复杂非线性系统中的孤子
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人们普遍认为,非线性科学是继量子力学、相对论之后的一次科学革命。现在,人们逐渐认识到,错综复杂的客观世界,线性系统只是客观存在的一种近似,非线性系统才能更好地接近自然的本质。非线性科学的研究,目前主要有三大领域:混沌、孤子和分形。本文的研究,是集中在孤子领域。
     在本研究中,我们将主要集中于若干复杂非线性系统中的孤子传播问题,其中包括理想化的均匀系统和带有离散缺陷的非均匀系统。对于理想的均匀系统,我们将关注非线性发展方程精确解求解方法的研究,且具体研究其中的辅助方程法;而在带缺陷的非均匀系统中,我们将研究缺陷与孤子的相互作用,且将涉及两种类型的物理系统:连续的流体系统和离散的非线性传输线电路。
     在第一章中,我们将对孤子进行简要地介绍,其中包括孤子发现的历史、研究孤子的常用方法,以及缺陷与孤子相互作用的研究现状等,并进一步提出本文的研究内容。
     相比于非传播孤子,人们对流体中的传播孤子在离散缺陷系统中的传播问题还缺乏认识。在第二章中,我们将研究流体系统中离散缺陷与传播孤子的相互作用。具体我们将对水槽底部缺陷与水表面传播孤子(Korteweg-de Vries (KdV)孤子)之间的相互作用进行研究。首先,我们利用摄动方法从流体动力学方程中约化出近似的理论模型,然后对该模型进行数值计算。结果表明,根据缺陷极性的不同,其对传播水波孤子将产生减速或加速的影响。这与非传播水波孤子的情形一致。但是,在单底部缺陷对传播水波孤子的作用中,包含有一种偶极子的影响,这在目前人们研究单缺陷情形的非传播孤子中没有发现到。另外,我们还考察了不同强度的缺陷情形。结果表明,缺陷对非传播水波孤子的影响还与缺陷强度有关。
     在第三章中,我们将研究非线性传输线电路中缺陷与孤子的相互作用。目前,关于非线性系统中缺陷与孤子的相互作用,在非传播孤子方面,在Frenkel-Kontorova (FK)模型和流体系统中取得丰富而且一致的结果,即根据缺陷极性的不同,缺陷可以吸引或排斥孤子。在传播孤子方面,我们通过第二章流体力学系统中的研究发现,缺陷可以改变孤子的传播速度。具体为,对于不同极性的缺陷,其将加速或减速孤子。在非线性传输线电路中,缺陷与孤子的相互作用有一定的研究成果,但缺少系统的了解。我们通过对一种新类型的非线性传输线电路中电容缺陷与孤子相互作用的研究,达到系统地理解非线性传输线电路系统中缺陷与孤子相互作用的原理。我们通过改变非线性电容器的线性电容来引入单缺陷,并从基于Kirchhoff定律的直接数值模拟和基于它的约化理论模型的数值计算两方面对系统的缺陷与孤子的相互作用进行研究。将我们的结果和已有的研究结果作比较和分析,表明对于非线性传输线电路系统中不同类型的参量缺陷,其与孤子的相互作用具有共同的机理,进而给出了非线性传输线电路中缺陷与孤子相互作用统一的物理机制。同时,我们将非线性传输线电路中的缺陷与孤子相互作用与FK模型和流体系统中的情形进行对比。结果表明,在这些不同的非线性系统中,缺陷与孤子的相互作用具有共同的机理,进而可以用一种统一的方式来进行理解。
     另外,我们还研究了非线性传输线电路中线性电容单缺陷的不同强度情形。结果表明,缺陷对非线性传输线电路孤子的影响还与缺陷强度有关。此外,鉴于包含单缺陷的系统只是实际非均匀系统的一种初级近似,我们还尝试在均匀非线性传输线电路中考虑由若干线性电容单缺陷组合而成的对缺陷、偶极子缺陷和四极子缺陷情形,并研究了它们对孤子传播的影响。
     在第四章中,我们采用解析的方法,探讨理想非线性系统精确解的求解方法。求解非线性方程的精确解在非线性科学中扮演着重要的作用。目前,人们已经提出许多求解方法,比如,反散射方法(inverse scattering method), Hirota双线性方法,Backlund变换法等。但是,由于线性叠加原理的失效,目前人们还没有办法给出各种非线性方程精确解的一般形式,通常只能针对各种不同的非线性问题而寻求不同的方法。在本章中,我们将集中研究求解非线性发展方程精确解中的辅助方程法。具体地,我们进一步推广Huang方法到一种至多含有8次非线性项的一阶常微分方程的形式,并在函数展开上将这种一阶常微分方程展开到范围更为广泛的展开式形式,从而发展了一种求解非线性发展方程精确解的方法。利用该方法,我们对Sharma-Tasso-Olver(STO)方程和广义的Camassa-Holm(GCH)方程进行求解,并获得了这两个非线性发展方程的一些精确解。
     论文的最后,我们在第五章对全文进行了总结,并对后续的工作进行了展望。
It is now commonly acknowledged that nonlinear science is another scientific revolution after the Quantum mechanics and the theory of relativity. One has now gradually recognized that linear system is only approximate to the complex real physical world, but the nonlinear one can be better close to the nature of the world. At present, there are three main nonlinear science research fields:chaos, soliton and fractal. We will focus on the soliton in this study.
     Here, we will mainly study the propagation of solitons in some complex nonlinear systems, including the ideal homogeneous systems and the inhomogeneous ones with discrete impurities. As for the homogeneous case, we will focus our interest on the research on developing method for solving exact solutions to nonlinear evolution equations (NEEs), and specifically, we will study the auxiliary equation method; and for the inhomogeneous case, we will study the impurity-soliton interactions (ISIs), and will investigate two types of nonlinear systems:the continuous hydrodynamic system and the discrete nonlinear electrical transmission line (NETL).
     In Chapter 1, we will briefly introduce the soliton, including its history and research methods, the developments of ISIs, and so on. Then, we will further present the main research in this study.
     At present, the propagation of hydrodynamic solitons influenced by discrete impurities, compared with that of non-propagating ones, still lacks the understanding. In Chapter 2, we will study the interactions between discrete impurity and propagating soliton in the hydrodynamics. Specifically, we will pay our attention to the interactions between depth defects of a trough and surface hydrodynamic propagating solitons (Korteweg-de Vries (KdV) solitons). First, we will use the perturbation method to derive the corresponding theoretical approximate ISI model from the hydrodynamic dynamic equations, and then do the numerical study based on this model. The results show that, the defect can decelerate or accelerate the propagating hydrodynamic solitons depending on its polarity, which is consistent with the case for the non-propagating ones. However, from the present study, we find that a dipole defect-induced effect is involved on propagating hydrodynamic solitons, which is not found in the present non-propagating cases influenced by single impurity. In addition, we also investigate different impurity intensity cases, and find that the ISIs in the hydrodynamics for propagating solitons are related to the impurity intensity.
     In Chapter 3, we will study the ISIs in the NETL. As we know, the present ISIs both in the Frenkel-Kontorova (FK) model and hydrodynamics for the non-propagating solitons have got fruitful results and reached a good agreement each other, namely, an impurity or defect can attract or repel non-propagating solitons depending on its polarity. And from Chapter 2, we can get that, a defect can change the propagating speeds of the propagating hydrodynamic solitons, accelerating or decelerating also depending on its polarity. The present ISIs in the NETL lack the systemic understanding though they have also got some results. This Chapter is aimed to systemically understand the ISIs in the NETL by simulating the influence of a new capacitor impurity on the NETL solitons. Here, a capacitor with a slight difference in linear capacitance will serve as the single impurity. We will study the influence of the capacitor impurity on the NETL solitons both by the simulation which is based on the Kirchhoffs laws and by the calculation of the corresponding theoretical ISI model. The results show that, compared with the present ISI results of the NETL, the impurity-induced influence in the NETL for different types of parameter impurities has the same nature and essentially shares the same physical mechanism. At the same time, they also show that, compared with the present ISI results of the FK model and hydrodynamics, the impurity-induced influence in the NETL, FK model, and hydrodynamics essentially shares the same physical mechanism and thus can be understood in a unified way.
     In addition, we also study the different intensity cases of the single linear capacitance impurity, and find that, the ISIs in the NETL are related to the impurity intensity. Besides, in view of the fact that single impurity is only a primary approximation to the real inhomogeneous systems, we tentatively consider the pair, dipole and quadrupole impurities in the homogeneous NETL, which are the different combination of the single linear capacitance impurity, to study the impurity-induced influence on the propagation of solitons.
     In Chapter 4, we will analytically study the method for solving exact solutions to ideal nonlinear systems. Solving exact solutions to nonlinear equations play an important role in nonlinear science. Up to now, a wealth of powerful methods have been proposed, such as the inverse scattering method, Backlund transformation, the Hirota's bilinear method, and so on. However, because the superposition principle is no longer valid in nonlinear cases, one can not give the general solutions to the different nonlinear equations, and usually, he only can seek the different solving method depending on the different nonlinear problems. In this Chapter, we will focus our interest on studying the auxiliary equation method for solving nonlinear evolution equations (NEEs). Specifically, we will further extend the Huang's method to the form which possesses an auxiliary equation of a first order nonlinear ordinary differential equation with at most an eighth-degree nonlinear term. Furthermore, by performing the auxiliary equation into a more general expansion form, we develop an algebraic method and apply it to the Sharma-Tasso-Olver (STO) equation and the generalized Camassa-Holm (GCH) equation. And some exact solutions to these two NEEs are obtained.
     Finally, in Chapter 5, we summarize the conclusions and also discuss the prospect of the future studies.
引文
[1]赵松年,非线性科学——它的内容、方法和意义,第1版,北京:科学出版社,1994,第2页。
    [2]倪皖荪,魏荣爵,水槽中的孤波,第1版,上海:上海科技教育出版社,1997,前言,第8、9、11、13、14、16、49、54-57页。
    [3]郭柏灵,庞小峰,孤立子,第1版,北京:科学出版社,1987,第1-4,204-206页。
    [4]M. Toda, Wave propagation in anharmonic lattices, J.Phys.Soc.Jpn.,23 (1967) 501.
    [5]N.J. Zabusky and M.D. Kruskal, Interactions of "solitons" in a collisionless plasma and the recurrence of initial states, Phys.Rev.Lett.,15 (1965) 240.
    [6]J.R. Wu, R. Keolian and I. Rudnick, Observation of a nonpropagating hydrodynamic soliton, Phys. Rev. Lett.,52 (1984) 1421.
    [7]R.J. Wei, B.R. Wang, Y. Mao, X.Y. Zheng and G.Q. Miao, Further investigation of nonpropagating solitons and their transition to chaos, J. Acoust. Soc. Am,88 (1990) 469.
    [8]X.L. Wang and R.J. Wei, Dynamics of multisoliton interactions in parametrically resonant systems, Phys.Rev.Lett.,78 (1997) 2744.
    [9]G.Q. Miao and R.J. Wei, A study on the onset to chaos of hydrodynamic nonpropagating solitary wave motion, J. Acoust. Soc. Am,95 (1994) 2863.
    [10]A. Larraza and S. Putterman, Theory of nonpropagating surface-wave solitons, J. Fluid Mech,148(1984)443.
    [11]J.W. Miles, Parametrically excited solitary waves, J. Fluid Mech,148 (1984) 451.
    [12]B. Denardo, W. Wright, S. Putterman and A. Larraza, Observation of a kink soliton on the surface of a liquid, Phys.Rev.Lett.,64 (1990) 1518.
    [13]J.R. Yan and J.Q. You, Wu's soliton in a sloping trough, Chin. Phys. Lett.,7 (1990)406.
    [14]J.R. Yan, C.H. Zhou and J.Q. You, Nonpropagating soliton and kink soliton in a mildly sloping channel, Phys. Fluids A,4(1992) 690.
    [15]周显初,崔洪农,表面张力对非传播孤立波的影响,中国科学,A辑,35(1992)1269.
    [16]W.Z. Chen, R.J. Wei and B.R. Wang, Nonpropagating interface solitary waves in fluids, Phys. Lett. A,208 (1995) 197.
    [17]X.N. Chen and R.J. Wei, Dynamic behaviour of a non-propagating soliton under a periodically modulated oscillation. J. Fluid Mech,259 (1994) 291.
    [18]W.Z. Chen, R.J. Wei and B.R. Wang, Chaos in nonpropagating hydrodynamic solitons. Phys. Rev. E,53 (1996) 6016.
    [19]J. Tu, H. Lin, L. Lu, W.Z. Chen and R.J. Wei, Spatiotemporal evolution form a pair of like polarity solitons to chaos. Phys. Lett. A,304 (2002) 79.
    [20]W.Z. Chen, J. Tu and R.J. Wei, Onset instability to nonpropagating hydrodynamic solitons. Phys. Lett. A,225 (1999) 272.
    [21]缪国庆,王本仁,槽中水波和非传播孤立子,物理学进展,16(1996)273.
    [22]G.Q. Miao and R.J. Wei, The effect of surface tension on nonpropagating hydrodynamic solitons. Phys. Lett. A,220 (1996) 87.
    [23]G.Q. Miao and R.J. Wei, Parametrically excited hydrodynamic solitons. Phys. Rev. E,59 (1999) 4075.
    [24]M. Remoissenet, Waves called solitons:Concepts and experiments, Second Revised and Enlarged Edition, Springer-Verlag Berlin Heidelberg New York,1996. pp. 10,37.
    [25]黄景宁,徐济仲,熊吟涛,孤子:概念、原理和应用,第1版,北京:高等教育出版社,2004,第9、17页。
    [26]谷超豪等,孤立子理论与应用,第1版,杭州:浙江科学技术出版社,1990,前言。
    [27]A.H.奈弗著,王辅俊,徐钧涛,谢寿鑫译,摄动方法,第1版,上海:上海科学技术出版社,1984,前言,第1-394页。
    [28]刘式适,刘式达,物理学中的非线性方程,第1版,北京:北京大学出版社,2000,第127-163页。
    [29]刘式适,刘式达,谭本馗,非线性大气动力学,第1版,北京:国防工业出 版社,1996,第355-424页。
    [30]A. Jeffrey and T. Kawahara, Asymptotic methods in nonlinear wave theory, 1st ed, Pitman Advanced Publishing Program, Boston,1982, pp.1-236.
    [31]楼森岳,唐晓艳,非线性数学物理方法,第1版,北京:科学出版社,2006,前言。
    [32]W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical Recipes in C,2nd ed, Cambridge University Press, Cambridge,1997, pp.710-722.
    [33]C.S. Gardner, J.M. Greene, M.D. Kruskal and R.M. Miura, Method for solving the Korteweg-deVries equation, Phys. Rev. Lett.,19 (1967) 1095.
    [34]R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett.,27 (1971) 1192.
    [35]H.D. Wahlquist and F.B. Estabrook, Backlund transformation for solutions of the Korteweg-de Vries equation, Phys. Rev. Lett.,31 (1973) 1386.
    [36]S.Y. Lou, Searching for higher dimensional integrable models from lower ones via Painleve analysis, Phys. Rev. Lett.,80 (1998) 5027.
    [37]B. Tian and Y.T. Gao, Truncated Painleve expansion and a wide-ranging type of generalized variable-coefficient Kadomtsev-Petviashvili equations, Phys. Lett. A,209 (1995) 297.
    [38]S.Y. Lou and J.Z. Lu, Special solutions from the variable separation approach: the Davey-Stewartson equation, J. Phys. A:Math. Gen.,29 (1996) 4209.
    [39]S.Y. Lou and L.L. Chen, Formal variable separation approach for nonintegrable models, J. Math. Phys.,40 (1999) 6491.
    [40]X.Y. Tang, S.Y. Lou and Y Zhang, Localized excitations in (2+1)-dimensional systems, Phys. Rev. E,66 (2002) 046601.
    [41]M.L. Wang, Solitary wave solutions for variant Boussinesq equations, Phys. Lett. A,199(1995)169.
    [42]S.Y. Lou and G.J. Ni, The relations among a special type of solutions in some (D+1)-dimensional nonlinear equations, J. Math. Phys.,30 (1989) 1614.
    [43]H.M. Li, An extension of mapping deformation method and new exact solution for three coupled nonlinear partial differential equations, Commun. Theor. Phys.,39 (2003)395.
    [44]C.T. Yan, A simple transformation for nonlinear waves, Phys. Lett. A,224 (1996) 77.
    [45]J.H. He, A coupling method of a homotopy technique and a perturbation technique for non-linear problems, Int. J. Nonlinear Mech.,35 (2000) 37.
    [46]J.H. He and X.H. Wu, Exp-function method for nonlinear wave equations, Chaos, Solitons and Fractals,30 (2006) 700.
    [47]H.B. Lan and K.L. Wang, Exact solutions for two nonlinear equations:I, J. Phys. A:Math. Gen.,23(1990) 3923.
    [48]H.B. Lan and K.L. Wang, Exact solutions for some coupled nonlinear equations: II, J. Phys. A:Math. Gen.,23 (1990) 4097.
    [49]S.Y. Lou, G.X. Huang and H.Y. Ruan, Exact solitary waves in a convecting fluid, J. Phys. A:Math. Gen.,24 (1991) L587.
    [50]W. Malfliet, Solitary wave solutions of nonlinear wave equations, Am. J. Phys., 60(1992)650.
    [51]S.K. Liu, Z.T. Fu, S.D. Liu and Q. Zhao, Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations, Phys. Lett. A,289 (2001) 69.
    [52]Z.T. Fu, S.K. Liu, S.D. Liu and Q. Zhao, New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations, Phys. Lett. A,290 (2001) 72.
    [53]Y.Z. Peng, A mapping method for obtaining exact travelling wave solutions to nonlinear evolution equations, Chin. J. Phys.,41 (2003) 103.
    [54]Y.Z. Peng, New exact solutions to the combined KdV and mKdV equation, Int. J. Theor. Phys.,42 (2003) 863.
    [55]J.M. Zhu, Z.Y. Ma, J.P. Fang, C.L. Zheng and J.F. Zhang, General Jacobian elliptic function expansion method and its applications, Chin. Phys.,13 (2004) 798.
    [56]Q. Zheng, P. Yue and L.X. Gong, New exact solutions of nonlinear Klein-Gordon equation, Chin. Phys.,15 (2006) 35.
    [57]龚伦训,非线性薛定谔方程的Jacobi椭圆函数解,物理学报,55(2006)4414.
    [58]潘军廷,龚伦训,组合KdV-mKdV方程的Jacobi椭圆函数解,物理学报,56(2007)5585.
    [59]Y.B. Zhou, M.L. Wang and Y.M. Wang, Periodic wave solutions to a coupled KdV equations with variable coefficients, Phys. Lett. A,308 (2003) 31.
    [60]M.L. Wang and X.Z. Li, Applications of F-expansion to periodic wave solutions for a new Hamiltonian amplitude equation, Chaos, Solitons and Fractals,24 (2005) 1257.
    [61]S. Zhang and T.C. Xia, A generalized F-expansion method and new exact solutions of Konopelchenko-Dubrovsky equations, Appl.Math.Comput.,183 (2006) 1190.
    [62]Sirendaoreji and S. Jiong, Auxiliary equation method for solving nonlinear partial differential equations, Phys. Lett. A,309 (2003) 387.
    [63]Sirendaoreji, Auxiliary equation method and new solutions of Klein-Gordon equations, Chaos, Solitons and Fractals,31 (2007) 943.
    [64]Sirendaoreji, A new auxiliary equation and exact travelling wave solutions of nonlinear equations, Phys. Lett. A,356 (2006) 124.
    [65]C.P. Liu and X.P. Liu, A note on the auxiliary equation method for solving nonlinear partial differential equations, Phys. Lett. A,348 (2006) 222.
    [66]X.P. Liu and C.P. Liu, The relationship among the solutions of two auxiliary ordinary differential equations, Chaos, Solitons and Fractals,39 (2009) 1915.
    [67]S. Zhang, A generalized auxiliary equation method and its application to (2+ 1)-dimensional Korteweg-de Vries equations, Appl.Math.Comput.,188 (2007) 1.
    [68]L.X. Gong and J.T. Pan, Some new solitary wave solutions to a compound KdV-Burgers equation, Commun. Theor. Phys.,50 (2008) 51.
    [69]S. Zhang and T.C. Xia, A generalized new auxiliary equation method and its applications to nonlinear partial differential equations, Phys. Lett. A,363 (2007) 356.
    [70]W. Malfliet and W. Hereman, The tanh method:I. Exact solutions of nonlinear evolution and wave equations, Phys. Scr.,54 (1996) 563.
    [71]W. Malfliet and W. Hereman, The tanh method:Ⅱ. Perturbation technique for conservative systems, Phys. Scr.,54 (1996) 569.
    [72]E.J. Parkes and B.R. Duffy, An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations, Computer Phys. Comm.,98 (1996) 288.
    [73]李志斌,张善卿,非线性波方程准确孤立波解的符号计算,数学物理学报,A辑,17(1997)81.
    [74]B. Tian and Y.T. Gao, Beyond travelling waves:a new algorithm for solving nonlinear evolution equations, Computer Phys. Comm.,95 (1996) 139.
    [75]Y.T. Gao and B. Tian, Generalized tanh method with symbolic computation and generalized shallow water wave equation, Computers Math. Applic.,33 (1997) 115.
    [76]E.G. Fan and H.Q. Zhang, A note on the homogeneous balance method, Phys. Lett. A,246 (1998) 403.
    [77]E.G. Fan, Traveling wave solutions for nonlinear equations using symbolic computation, Computers Math. Applic.,43 (2002) 671.
    [78]S.A. Elwakil, S.K. El-Labany, M.A. Zahran and R. Sabry, Modified extended tanh-function method for solving nonlinear partial differential equations, Phys. Lett. A,299 (2002) 179.
    [79]A.M. Wazwaz, The tanh method for traveling wave solutions of nonlinear equations, Appl.Math.Comput,154 (2004) 713.
    [80]A.M. Wazwaz, New solitary wave solutions to the Kuramoto-Sivashinsky and the Kawahara equations, Appl.Math.Comput.,182 (2006) 1642.
    [81]H.T. Chen and H.Q. Zhang, New multiple soliton solutions to the general Burgers-Fisher equation and the Kuramoto-Sivashinsky equation, Chaos, Solitons and Fractals,19(2004)71.
    [82]H.T. Chen and H.Q. Zhang, New multiple soliton-like solutions to (3+ 1)-dimensional Burgers equation with variable coefficients, Commun. Theor. Phys., 42 (2004) 497.
    [83]F.D. Xie and Z.T. Yuan, Computer algebra and solutions to the Karamoto-Sivashinsky equation, