱导受体T细胞增强抗供体增殖反应和Thl细胞因子的产生有关。(7)PD-L1信号参与了细胞毒T细胞的反应,但可能未直接参与到NK细胞的功能。(8)PD-L1-/-小鼠作为供体或受体中,PD-L1信号所介导的免疫反应的机制是不同的。其原因可能是由于PD-L1可表达于多种类型的细胞上。
     实验意义:PD-L1不仅传递了负向共刺激信号给活性T细胞,调节对自体抗原的外周耐受,而且在诱导同种异体耐受方面也起到关键性作用。如果我们能对引起同种异体免疫反应的启动中心进行调控,我们就可能有机会抑制该反应。PD-L1,这一PD-1的配体,可能就是我们要寻找的靶点。它可能调控T细胞的激活及APC反应的过程。本课题为全面理解PD-L1/PD-1信号通路在体内同种异基因免疫反应中的作用机制提供了新的理论基础,丰富了人们对于PD-L1/PD-1信号通路的认识,并为临床诱导、维持免疫耐受,提高移植物存活时间提供了新的思路,具有临床应用前景。
Organ transplantation is an effective treatment for several end-stage diseases. Tremendous advances have been made during the last decade in therapeutic strategies to prevent allograft rejection. However, toxicities and complications of current immuno-suppressive drugs make apparent the need for new targets involved in allograft tolerance induction. Manipulation of a ligand central to the initiation of alloimmune responses may previde an opportunity to control the host response to an allograft with enhanced precision.
     PD-L1, a homolog to B7, has recently been identified as a ligand for PD-1 and is expressed on a variety of tissues and cells including T cells (CD4, CD8, natural killer [NK] T cells), B cells, and antigen-presenting cells (APCs). PD-L1 negatively regulates T-cell function, inhibits T-cell positive selection and development in the thymus, and plays a critical role in the regulation of peripheral tolerance. It has also been shown that PD-1 engagement by PD-L1 immunoglobulin (Ig) fusion protein administration induces long-term islet allograft survival. PD-L1 blockade using anti-PD-L1 monoclonal antibodies accelerates skin allograft rejection and cardiac graft arterial disease. The exact role of the regulation of alloimmune responses by PD-L1 on each cell type remains unclear.
     Aims:We used PD-L1-/- mice to evaluate the role of the PD-1/PD-L1 signal on allogeneic immune responses in vivo and the underlying mechanisms.
     Methods:(1) We compared the characteristics of APCs and T cells from the spleens of PD-L1-/- and WT B6 mice by four-color flow cytometry. (2) To determine the functional abilities of peripheral T lymphocytes and APCs from PD-L1-/- mice, a standard mixed lymphocytes reaction assay was performed. (3) To determined the cytokine profiles of PD-L1-/- T cells under allostimulation, or the T cells stimulated by allogeneic SCs from PD-L1-/- mice, ELISPOT assays for cytokine were performed. (4) Heart transplantation was performed from PD-L1-/- donors or recipients in major histocompatibility complex fully mismatched mouse combinations. The immunologic function of allograft recipients was evaluated ex vivo by enzyme-linked immunospot, mixed lymphocytes reaction, cytotoxic T lymphocyte, and flow cytometry.
     Results:(1) The data revealed a significant increases in CD11c+ DCs (5.4±2.2 Vs 3.5±1.1, P<0.05) and CDllb+ macrophages (12.7±4.7Vs 5.4±0.4, P<0.05) in the spleens of PD-L1-/- mice compared with WT controls, but a significant decrease in Foxp3+CD4+ Treg from PD-L1-/- mice compared with WT B6 mice (5.7±1.9Vs 7.3±1.5, P<0.05). All of the CD4+CD25+ T cells expresses Foxp3, phenotype Tregs. As expected, these Treg expressed higher PD-L1 on the surface in WT, but not knockout mice. The CD11c+ DCs demonstrated higher levels of PD-L1, but not PD-L2 expression on their surface in the WT B6 mice, whereas CD11c+ DCs from PD-L1-/- mice expressed slightly higher levels of CD80, CD95L, OX40L, PD-L2, and MHC II (IAb). (2) PD-L1-/- T cells demonstrated enhanced proliferation when stimulated with allogeneic SCs. When PD-L1-/- SCs served as stimulators, they demonstrated enhanced allostimulatory ability to C3H spleen T cells compared with their response to WT controls. (3) We performed ELIPOT assays for cytokine IL-2, IFN-y, IL-10, IL-4 production. T cells from PD-L1-/- mice demonstrated enhanced cytokine production in both Thl and Th2 types (vs. WT controls, P<0.05 for IFN-y; P<0.01 for IL-4; P<0.05 for IL-10) compared with the WT B6 mice. However, the T cells stimulated by allogeneic PD-L1-/- SCs produced an increased level of IFN-y and a decreased level of IL-4 (vs. WT controls, P<0.05) compared with the T cells stimulated by WT SCs. IL-10及IL-2 productions were equivocal between groups. (4) We performed a series of allogeneic HTx between two MHC fully mismatched strain combinations, B6 and C3H, and B6 and BALB/c, respectively. PD-L1-/- mice were tested as donors or recipients in both strain combinations. The heart allograft survival in all strain combinations demonstrated accelerated acute rejection in PD-L1-/- donors or recipients when compared with their comparable WT strain crosses. The mean survival time (MST) of PD-L1-/- allografts in C3H recipients was 9.3±1.1 days compared with 36±37 days in WT controls (P<0.01); the MST of C3H allografts in PD-L1-/ recipients was 8.5±0.6 days compared with 13.3±1.3 days in WT B6 recipients (P<0.01). Similarly, in B6 and BALB/c strain combinations, PD-L1-/- grafts in the BALB/c recipients were rejected at