广义Camassa-Holm方程和修正Fornberg-Whitham方程的行波解及分支
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了结构相似的两个著名的数学物理方程的精确行波解:第一个方程是广义Camassa-Holm方程ut+2kux-uxxt+3u2ux=2uxuxx+uuxxx,(1)第二个方程是修正Fornberg-Whitham方程ut-uxxt+ux+u2ux=3uxuxx+uuxxx.(2)
     利用微分方程动力系统分支方法、辅助方程法及数值模拟,对上述两个方程的精确行波解及解的分支进行了研究.
     对方程(1)获得了以下结果:
     (1°)我们证明k=8/3是几种类型的显式解的分支参数值.
     (i)当k<8/3时,有下列五种形式的显式解:
     (1)双曲型尖波解,
     (2)分数形式的尖波解,
     (3)分数形式的奇异波解,
     (4)双曲型奇异波解,
     (5)双曲型光滑孤立波解;
     (ii)当k=8/3时,有两种显式解:分数形式的尖波解和分数形式的奇异波解;
     (iii)当k>8/3时,没有显式非线性波解.
     (2°)找到了某些临界波速值(也称分支波速值),使得孤立尖波(peakon)和反孤立尖波(anti-peakon)交替出现.
     (3°)求出了双曲型尖波解和分数形式尖波解的临界波速值以及双曲型奇异波解和分数形式奇异波解的临界波速值.
     对方程(2)获得了以下结果:
     (1°)利用辅助方程法得到了其尖波解、孤立波解、三角函数解、椭圆函数解、爆破解这五类解的显式表达式,其中后三类解都是新的,而第二、三、四类解的表达式对任意的波速都成立,推广了前人的结果(He等只对特定的波速给出了孤立波和孤立尖波的显示表达式).
     (2°)利用数学软件Mathematica验证了解的正确性,即将所得的解代入方程中,用计算机证明它们确为方程的解.在文中给出了验证程序和验证结果以及解的数值模拟结果(图形).
In this paper, we study the exact traveling wave solutions for two types of famous nonlinear equations. The first one is the generalized Camassa-Holm equation ut+2kux-uxxt+3u2ux=2uxuxx+uuxxx.(1)
     The second is the modified Fornberg-Whitham equation ut-uxxt+ux+u2ux=3uxuxx+uuxxx.(2)
     For Eq.(1) we obtain the following results:
     (1°) It is verified that k=3/8is a bifurcation parametric value for several types of explicit nonlinear wave solutions.
     (i) When k<3/8, there are five types of the explicit nonlinear wave solutions, which are
     (1) hyperbolic peakon wave solution,
     (2) fractional peakon wave solution,
     (3) fractional singular wave solution,
     (4) hyperbolic singular wave solution,
     (5) hyperbolic smooth solitary wave solution.
     (ⅱ) When k=3/8, there are two types of explicit nonlinear wave solutions, which are fractional peakon wave solution and fractional singular wave solution.
     (ⅲ) When k>3/8, there is not any type of explicit nonlinear wave solutions.
     (2°) It is shown that there are some bifurcation wave speed values such that the peakon wave and the anti-peakon wave appear alternately.
     (3°) It is displayed that there are other bifurcation wave speed values such that the hyperbolic peakon wave solution becomes the fractional peakon wave solution, and the hyperbolic singular wave solution becomes the fractional singular wave solution.
     For Eq.(2) we get the following results:
     (1°) Some explicit expressions of solutions are obtained by using auxiliary equation method, which include peakon wave solution, solitary wave solution, trigonometric func-tion solutions, elliptic function periodic solutions, and fractal type blow-up solutions. The latter three types of solution are new and the expressions of the second、the third and the forth types of solution are valid for any wave velocity c, which extend the results by other authors (He et. al just gave the explicit expressions of solitary wave solution for special wave velocity).
     (2°) We use the software Mathematica to test the correctness of these solutions. That is, it is confirmed that these functions indeed satisfy Eq.(2) by computer. The testing programs and the testing results are given, and numerical simulation is also shown.
引文
[1]郭柏灵,庞小峰.孤立子[M].北京:科学出版社,1987
    [2]王明亮.非线性发展方程与孤立子[M].兰州:兰州大学出版社,1990
    [3]谷超豪等.孤立子理论及其应用[M].杭州:浙江科学技术出版社,1990
    [4]李诩神.非线性科学选讲[M].合肥:中国科学技术大学出版社,1994
    [5]李诩神.孤子与可积系统[M].上海:上海科技出版社,1999
    [6]谷超豪,胡和生,周子翔.孤立子理论中的Darboux变换及其几何应用[M].上海:上海科技出版社,1999
    [7]陈登远.孤子引论[M].北京:科学出版社,2006
    [8] Bullough R.K., Caudrey P.J. Solitons[M]. Berlin: Springer-Verieg,1980
    [9] Faddeev L.D., Takhtajan L.A. Hamiltonian method in the theory of solitons[M].Berlin: Springer-Verlag,1987
    [10] Dodd R.K., Eilbeek J.C., Morris H C. Solitons and Nonlinear Equations[M]. London:Academic Press,1984
    [11] Matveev V.B., Salle M.A. Darboux transformation and solitons[M]. Berlin: Springer-Verlag,1991
    [12] Ablowitz M.J., Clarkson P.A. Solitons, Nonlinear Evolution Equations and InverseSeattering[M] Cambridge: Cambridge University Press,1999
    [13] Conte R. Ed. The Painleve Property, One Century Later[M]. New York: SpringerVerlag,1999
    [14] Drazin P.G., Johnson R.S. Solitons: An Intruduction[M]. Cambridge: CambridgeUniversity Press,1988
    [15] Newell A.C. Solitons in Mathematies and Physics[M]. Philadephia: SIAM,1985
    [16] Russell J.S. On waves[R]. London: Report of14th Meeting of the British Associationfor the Advancement of Seience,1844:311-39
    [17] Airy G.B. Tides and Waves[J]. Encyclopedia Metropolitana,1845,192(5):241–396
    [18] Stokes G.G. On the theory of oscillatory waves[J]. Transactions of the CambridgePhilosophical Society,1847,8:441–455
    [19] Boussinesq M.J. Th′eorie de l’intumescense appel′ee onde solitaire ou de translation sepropageant dans un canal rectangulaire[J]. C.R. Acad. Sc. Paris,1871,72:755–759
    [20] Miles J. W. The Korteweg-de Vries equation: a historical essay[J]. Journal of FluidMechanics,1981,106:131–147
    [21] Rayleigh L. On Waves[J]. PhilosoPhical Magazine,1876,5(1):257–279
    [22] Korteweg D.J., de Vries G. On the change of form of long waves advancing in arectangular canal, and on a new type of long stationary waves[J]. PhilosophicalMagazine,1895,39(5):422–443
    [23] Fermi E., Pasta J.R., Ulam S.M. Studies on Nonlinear Problems[R]. Los AlamosScience Laboratory Report La-1940,1955
    [24]闰振亚.非线性波与可积系统[D].大连:大连理工大学,2002
    [25] Seeger A., Donth H., Kochend¨orfer A. Theorie der Versetzungen in EindimensionalenAtomreihen[J]. Zeitschrift fu¨r Physik,1953,134(2):173–193
    [26] Perring J.K., Skyrme T.H.R. A model unifed feld equation[J]. Nuclear Physics A,1962,31:550–555
    [27] Zabusky N.J., Kruskal M.D. Interaction of solitons in a collisionless plasma and therecurrence of initial states[J]. Physical Review Letters,1965,15(6):240–243
    [28]申建伟.非线性波方程行波解分岔及其动力学行为的研究[D].西安:西北工业大学,2006
    [29] Camassa R., Holm D.D. An integrable shallow water equation with peaked soli-tons[J]. Phys. Rev. Lett.,1993,71:1661-1664
    [30] Constantin A., Strauss W.A. Stability of the Camassa-Holm solitons[J]. J NonlinearSci,2002,12:415–422
    [31] Liu Zhengrong, Wang Ruiqi. Jing Zhujun. Peaked wave solutions of Camassa-Holmequation[J]. Chaos, Solitons and Fractals,2004,19:77–92
    [32]楼森岳,唐晓艳.非线性数学物理方法[M].北京:科学出版社,2006
    [33] Rosenau Philip, Hyman James M. Compactons: Solitons with fnite wavelength[J].Physical Review Letters,1993,70(5):564–567
    [34] Rosenau Philip. On solitons, compactons, and Lagrange maps[J]. Physics Letters A,1996,211(5):265–275
    [35] Yan Zhenya, Bluman George. New compacton soliton solutions and solitary pat-terns solutions of nonlinearly dispersive Boussinesq equations[J]. Computer PhysicsCommunications,2002,149(1):11–18
    [36] Feng Zhaosheng. Computations of soliton solutions and periodic solutions for thefocusing branch of the nonlinear dispersive K(n, n) equations in higher-dimensionalspaces[J]. Applied Mathematies and Computation,2006,182(1):781–790
    [37] Inc Mustafa. New compacton and solitary pattern solutions of the nonlinear modifeddispersive Kein-Gordon equations[J]. Chaos, Solitons and Fractals,2007,3(4):1275–1284
    [38] Mollenaure L.F., Stolen R.H., Gordon J P. Experiment observation of picosecondpulse narrowing soliton in optical fbers[J]. Physical Review Letters,1980,45(13):1095–1098
    [39] Gardner C.S., Green J.M., Kruskal M.D., et al. Method for solving the Korteweg-deVries equation[J]. Physical Review Letters,1967,19:1095–1097
    [40] Lax P.D. Integrals of nonlinear equations of evolution and solitary waves[J]. Comm.Pure Appl. Math.,1968,21(5):467–490
    [41] Zakharov V.E., Shabat A.B. Interaction between solitons in a stable medium[J].Soviet Physics JETP,1973,37(5):823–828
    [42] Ablowitz M.J., Kaup D.J., Newell A.C., et al. Method for solving the Sine-Gordonequation[J]. Physical Review Letters,1973,30:1262–1264
    [43] Wahlquist H.D., Estabrook F.B. Prolongation struetures of nonlinear evolution equa-tions[J]. Journal of Mathematical Physics,1975,16(1):1–7
    [44] Wu Ke, Guo Hanying, Wang Shikun. Prolongation struetures of nonlinear systemsin higher dimensions[J]. Communications in Theoretical Physics,1983,2:1425-1442
    [45] Wang Shikun, Guo Hanying, Wu Ke. Inverse scattering transform and regularRiemann-Hilbert Problem[J]. Communications in Theoretical Physics,1983,2:1169-1175
    [46] Case K.M., Kac M. A discrete version of the inverse scattering problem[J]. Journalof Mathematical Physics,1973,14(5):594–603
    [47] Flasehka H. On the Toda lattice. II-inverse-scattering solution[J]. Progress of Theo-retical Physics,1974,51(3):703–716
    [48] Ablowitz M.J., Ladik J.F. Nonlinear diferential-diference equations[J]. Journal ofMathematical Physics,1975,16(3):598–603
    [49]刘希强.非线性发展方程显式解的研究[D].北京:中国工程研究院,2002
    [50] Fokas A.S., Its A.R. The nonlinear Sehro¨dinger equation on the interval[J]. Journalof Physics A,2004,37(23):6091–6114
    [51] Fokas A S, Its A.R., Sung L.Y. The nonlinear Schro¨dinger equation on the half-line[J]. Nonlinearity,2005,18(4):1771–1822
    [52]陈勇.孤立子理论中的若干问题的研究及机械化实现[D].大连:大连理工大学,2003
    [53] Wahlquist H.D., Estabrook F.B. Ba¨cklund transformation for solutions of theKorteweg-de Vries equation, Physical Review Letters,1973,31(23):1386-1390
    [54] Darboux G. Surune proposition relative anx′equations lineaires[M]. Paris: ComptesRendus Hebdomadaries des Seances de L’ Academie des Science,1882
    [55] Wadati Miki, Sanuki Heiji, Konno Kimiaki. Relationships among inverse method,Ba¨cklund transformation and an infnite number of conservation laws[J]. Progress ofTheoretical Physics,1975,53(2):419–436
    [56] Ablowitz M.J., Kaup D.J., Newell A.C., et al. Nonliear evolution equations of Phys-ical signifcance[J]. Physical Review Letters,1973,31(2):125–127
    [57] Gu Chaohao, Hu Hesheng. A unifed explicit form of Ba¨cklund transformations forgeneralized hierarchies of KdV equations[J]. Letters in Mathematical Physics,1986,11(4):325–335
    [58] Hu Hesheng. Darboux Transformations Between α=sinh α and α=sinh α andthe Application to Pseudo-Spherical Congruences in R2,1[J]. Letters in MathematicalPhysics,1999,48(2):187–195
    [59] Gu Chaohao, Hu Hesheng. The soliton behavior of principal chiral felds[M]. Tian-jin: Proceedings, Diferential geometric methods in theoretical physics,1992:501–510
    [60] Zeng Yunbo, Zhu Yiqing, Xiao Ying et al. Canonical explicit Ba¨cklund transforma-tions with speetrality for constrained fows of soliton hierarchies[J]. Physica A,2002,303(3-4):321–338.
    [61] Ma Wenxiu. Complexiton solutions of the Korteweg-de Vries equation with self-consistent sources[J]. Chaos, Solitons and Fractals,2005,26(5):1453–1458
    [62] Zhou Ruguang, Jiang Qiaoyun. A Darboux transformation and an exact solution forthe relativistic Toda lattice equation[J]. Journal of Physics A,2005,38(35):7735–7742
    [63] Hirota Ryogo. Exact solution of the Korteweg-de Vries equation for multiple col-1isions of solitons[J]. Physical Review Letters,1971,27(18):1192–1194
    [64] Matsuno Y. Bilinear Transformation Method[M]. New York: Academic Press,1984
    [65] Hu Xingbiao, Zhu Zuonong. Some new results on the Blaszak-Marciniak lattice:Ba¨cklund transformation and nonlinear superposition formula[J]. Journal of Mathe-matical Physics,1998,39(9):4766–4772
    [66] Hu Xingbiao, MaWenxiu. Application of Hirota’s bilinear formalism to the Toeplitzlattice-some special soliton-like solutions[J]. Physics Letters A,2002,293(3-4):161–165
    [67] Boiti M., Leon J.J.P, Manna M., et al. On the spectral transform of a Korteweg-deVries equation in two spatial dimensions[J]. Inverse Problems,1986,2(3):271–279
    [68] Lou Senyue. Generalized dromion solutions of the (2+1)-dimensional KdV equa-tion[J]. Journal of Physics A,1995,28(24):7227–7232
    [69] Zhang Jiefang. Abundant dromion-like structures to the (2+l) dimensional KdVequation[J]. Chinese Physics,2000,9(1): l–4
    [70] Wang Mingliang, Zhou Yubin, Li Zhibin. Application of a homogeneous balancemethod to exact solutions of nonlinear equations in mathematical Physics[J]. PhysicsLetters A,1996,216(1):67–75
    [71] Tian Bo, Gao Yitian. New families of exaet solutions to the integrable disper-sivelong wave equations in2+l-dimensional spaces[J]. Journal of Physics A,1996,29(11):2895–2903
    [72] Fan Engui, Zhang Hongqing. A note on the homogeneous balance method[J]. PhysicsLetters A,1998,246(5):403–406
    [73]张解放.变更Boussinesq方程和Kupershmidt方程的多孤子解[J].应用数学和力学,2000,21(2):171–175
    [74] Doyle P.W., Vassiliou P.J. Separation of variables for the1-dimensional non-lin-ear difusion equation[J]. International Journal of Nonlinear Mechanies,1998,33(2):315–326
    [75] Zhdanov R.Z. Separation of variables in the nonlinear wave equation[J]. Journal ofPhysics A,1994,27(9):291–297
    [76]曹策问. AKNS族的Lax方程组的非线性化[J].中国科学(A辑),1989,32(7):701–707
    [77] Cao Cewen. Nonlinearization of the Lax system for AKNS hierarchy[J]. Science inChina(A),1990,33(5):528–536
    [78] Cheng Yi, Li Yishen. The constraint of the Kadomtsev-Petviashvili equation and itsspecial solutions[J]. physics Letters A,1991,157(1):22–26
    [79] Lou Senyue, Chen Lili. Formal variable separation approach for nonintegrable mod-els[J]. Journal of Mathematical Physics,1999,40(12):6491–6500
    [80] Qiao Zhijun, Zhou Ruguang. Discrete and continuous integrable systems possessingthe same non-dynamical r-matrix[J]. Physics Letters A,1997,235(1):35–40
    [81] Zhou Zixiang. Nonlinear constraints and soliton solutions of l+2-dimensional three-wave equation[J]. Journal of Mathematical physics,1998,39(2):986–997
    [82] Zhou Ruguang, Ma Wenxiu. Classical r-matrix struetures of integrable mappingsrelated to the Volterra lattice[J]. Physics Letters A,1997,235(1):35–40
    [83] Lou Senyue, Lu Jizong. Special solutions from the variable separation approach: theDavey-Stewartson equation[J]. Journal of Physics A,1996,29(14):4209–4215
    [84] Zhdanov R Z. Conditional Lie-Backlund symmetry and reduction of evolution equa-tions[J]. Journal of Physics A,1995,28(13):3841–3850
    [85] Zhang Shunli, Lou Senyue, Qu Changzheng. Variable separation and exact solu-tions to generalized nonlinear difusion equations[J]. Chinese Physics Letters,2002,19(12):1741–1744
    [86] Zhang Shunli, Lou Senyue, Qu Changzheng. New variable separation approach: ap-plication to nonlinear difussion equations[J]. Journal of Physics A,2003,36(49):12223–12242
    [87] Ablowitz M.J., Segur H. Solitons and the inverse scattering transformation[M].SIAM: Philadelphia,1981
    [88] Weiss J., Tabor M., Carnvale G. The Painlev′e Property for partial diferential equa-tions[J]. Journal of Mathematical Physics,1983,24(3):522–526
    [89] Ablowitz M.J. A connection between nonlinear evolution equations and ordinarydiferential equations of P-type[J]. Journal of Mathematical Physics,1980,21:715–721
    [90] Weiss J. The Painlev′e property for partial diferential equations II, Ba¨cklund trans-formation, Lax pairs, and the Schwarzian derivative[J]. Journal of MathematicalPhysics,1983,24(6):1405–1413
    [91] Jimbo M. Painlev′e test for the self-dual Yang-Mills equation[J]. Physics Letters A,1982,92:59
    [92]曾云波.数递推算子与Painlev′e性质[J].数学年刊,1991,12A:778
    [93]李彪.孤立子理论中若干精确求解方法的研究及应用[D].大连:大连理工大学,2004
    [94] Lie S. Uber die integration durch bestimmte integrale von einer klasse linear partiellerdiferentialgleichung[J]. Archiv der Mathematik,1881,6:328-368
    [95] Batelnan H. The conformal transformations of a space of four dimensions and theirapplications to geometrical optics[J]. Proceedings of the London Mathematical So-ciety,1909,7:70–76
    [96] Cunningharn E. The principle of relativity in electrodynamics and an extensiontbereof[J]. Proceedings of the London Mathematical Society,1909,8:77–82
    [97] Bluman G.W., Cole J.D. The general sliimilarity solution of the heat equation[J].Journal of Mathematics and Mechanics,1969,18:1025–1042
    [98] Olver P.J. Evolution equations possessing infnitely many symmetries[J]. Journal ofMathematical Physics,1977,18:1212–1217
    [99] Olver P.J. On the Hamiltonian structure of evolution equations[J]. MathematicalProceedings of the Cambridge Philosophical Society,1980,88:71–75
    [100] Fokas A., Fuchssteiner B. Symplectic structures, their Ba¨cklund transformation andhereditary symmetries[J]. Physica D,1981,4:47–66
    [101] Clarkson P.A., Kruskal M.D. New similarity reductions of the Boussinesq equa-tion[J]. Journal of Mathematical Physics,1989,30:2201–2213
    [102] Lou Senyue. A note on the new similarity reduetions of the Boussinesq equation[J].Physics Letters A,1990,151:133–135
    [103] Nucci M.C., Clarkson P.A. The nonclassical method is more general than the directmethod for symmetry reductions, An example of the FitzHugh-Nagumo equation[J].Physics Letters A,1992,164:49–56
    [104] Lou Senyue. Similarity and conditional similarity reductions of a (2+1)-dimensionalKdV equation via a direct method[J]. Journal of Mathematical Physics,2000,41:8286–8303
    [105]丁同仁,李承治.常微分方程教程[M].北京:高等教育出版社,1991:271-284,334-340
    [106]张芷芬,丁同仁,黄文灶等.微分方程定性理论[M].北京:科学出版社,1985:39-123
    [107]王高雄,周之铭,朱思铭等.常微分方程(第二版)[M].北京:高等教育出版社,1983:248-260
    [108]张锦炎,冯贝叶.常微分方程几何理论与分支问题(第二次修订本)[M].北京:北京大学出版社,2000:20-72
    [109]王光发,吴克乾坤,邓宗琦等.常微分方程[M].长沙:湖南教育出版社,1983:301-321
    [110]蔡燧林,钱祥征.微分方程定性理论引论[M].北京:高等教育出版社,1994
    [111]韩茂安,朱德明.微分方程分支理论[M].北京:煤炭工业出版社,1994
    [112]韩茂安.动力系统的周期解与分支理论[M].北京:科学出版社,2002
    [113]朱德明,韩茂安.光滑动力系统[M].上海:华东师范大学出版社,1994
    [114]韩茂安,顾圣士.非线性系统的理论和方法[M].北京:科学出版社,2001:4-15,46-50
    [115] Qian T.F., Tang M.Y. Peakons and periodic cusp waves in a generalized Camassa-Holm equation[J]. Chaos Solit. Fract.,2001,12:1347-1360
    [116] Liu Z.R., Wang R.Q., Jing Z.J. Peaked wave solutions of Camassa-Holm equation[J].Chaos Solit. Fract.,2004,19:77-92
    [117] Constantin A., Strauss W.A. Stability of peakons[J]. Commun. Pur. Appl. Math.,2000,53:603-610
    [118] Constantin A., Molinet L. Orbital stability of solitary waves for a shallow waterequation[J]. Physica D,2001,157:75-89
    [119] Abbasbandy S., Parkes E.J. Solitary smooth hump solutions of the Camassa-Holmequation by means of the homotopy analysis method[J]. Chaos Solit. Fract.,2008,36:581-591
    [120] Constantin A., Gerdjikov V.S., Ivanov,et al. Inverse scattering transform for theCamassa-Holm equation[J]. Inverse Problems,2005,22:2197-2207
    [121] Holden H., Raynaud X. Global dissipative multi peakon solutions of the Camassa-Holm equation[J]. Comm. Part. Dif. Equa.,2008,33:2040-2063
    [122] Holden H., Raynaud X. Dissipative solutions for the Camassa-Holm equation[J].Dis.&Conti. Dyn. Syst.,2009,24:1047-1112
    [123] Ivanov R.I. Water waves and integrability[J]. Phil. Trans. Roy. Soc. London A,2007,365:2267-2280
    [124] Kaup D.J. Evolution of the scattering coefcients of the Camassa-Holm equation[J].Studies Appl. Math.,2006,117:149-164
    [125] Liu Z.R., Long Y. Compacton-like wave and kink-like wave of GCH equation[J].Nonlinear Analysis: Real World Appl.,2007,8:136-155
    [126] Liu Z.R., Kayed A.M., Chen C. Periodic waves and their limits for the Camassa-Holm equation[J]. Int. J. Bifur. Chaos,2006,16:2261-2274
    [127] Mustafa O.G., Regan D.O. On an inverse scattering algorithm for the Camassa-Holm equation[J]. J Nonlin. Math. Phys.,2008,15:283-290.
    [128] Marchant T.R., Smyth N.F. Undular bore solution of the Camassa-Holm equa-tion[J]. Phys. Rev. E,2006,73:057602-057605
    [129] Parker A., Matsuno, Y. The peakon limits of soliton solutions of the the Camassa-Holm equation[J]. J. Phys. Soc. Japan,2006,75:124001-124009
    [130] Liu Z.R., Qian T.F. Peakons and their bifurcation in a generalized Camassa-Holmequation[J]. Int. J. Bifur. Chaos,2001,11:781-792
    [131] Tian L.X., Song X.Y. New peaked solitary wave solutions of the generalizedCamassa-Holm equation[J]. Chaos Solit. Fract.,2004,21:621-637
    [132] Kalisch H. Stability of solitary waves for nonlinearly dispersive equation[J]. DiscreteContin. Dyn. Syst.,2004,10:709-717
    [133] He B., Rui W.G., Chen C. Exact travelling wave solutions for a generalizedCamassa-Holm equation using the integral bifurcation method[J]. Appl. Math. Com-put.,2008,206:141-149
    [134] Shen J.W., Xu W. Bifurcations of smooth and non-smooth travelling wave solutionsin the generalized Camassa-Holm equation[J]. Chaos Solit. Fract.,2005,26:1149-1162
    [135] Khuri S.A. New ansatz for obtaining wave solutions of the generalized Camassa-Holm equation[J]. Chaos Solit. Fract.,2005,25:705-710.
    [136] Wazwaz A.M. New solitary wave solutions to the modifed forms of Degasperis-Procesi and Camassa-Holm equations[J]. Appl. Math. Comput.,2007,186:130-141
    [137] Wazwaz A.M. Solitary wave solutions for modifed forms of Degasperis-Procesi andCamassa-Holm equations[J]. Phys. Lett. A,2006,352:500-504
    [138] Liu Z.R., Ouyang Z.Y. A note on solitary waves for modifed forms of Camassa-Holm and Degasperis-Procesi equations[J]. Phys. Lett. A,2007,366:377-381
    [139] Liu Z.R., Guo B.L. Periodic blow-up solutions and their limit forms for the gener-alized Camassa-Holm equation[J]. Progress in Nat. Sci.,2008,18:259-266.
    [140] Wang Q.D., Tang, M.Y. New exact solutions for two nonlinear equations[J]. Phys.Lett. A,2008,372:2995-3000
    [141] Yomba E. The sub-ODE method for fnding exact travelling wave solutions of gener-alized nonlinear Camassa-Holm, and generalized nonlinear Schrodinger equations[J].Phys. Lett. A,2008,372:215-222
    [142] Yomba E. A generalized auxiliary equation method and its application to nonlinearKlein-Gordon and generalized nonlinear Camassa-Holm equations[J]. Phys. Lett. A,2008,372:1048-1060
    [143] Liu Z.R., Pan J. Coexistence of multifarious explicit nonlinear wave solutions formodifed forms of Camassa-Holm and Degaperis-Procesi equations[J]. Int. J. Bifur.Chaos,2009,19:2267-2282.
    [144] Constantin A. Introduction: some recent developments of nonlinear water wavetheory[J]. Phil. Trans. Roy. Soc. A-Math. Phys. Engin. Sci.,2007,365:2195–201
    [145] Sirendaoreji, Sun Jiong. A direct method for solving sine-Gordon type equations[J].Physics Letters A,2002,298:133-139
    [146] Sirendaoreji, Sun Jiong. Auxiliary equation method for solving nonlinear partialdiferential equations[J]. Physics Letters A,2003,309:387-396
    [147] He B., Meng Q., Li S. Explicit peakon and solitary wave solutions for the modifedFornberg-Whitham equation[J]. Applied Mathematics and Computation,2010,217:1976–1982
    [148] Whitham G.B. Variational methods and applications to water wave[J]. Proc. R.Soc. Lond. Ser. A,1967,299:6–25
    [149] Ivanov R. On the integrability of a class of nonlinear dispersive wave equations[J].J. Nonlinear Math. Phys.,2005,1294:462–468
    [150] Fornberg B., Whitham G.B. A numerical and theoretical study of certain nonlinearwave phenomena[J]. Philos. Trans. R. Soc. Lond. Ser. A,1978,289:373–404
    [151] Degasperis A., Procesi M. Asymptotic Integrability Symmetry and PerturbationTheory[M]. Singapore: World Scientifc,1999:23–37
    [152] Jiang B., Bi Q. Smooth and non-smooth traveling wave solutions of the Forn-berg–Whitham equation with linear dispersion term[J]. Applied Mathematics andComputation,2010,216:2155–2162
    [153] Wazwaz A.M. Solitary wave solutions for modifed forms of Degasperis-Procesi andCamassa-Holm equations[J]. Phys. Lett. A,2006,352:500–504
    [154] Fan X., Yang S., Yin J., et al. Bifurcations of traveling wave solutions for a two-component Fornberg-Whitham equation[J]. Commun Nonlinear Sci Numer Simulat,2010,16:3956–3963
    [155] Tian L., Gao Y. The global attractor of the viscous Fornberg–Whitham equa-tion[J]. Nonlinear Anal Theory Methods Appl,2009,71(11):5176–86
    [156] Meng Y., Tian L. Boundary control on the viscous Fornberg–Whitham equation[J].Nonlinear Anal Real World Appl,2010,11(2):827–837
    [157] Zhou J., Tian L. A type of bounded traveling wave solutions for the Forn-berg–Whitham equation[J]. J. Math. Anal. Appl.,2008,346:255–261.
    [158] Zhou J., Tian L. Solitons, peakons and periodic cusp wave solutions for the Forn-berg–Whitham equation[J]. Nonlinear Anal Real World Appl.,2010,11(1):356–63
    [159] Chen A., Li J., Deng X., et al. Travelling wave solutions of the Fornberg–Whithamequation[J]. Appl Math Comput,2009,215(8):3068–75
    [160] Yin J., Tian L., Fan X. Classifcation of travelling waves in the Fornberg–Whithamequation[J]. J. Math. Anal. Appl.,2010,368:133–143
    [161] Tang H., Liu Z. The periodic wave and their limits of modifed Fornberg-WhithamEquation[J]. to appear
    [162] Lu J. An analytical approach to the Fornberg-Whitham type equations by usingthe variational iteration method[J]. Computers and Mathematics with Applications,2011,61:2010–2013
    [163] He J. Variational iteration method for delay diferential equations[J]. Commun.Nonlinear Sci. Numer. Simul.,1997,2(4):235–236
    [164] He J. Some asymptotic methods for strongly nonlinear equations[J]. Internat. J.Modern Phys.,2006, B20:1141–1199
    [165] Fan Engui. Uniformly constructing a series of explicit exact solutions to nonlinearequations in mathematical physics[J]. Chaos Soliton and Fractal,2003,16:819-839.
    [166] Sirendaoreji. New exact travelling wave solutions for the Kawahara and modifedKawahara equations Sirendaoreji. Chaos, Solitons and Fractals,2004,19:147-150
    [167] Sirendaoreji. A new auxiliary equation and exact travelling wave solutions of non-linear equations[J]. Physics Letters A,2006,356:124-130
    [168] Sirendaoreji. Auxiliary equation method and new solutions of Klein-Gordon equa-tions[J]. Chaos, Solitons and Fractals,2007,31:943-950
    [169] Sirendaoreji. Exact travelling wave solutions for four forms of nonlinear Klein-Gordon equations[J]. Physics Letters A,2007,363:440-447
    [170] Zhang Sheng, Xia T C. A generalized new auxiliary equation method and its appli-cations to nonlinear partial diferential equations[J]. Physics Letters A,2007,363:356-360
    [171] Zonghang Yang, Y.C. Hon. A rational generalization of Fan’s method and its ap-plication ot generalized shallow water wave equations[J]. Applied Mathematics andComputation,2010,216:1984-1995
    [172] Bengong Zhang, Zhengrong Liu, Jianfeng Mao. New exact solutions for mCH andmDP equations by auxiliary equation method[J]. Applied Mathematics and Compu-tation,2010,217:1306-1314
    [173] Lihua Zhang. Travelling wave solutions for the generalized Zakharov-Kuznetsovequation with higher-order nonlinear terms[J]. Applied Mathematics and Computa-tion,2009,208:144-155

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700