an accelerated rate at day 7 posttransplantation compared with 13±1.9 days in WT grafts (P<0.01). Although BALB/c grafts in the PD-L1-/- recipients were also rejected at an accelerated rate, MSTs were 7.0±0.8 days vs.13±1.6 days in WT recipients (P<0.001). (5) Standard MLR assays were performed on purified spleen T cells of heart allograft recipients at day 7 posttransplantation. The results demonstrated a significant increase in T-cell proliferation in both PD-L1-/- recipients and the recipients of PD-L1-/- grafts compared with the WT controls (P<0.05). (6) We examined the cytotoxic T cell and NK cell activities of recipient splenocytes both in recipients of PD-L1-/- allografts and PD-L1-/- recipients of WT allografts at day 7 posttransplantation. Antidonor CTL activities (against EL-4[H2b] and R1.1[H2k]) of recipients SCs were markedly increased both in recipients of PD-L1-/- grafts (P<0.01) and PD-L1-/- recipients (P<0.05) compared with WT controls. However, the NK cell activity increased moderately only in the PD-L1-/- recipients and not in the recipients of PD-L1-/- grafts compared with the WT controls. (7) The cytokine production of spleen T cells of heart allograft recipients was evaluated by ELISPOT assay in the combination of C3H to PD-L1-/- and PD-L1-/- to C3H mice at day 7 posttransplantation. WT B6 mice were used as controls. PD-L1-/- donors or recipients demonstrated a different pattern of cytokine production. Both Th1-(IL-2, P<0.05 and IFN-γ, P<0.05) and Th2 (IL-4, P<0.05)-cytokine production were increased significantly in the T cells of PD-L1-/- recipients. However, the T cells from the recipients of PD-L1-/-donors recealed a significant increase only in Thl cytokine IFN-y(P<0.05). Moreover, immunohistochemistry straining of frozen sections of the heart allografts and recipient spleens revealed significant elevations of IFN-γsecretion in the PD-L1-/- heart allografts and recipient spleens. However, increased IL-2 production was detected in the heart allografts and spleens of PD-L1-/- recipients compared with WT controls.
     Conclusions:(1) PD-L1 deficiency altered the balance of peripheral lymphocytes, resulting in a decrease in the number of Foxp3 +CD4+ Treg and an increase in APCs and their co-stimulatory molecule expression in the PD-L1-/- mice. (2) In vitro PD-L1-/-T cells respond more vigorously to allogeneic stimulation than those from WT mice. (3) PD-L1-/- APCs significantly enhance the response of allogeneic T cells compared with those of WT mice. (4) Absence of PD-L1 signal on APCs promotes Thl-cytokine production and suppresses Th2 cytokine production of allogeneic T cells. PD-L1/PD-1 signal induces different immune responses depending on the cell types. (5) Our in vivo data of heart allograft survival clearly support the role of PD-L1 signaling in modulating allogeneic immune responses after HTx. (6) The communication through PD-L1 is bidirectional, because both PD-L1-/- recipients and recipients of PD-L1 allografts demonstrated an augmented antidonor response. (7) The PD-L1 signaling is involved in the cytotoxic T cells, but may not be directly in involved in NK cell funciton. (8) The mechanisms of the PD-L1 signal-mediated immune response are different in recipients of PD-L1-/- allografts and PD-L1-/- recipients of WT allografts. These may be due to PD-L1 expressed on multiple types of cells.
     Significance:Our data suggest that PD-L1 not only delivers a negative costimulatory signal to activated T cells, regulating peripheral tolerance to self-antigen, but is also critical to the development of allogeneic tolerance. Manipulation of a ligand central to the initiation of alloimmune responses may provide an opportunity to control with enhanced precision the host response to an allograft. PD-L1, the ligand for PD-1, seems to be integral to the modulation of T-cell activation and the APC responses, suggesting that it is such a target. This subject can support a new theoretical foundation by fully understand the mechanisms of PD-1/PD-L1 signal in transplantation immunology; provide a new idea on clinical tolerance induction and maintenance; and have a good clinical application for allografts long-term survival.
引文
[1]Ishida Y, Agata Y, Shibahara K, et al. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J.1992; 11(11):3887-95.
    [2]Agata Y, Kawasaki A, Nishimura H, et al. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol.1996; 8(5):765-72.
    [3]Nishimura H, Minato N, Nakano T, et al. Immunological studies on PD-1 deficient mice:implication of PD-1 as a negative regulator for B cell responses. Int Immunol.1998; 10(10):1563-72.
    [4]Nishimura H, Nose M, Hiai H, et al. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity. 1999; 11(2):141-51.
    [5]Nishimura H, Agata Y, Kawasaki A, et al. Developmentally regulated expression of the PD-1 protein on the surface of double-negative (CD4-CD8-) thymocytes. Int Immunol. 1996; 8(5):773-80.
    [6]Tashiro K, Tada H, Heilker R, et al. Signal sequence trap:a cloning strategy for secreted proteins and type I membrane proteins. Science.1993; 261(5121):600-3.
    [7]Freeman GJ, Long AJ, Iwai Y, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med.2000; 192(7):1027-34.
    [8]Carter L, Fouser LA, Jussif J, et al. PD-1:PD-L inhibitory pathway affects both CD4(+) and CD8(+) T cells and is overcome by IL-2. Eur J Immunol.2002; 32(3):634-43.
    [9]Latchman Y, Wood CR, Chernova T, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol.2001; 2(3):261-8.
    [10]Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited. Annu Rev Immunol.2005; 23:515-48.
    [11]Dong H, Zhu G, Tamada K, et al. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med.1999;5(12):1365-9.
    [12]Tseng SY, Otsuji M, Gorski K, et al. B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells. J Exp Med.2001; 193(7):839-46.
    [13]Tamura H, Dong H, Zhu G, et al. B7-H1 costimulation preferentially enhances CD28-independent T-helper cell function. Blood.2001; 97(6):1809-16.
    [14]Shin T, Yoshimura K, Crafton EB, et al. In vivo costimulatory role of B7-DC in tuning T helper cell 1 and cytotoxic T lymphocyte responses. J Exp Med.2005; 201 (10):1531-4].
    [15]Zhang X, Schwartz JC, Guo X, et al. Structural and functional analysis of the costimulatory receptor programmed death-1. Immunity.2004; 20(3):337-47.
    [16]Long EO. Regulation of immune responses through inhibitory receptors. Annu Rev Immunol.1999; 17:875-904.
    [17]Sidorenko SP, Clark EA. The dual-function CD150 receptor subfamily:the viral attraction. Nat Immunol.2003; 4(1):19-24.
    [18]Okazaki T, Maeda A, Nishimura H, et al. PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc Natl Acad Sci U S A.2001; 98(24):13866-71.
    [19]Shinohara T, Taniwaki M, Ishida Y, et al. Structure and chromosomal localization of the human PD-1 gene (PDCD1). Genomics.1994; 23(3):704-6.
    [20]Parry RV, Chemnitz JM, Frauwirth KA, et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol.2005; 25(21):9543-53.
    [21]Sheppard KA, Fitz LJ, Lee JM, et al. PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3zeta signalosome and downstream signaling to PKCtheta. FEBS Lett.2004; 574(1-3):37-41.
    [22]Okazaki T, Wang J. PD-1/PD-L pathway and autoimmunity. Autoimmunity.2005; 38(5):353-7.
    [23]Raimondi G, Shufesky WJ, Tokita D, et al. Regulated compartmentalization of programmed cell death-1 discriminates CD4+CD25+ resting regulatory T cells from activated T cells. J Immunol.2006; 176(5):2808-16.
    [24]Zhong X, Bai C, Gao W, et al. Suppression of expression and function of negative immune regulator PD-1 by certain pattern recognition and cytokine receptor signals associated with immune system danger. Int Immunol.2004; 16(8):1181-8.
    [25]Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol.1994; 12:991-1045.
    [26]Nguyen LT, Radhakrishnan S, Ciric B, et al. Cross-linking the B7 family molecule B7-DC directly activates immune functions of dendritic cells. J Exp Med.2002; 196(10):1393-8.
    [27]Radhakrishnan S, Nguyen LT, Ciric B, et al. Naturally occurring human IgM antibody that binds B7-DC and potentiates T cell stimulation by dendritic cells. J Immunol. 2003; 170(4):1830-8.
    [28]Ishida M, Iwai Y, Tanaka Y, et al. Differential expression of PD-L1 and PD-L2, ligands for an inhibitory receptor PD-1, in the cells of lymphohematopoietic tissues. Immunol Lett.2002; 84(1):57-62.
    [29]Yamazaki T, Akiba H, Iwai H, et al. Expression of programmed death 1 ligands by murine T cells and APC. J Immunol.2002; 169(10):5538-45.
    [30]Liang SC, Latchman YE, Buhlmann JE, et al. Regulation of PD-1, PD-L1, and PD-L2 expression during normal and autoimmune responses. Eur J Immunol.2003; 33(10): 2706-16.
    [31]Parsa AT, Waldron JS, Panner A, et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med.2007; 13(1):84-8.
    [32]Loke P, Allison JP. PD-L1 and PD-L2 are differentially regulated by Thl and Th2 cells. Proc Natl Acad Sci U S A.2003; 100(9):5336-41.
    [33]Brown JA, Dorfman DM, Ma FR, et al. Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J Immunol.2003; 170(3):1257-66.
    [34]Nishimura H, Okazaki T, Tanaka Y, et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science.2001; 291(5502):319-22.
    [35]Okazaki T, Tanaka Y. Nishio R, et al. Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-deficient mice. Nat Med.2003; 9(12): 1477-83.
    [36]Okazaki T, Honjo T. Pathogenic roles of cardiac autoantibodies in dilated cardiomyopathy. Trends Mol Med.2005; 11(7):322-6.
    [37]Goser S, Andrassy M, Buss SJ, et al. Cardiac troponin Ⅰ but not cardiac troponin T induces severe autoimmune inflammation in the myocardium. Circulation.2006; 114(16): 1693-702.
    [38]Seidman JG, Seidman C. The genetic basis for cardiomyopathy:from mutation identification to mechanistic paradigms. Cell.2001; 104(4):557-67.
    [39]Murphy RT, Mogensen J, Shaw A, et al. Novel mutation in cardiac troponin I in recessive idiopathic dilated cardiomyopathy. Lancet.2004; 363(9406):371-2.
    [40]Wallukat G, Reinke P, Dorffel WV, et al. Removal of autoantibodies in dilated cardiomyopathy by immunoadsorption. Int J Cardiol.1996; 54(2):191-5.
    [41]Felix SB, Staudt A, Landsberger M, et al. Removal of cardiodepressant antibodies in dilated cardiomyopathy by immunoadsorption. J Am Coll Cardiol.2002; 39(4):646-52.
    [42]Felix SB, Staudt A, Dorffel WV, et al. Hemodynamic effects of immunoadsorption and subsequent immunoglobulin substitution in dilated cardiomyopathy:three-month results from a randomized study. J Am Coll Cardiol.2000; 35(6):1590-8.
    [43]Felix SB, Staudt A. Non-specific immunoadsorption in patients with dilated cardiomyopathy:mechanisms and clinical effects. Int J Cardiol.2006; 112(1):30-3.
    [44]Anderson MS, Bluestone JA. The NOD mouse:a model of immune dysregulation. Annu Rev Immunol.2005:23:447-85.
    [45]Maier LM, Wicker LS. Genetic susceptibility to type 1 diabetes. Curr Opin Immunol.2005; 17(6):601-8.
    [46]Wang J, Yoshida T, Nakaki F, et al. Establishment of NOD-Pdcdl-/- mice as an efficient animal model of type I diabetes. Proc Natl Acad Sci U S A.2005; 102(33):11823-8.
    [47]Fife BT, Pauken KE, Eagar TN, et al. Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nat Immunol.2009; 10(11): 1185-92.
    [48]Yoshida T, Jiang F, Honjo T, et al. PD-1 deficiency reveals various tissue-specific autoimmunity by H-2b and dose-dependent requirement of H-2g7 for diabetes in NOD mice. Proc Natl Acad Sci U S A.2008; 105(9):3533-8.
    [49]Ansari MJ, Salama AD, Chitnis T, et al. The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice. J Exp Med.2003; 198(1):63-9.
    [50]Vergani A, D'Addio F, Jurewicz M, et al. A novel clinically relevant strategy to abrogate autoimmunity and regulate alloimmunity in NOD mice. Diabetes.2010; 59(9):2253-64.
    [51]Keir ME, Liang SC, Guleria I, et al. Tissue expression of PD-L1 mediates peripheral T cell tolerance. J Exp Med.2006; 203(4):883-95.
    [52]Okazaki T, Otaka Y, Wang J, et al. Hydronephrosis associated with antiurothelial and antinuclear autoantibodies in BALB/c-Fcgr2b-/-Pdcd1-/-mice. J Exp Med.2005; 202(12): 1643-8.
    [53]Sakai S, Kawamura I, Okazaki T, et al. PD-1-PD-L1 pathway impairs T(h)1 immune response in the late stage of infection with Mycobacterium bovis bacillus Calmette-Guerin. Int Immunol.2010; 22(12):915-25.
    [54]Jiang F, Yoshida T, Nakaki F, et al. Identification of QTLs that modify peripheral neuropathy in NOD.H2b-Pdcd1-/- mice. Int Immunol.2009; 21(5):499-509.
    [55]Ravetch JV, Bolland S. IgG Fc receptors. Annu Rev Immunol.2001; 19:275-90.
    [56]Bolland S, Ravetch JV. Spontaneous autoimmune disease in Fc (gamma) RIIB-deficient mice results from strain-specific epistasis. Immunity.2000; 13(2):277-85.
    [57]Takai T. Fc receptors and their role in immune regulation and autoimmunity. J Clin Immunol.2005; 25(1):1-18.
    [58]Prokunina L, Castillejo-Lopez C, Oberg F. et al. A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet.2002; 32(4):666-9.
    [59]Ferreiros-Vidal I, Gomez-Reino JJ, Barros F, et al. Association of PDCD1 with susceptibility to systemic lupus erythematosus:evidence of population-specific effects. Arthritis Rheum.2004; 50(8):2590-7.
    [60]Lin SC, Yen JH, Tsai JJ, et al. Association of a programmed death 1 gene polymor-phism with the development of rheumatoid arthritis, but not systemic lupus erythematosus. Arthritis Rheum.2004; 50(3):770-5.
    [61]Wang SC, Chen YJ, Ou TT, et al. Programmed death-1 gene polymorphisms in patients with systemic lupus erythematosus in Taiwan. J Clin Immunol.2006; 26(6):506-11.
    [62]Abelson AK, Johansson CM, Kozyrev SV, et al. No evidence of association between genetic variants of the PDCD1 ligands and SLE. Genes Immun.2007; 8(1):69-74.
    [63]Wang SC, Lin CH, Ou TT, et al. Ligands for programmed cell death 1 gene in patients with systemic lupus erythematosus. J Rheumatol.2007; 34(4):721-5.
    [64]Prokunina L, Padyukov L, Bennet A, et al. Association of the PD-1.3A allele of the PDCD1 gene in patients with rheumatoid arthritis negative for rheumatoid factor and the shared epitope. Arthritis Rheum.2004; 50(6):1770-3.
    [65]Kong EK, Prokunina-Olsson L, Wong WH, et al. A new haplotype of PDCD1 is associated with rheumatoid arthritis in Hong Kong Chinese. Arthritis Rheum.2005; 52(4): 1058-62.
    [66]Nielsen C, Hansen D, Husby S, et al. Association of a putative regulatory polymorphism in the PD-1 gene with susceptibility to type 1 diabetes. Tissue Antigens.2003; 62(6):492-7.
    [67]Ni R, Ihara K, Miyako K, et al. PD-1 gene haplotype is associated with the development of type 1 diabetes mellitus in Japanese children. Hum Genet.2007; 121(2):223-32.
    [68]Kroner A, Mehling M, Hemmer B, et al. A PD-1 polymorphism is associated with disease progression in multiple sclerosis. Ann Neurol.2005; 58(1):50-7.
    [69]Lee SH, Lee YA, Woo DH, et al. Association of the programmed cell death 1 (PDCD1) gene polymorphism with ankylosing spondylitis in the Korean population. Arthritis Res Ther.2006; 8(6):R163.
    [70]Bennet AM, Alarcon-Riquelme M, Wiman B, et al. Decreased risk for myocardial infarction and lower tumor necrosis factor-alpha levels in carriers of variants of the PDCD1 gene. Hum Immunol.2006; 67(9):700-5.
    [71]James ES, Harney S, Wordsworth BP, et al. PDCD1:a tissue-specific susceptibility locus for inherited inflammatory disorders. Genes Immun.2005; 6(5):430-7.
    [72]Helms C, Cao L, Krueger JG, et al. A putative RUNX1 binding site variant between SLC9A3R1 and NAT9 is associated with susceptibility to psoriasis. Nat Genet. 2003; 35(4):349-56.
    [73]Kasagi S, Kawano S, Okazaki T, et al. Anti-programmed cell death 1 antibody reduces CD4+PD-1+ T cells and relieves the lupus-like nephritis of NZB/W Fl mice. J Immunol.2010; 184(5):2337-47.
    [74]Tokuhiro S, Yamada R, Chang X, et al. An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis. Nat Genet.2003; 35(4):341-8.
    [75]Day CL, Kaufmann DE, Kiepiela P, et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature.2006; 443(7109):350-4.
    [76]Trautmann L, Janbazian L, Chomont N, et al. Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction. Nat Med.2006; 12(10): 1198-202.
    [77]Petrovas C, Casazza JP, Brenchley JM, et al. PD-1 is a regulator of virus-specific CD8+ T cell survival in HIV infection.J Exp Med.2006; 203(10):2281-92.
    [78]Trabattoni D, Saresella M, Biasin M, et al. B7-H1 is up-regulated in HIV infection and is a novel surrogate marker of disease progression. Blood.2003; 101(7):2514-20.
    [79]Urbani S, Amadei B, Tola D, et al. PD-1 expression in acute hepatitis C virus (HCV) infection is associated with HCV-specific CD8 exhaustion. J Virol.2006; 80(22):11398-403.
    [80]Radziewicz H. Ibegbu CC, Fernandez ML, et al. Liver-infiltrating lymphocytes in chronic human hepatitis C virus infection display an exhausted phenotype with high levels of PD-1 and low levels of CD 127 expression. J Virol.2007; 81 (6):2545-53.
    [81]Geng L, Jiang G, Fang Y, et al. B7-H1 expression is upregulated in peripheral blood CD14+ monocytes of patients with chronic hepatitis B virus infection, which correlates with higher serum IL-10 levels. J Viral Hepat.2006; 13(11):725-33.
    [82]Das S, Suarez G, Beswick EJ, et al. Expression of B7-H1 on gastric epithelial cells: its potential role in regulating T cells during Helicobacter pylori infection. J Immunol.2006; 176(5):3000-9.
    [83]Kobayashi M, Kawano S, Hatachi S, et al. Enhanced expression of programmed death-1 (PD-1)/PD-L1 in salivary glands of patients with Sjogren's syndrome. J Rheumatol. 2005; 32(11):2156-63.
    [84]Bolstad AI, Eiken HG, Rosenlund B, et al. Increased salivary gland tissue expression of Fas, Fas ligand, cytotoxic T lymphocyte-associated antigen 4, and programmed cell death 1 in primary Sjogren's syndrome. Arthritis Rheum.2003; 48(1):174-85.
    [85]Hatachi S, Iwai Y, Kawano S, et al. CD4+ PD-1+ T cells accumulate as unique anergic cells in rheumatoid arthritis synovial fluid. J Rheumatol.2003; 30(7):1410-9.
    [86]Wan B, Nie H, Liu A, et al. Aberrant regulation of synovial T cell activation by soluble costimulatory molecules in rheumatoid arthritis. J Immunol.2006; 177(12):8844-50.
    [87]Mataki N, Kikuchi K, Kawai T, et al. Expression of PD-1, PD-L1, and PD-L2 in the liver in autoimmune liver diseases. Am J Gastroenterol.2007; 102(2):302-12.
    [87]Isogawa M, Furuichi Y, Chisari FV. Oscillating CD8(+) T cell effector functions after antigen recognition in the liver. Immunity.2005; 23(1):53-63.
    [89]Iwai Y, Terawaki S, Ikegawa M, et al. PD-1 inhibits antiviral immunity at the effector phase in the liver. J Exp Med.2003; 198(1):39-50.
    [90]Kaech SM, Wherry EJ, Ahmed R. Effector and memory T-cell differentiation: implications for vaccine development. Nat Rev Immunol.2002; 2(4):251-62.
    [91]Wherry EJ, Blattman JN, Ahmed R. Low CDS T-cell proliferative potential and high viral load limit the effectiveness of therapeutic vaccination. J Virol.2005; 79(14):8960-8.
    [92]Wherry EJ, Ahmed R. Memory CD8 T-cell differentiation during viral infection. J Virol.2004; 78(11):5535-45.
    [93]Wherry EJ, Blattman JN, Murali-Krishna K, et al. Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. J Virol.2003; 77(8):4911-27.
    [94]Betts MR, Exley B, Price DA, et al. Characterization of functional and phenotypic changes in anti-Gag vaccine-induced T cell responses and their role in protection after HIV-1 infection. Proc Natl Acad Sci U S A.2005; 102(12):4512-7.
    [95]Betts MR, Nason MC, West SM, et al. HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood.2006; 107(12):4781-9.
    [96]Klenerman P, Hill A. T cells and viral persistence:lessons from diverse infections. Nat Immunol.2005; 6(9):873-9.
    [97]Barber DL, Wherry EJ, Masopust D, et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature.2006; 439(7077):682-7.
    [98]Macatangay BJ, Rinaldo CR. PD-1 blockade:A promising immunotherapy for HIV? Cellscience.2009; 5(4):61-5.
    [99]Said EA, Dupuy FP, Trautmann L, et al. Programmed death-1-induced interleukin-10 production by monocytes impairs CD4+ T cell activation during HIV infection. Nat Med. 2010; 16(4):452-9.
    [100]Boettler T, Panther E, Bengsch B, et al. Expression of the interleukin-7 receptor alpha chain (CD127) on virus-specific CD8+ T cells identifies functionally and phenotyp-ically defined memory T cells during acute resolving hepatitis B virus infection.J Virol.2006; 80(7):3532-40.
    [101]Zhang Z, Jin B, Zhang JY, et al. Dynamic decrease in PD-1 expression correlates with HBV-specific memory CD8 T-cell development in acute self-limited hepatitis B patients. J Hepatol.2009; 50(6):1163-73.
    [102]Radziewicz H, Dunham RM, Grakoui A. PD-1 tempers Tregs in chronic HCV infection. J Clin Invest.2009; 119(3):450-3.
    [103]Vali B, Jones RB, Sakhdari A, et al. HCV-specific T cells in HCV/HIV co-infection show elevated frequencies of dual Tim-3/PD-1 expression that correlate with liver disease progression. Eur J Immunol.2010; 40(9):2493-505.
    [104]Muhlbauer M, Fleck M, Schutz C, et al. PD-L1 is induced in hepatocytes by viral infection and by interferon-alpha and -gamma and mediates T cell apoptosis. J Hepatol.2006; 45(4):520-8.
    [105]Kirchberger S, Majdic O, Steinberger P, et al. Human rhinoviruses inhibit the accessory function of dendritic cells by inducing sialoadhesin and B7-H1 expression. J Immunol.2005; 175(2):1145-52.
    [106]Jun H, Seo SK, Jeong HY, et al. B7-H1 (CD274) inhibits the development of herpetic stromal keratitis (HSK). FEBS Lett.2005; 579(27):6259-64.
    [107]Stanciu LA, Bellettato CM, Laza-Stanca V, et al. Expression of programmed death-1 ligand (PD-L) 1, PD-L2, B7-H3, and inducible costimulator ligand on human respiratory tract epithelial cells and regulation by respiratory syncytial virus and type 1 and 2 cytokines. J Infect Dis.2006; 193(3):404-12.
    [108]Chang J, Braciale TJ. Respiratory syncytial virus infection suppresses lung CD8+ T-cell effector activity and peripheral CD 8+ T-cell memory in the respiratory tract. Nat Med. 2002; 8(1):54-60.
    [109]Anderson KM, Czinn SJ, Redline RW, et al. Induction of CTLA-4-mediated anergy contributes to persistent colonization in the murine model of gastric Helicobacter pylori infection. J Immunol.2006; 176(9):5306-13.
    [110]Stromberg E, Lundgren A, Edebo A, et al. Increased frequency of activated T-cells in the Helicobacter pylori-infected antrum and duodenum. FEMS Immunol Med Microbiol. 2003; 36(3):159-68.
    [111]Cohen N, Morisset J, Emilie D. Induction of tolerance by Porphyromonas gingivalis on APCS:a mechanism implicated in periodontal infection. J Dent Res.2004; 83(5):429-33.
    [112]Ghiotto M, Gauthier L, Serriari N, et al. PD-L1 and PD-L2 differ in their molecular mechanisms of interaction with PD-1. Int Immunol.2010; 22(8):651-60.
    [113]Kamradt T. T cell unresponsiveness in lepromatous leprosy. J Rheumatol.1993; 20(5):904-6.
    [114]Kaufmann SH. Tuberculosis:back on the immunologists' agenda. Immunity.2006; 24(4):351-7.
    [115]Loomis WP, Starnbach MN. Chlamydia trachomatis infection alters the development of memory CD8+ T cells. J Immunol.2006; 177(6):4021-7.
    [116]Smith P, Walsh CM, Mangan NE, et al. Schistosoma mansoni worms induce anergy of T cells via selective up-regulation of programmed death ligand 1 on macrophages. J Immunol.2004; 173(2):1240-8.
    [117]Terrazas LI, Montero D, Terrazas CA, et al. Role of the programmed Death-1 pathway in the suppressive activity of alternatively activated macrophages in experimental cysticercosis. Int J Parasitol.2005; 35(13):1349-58.
    [118]Liang SC, Greenwald RJ, Latchman YE, et al. PD-L1 and PD-L2 have distinct roles in regulating host immunity to cutaneous leishmaniasis. Eur J Immunol.2006; 36(1): 58-64.
    [119]Probst HC, McCoy K, Okazaki T, et al. Resting dendritic cells induce peripheral CD8+ T cell tolerance through PD-1 and CTLA-4. Nat Immunol.2005; 6(3):280-6.
    [120]Okazaki T, Honjo T. Rejuvenating exhausted T cells during chronic viral infection. Cell.2006; 124(3):459-61.
    [121]Selenko-Gebauer N, Majdic O, Szekeres A, et al. B7-H1 (programmed death-1 ligand) on dendritic cells is involved in the induction and maintenance of T cell anergy. J Immunol.2003; 170(7):3637-44.
    [122]Nurieva R, Thomas S, Nguyen T, et al. T-cell tolerance or function is determined by combinatorial costimulatory signals. EMBO J.2006; 25(11):2623-33.
    [123]Mueller DL. E3 ubiquitin ligases as T cell anergy factors. Nat Immunol.2004; 5(9): 883-90.
    [124]Guleria I, Khosroshahi A, Ansari M.T, et al. A critical role for the programmed death ligand 1 in fetomaternal tolerance. J Exp Med.2005; 202(2):231-7.
    [125]Petroff MG, Chen L, Phillips TA, et al. B7 family molecules are favorably positioned at the human maternal-fetal interface. Biol Reprod.2003; 68(5):1496-504.
    [126]Ozkaynak E, Wang L, Goodearl A. et al. Programmed death-1 targeting can promote allograft survival. J Immunol.2002; 169(11):6546-53.
    [127]Watanabe N, Gavrieli M, Sedy JR, et al. BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat Immunol.2003; 4(7):670-9.
    [128]Tao R, Wang L, Han R, et al. Differential effects of B and T lymphocyte attenuator and programmed death-1 on acceptance of partially versus fully MHC-mismatched cardiac allografts. J Immunol.2005; 175(9):5774-82.
    [129]Iwai Y, Ishida M, Tanaka Y, et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA.2002; 99(19):12293-7.
    [130]Hirano F, Kaneko K, Tamura H, et al. Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res.2005; 65(3):1089-96.
    [131]Curiel TJ, Wei S, Dong H, et al. Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med.2003; 9(5):562-7.
    [132]Strome SE, Dong H, Tamura H, et al. B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma. Cancer Res.2003; 63(19):6501-5.
    [133]He YF, Zhang GM, Wang XH, et al. Blocking programmed death-1 ligand-PD-1 interactions by local gene therapy results in enhancement of antitumor effect of secondary lymphoid tissue chemokine. J Immunol.2004; 173(8):4919-28.
    [134]Blank C, Brown I, Peterson AC, et al. PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res.2004; 64(3):1140-5.
    [135]Iwai Y, Terawaki S, Honjo T. PD-1 blockade inhibits hematogenous spread of poorly immunogenic tumor cells by enhanced recruitment of effector T cells.Int Immunol. 2005; 17(2):133-44.
    [136]Dong H, Strome SE, Salomao DR, et al. Tumor-associated B7-H1 promotes T-cell apoptosis:a potential mechanism of immune evasion. Nat Med.2002; 8(8):793-800.
    [137]Wintterle S, Schreiner B, Mitsdoerffer M, et al. Expression of the B7-related molecule B7-H1 by glioma cells:a potential mechanism of immune paralysis. Cancer Res. 2003; 63(21):7462-7.
    [138]Konishi J, Yamazaki K, Azuma M, et al. B7-H1 expression on non-small cell lung cancer cells and its relationship with tumor-infiltrating lymphocytes and their PD-1 expression. Clin Cancer Res.2004; 10(15):5094-100.
    [139]Thompson RH, Gillett MD, Cheville JC, et al. Costimulatory B7-H1 in renal cell carcinoma patients:Indicator of tumor aggressiveness and potential therapeutic target. Proc Natl Acad Sci U S A.2004; 101(49):17174-9.
    [140]Thompson RH, Kuntz SM, Leibovich BC, et al. Tumor B7-H1 is associated with poor prognosis in renal cell carcinoma patients with long-term follow-up. Cancer Res.2006; 66(7):3381-5.
    [141]Ohigashi Y, Sho M, Yamada Y, et al. Clinical significance of programmed death-1 ligand-1 and programmed death-1 ligand-2 expression in human esophageal cancer. Clin Cancer Res.2005; 11(8):2947-53.
    [142]Wu C, Zhu Y, Jiang J, et al. Immunohistochemical localization of programmed death-1 ligand-1 (PD-L1) in gastric carcinoma and its clinical significance. Acta Histochem. 2006; 108(1):19-24.
    [143]Ghebeh H, Mohammed S, Al-Omair A, et al. The B7-H1 (PD-L1) T lymphocyte-inhibitory molecule is expressed in breast cancer patients with infiltrating ductal carcinoma:correlation with important high-risk prognostic factors. Neoplasia.2006; 8(3):190-8.
    [144]Tsushima F, Tanaka K, Otsuki N, et al. Predominant expression of B7-H1 and its immunoregulatory roles in oral squamous cell carcinoma. Oral Oncol.2006; 42(3):268-74.
    [145]Nakanishi J, Wada Y, Matsumoto K, et al. Overexpression of B7-H1 (PD-L1) significantly associates with tumor grade and postoperative prognosis in human urothelial cancers. Cancer Immunol Immunother.2007; 56(8):1173-82.
    [146]Hamanishi J, Mandai M, Iwasaki M, et al. Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci U S A.2007; 104(9):3360-5.
    [147]Nomi T, Sho M, Akahori T, et al. Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer. Clin Cancer Res.2007; 13(7):2151-7.
    [148]Thompson RH, Dong H, Lohse CM, et al. PD-1 is expressed by tumor-infiltrating immune cells and is associated with poor outcome for patients with renal cell carcinoma. Clin Cancer Res.2007; 13(6):1757-61.
    [149]Dong H, Zhu G, Tamada K, et al. B7-H1 determines accumulation and deletion of intrahepatic CD8(+) T lymphocytes. Immunity.2004; 20(3):327-36.
    [150]Kanai T, Totsuka T, Uraushihara K, et al. Blockade of B7-H1 suppresses the development of chronic intestinal inflammation. J Immunol.2003; 171(8):4156-63.
    [151]Subudhi SK, Zhou P, Yerian LM, et al. Local expression of B7-H1 promotes organ-specific autoimmunity and transplant rejection. J Clin Invest.2004; 113(5):694-700.
    [152]Wang S, Bajorath J, Flies DB, et al. Molecular modeling and functional mapping of B7-H1 and B7-DC uncouple costimulatory function from PD-1 interaction. J Exp Med. 2003; 197(9):1083-91.
    [153]del Rio ML, Penuelas-Rivas G, Dominguez-Perles R, et al. Antibody-mediated signaling through PD-1 costimulates T cells and enhances CD28-dependent proliferation. Eur J Immunol.2005; 35(12):3545-60.
    [154]Butte MJ, Keir ME, Phamduy TB, et al. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity.2007; 27(1):111-22.
    [155]Aramaki O, Shirasugi N, Takayama T, et al. Programmed death-1-programmed death-L1 interaction is essential for induction of regulatory cells by intratracheal delivery of alloantigen. Transplantation.2004; 77(1):6-12.
    [156]Kitazawa Y, Fujino M, Wang Q, et al. Involvement of the programmed death-1/programmed death-1 ligand pathway in CD4+CD25+ regulatory T-cell activity to suppress alloimmune responses. Transplantation.2007; 83(6):774-82.
    [157]Sharma MD, Baban B, Chandler P, et al. Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J Clin Invest.2007; 117(9):2570-82.
    [158]Sandner SE, Clarkson MR, Salama AD, et al. Role of the programmed death-1 pathway in regulation of alloimmune responses in vivo. J Immunol.2005; 174(6):3408-15.
    [159]Latchman YE, Liang SC, Wu Y, et al. PD-L1-deficient mice show that PD-L1 on T cells, antigen-presenting cells, and host tissues negatively regulates T cells. Proc Natl Acad Sci U S A.2004; 101(29):10691-6.
    [160]Habicht A, Kewalaramani R, Vu MD, et al. Striking dichotomy of PD-L1 and PD-L2 pathways in regulating alloreactive CD4(+) and CD8(+) T cells in vivo. Am J Transplant.2007; 7(12):2683-92.
    [161]Wang L, Han R, Hancock WW. Programmed cell death 1 (PD-1) and its ligand PD-L1 are required for allograft tolerance. Eur J Immunol.2007; 37(10):2983-90.
    [162]Keir ME, Latchman YE, Freeman GJ, et al. Programmed death-1 (PD-1):PD-ligand 1 interactions inhibit TCR-mediated positive selection of thymocytes. J Immunol.2005; 175(11):7372-9.
    [163]Gao W, Demirci G, Strom TB, et al. Stimulating PD-1-negative signals concurrent with blocking CD154 co-stimulation induces long-term islet allograft survival. Transplantation.2003; 76(6):994-9.
    [164]Watson MP, George AJ, Larkin DF. Differential effects of costimulatory pathway modulation on corneal allograft survival. Invest Ophthalmol Vis Sci.2006; 47(8):3417-22.
    [165]Koga N, Suzuki J, Kosuge H, et al. Blockade of the interaction between PD-1 and PD-L1 accelerates graft arterial disease in cardiac allografts. Arterioscler Thromb Vasc Biol. 2004; 24(11):2057-62.
    [166]Yu MC, Chen CH, Liang X, et al. Inhibition of T-cell responses by hepatic stellate cells via B7-H1-mediated T-cell apoptosis in mice. Hepatology.2004; 40(6):1312-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700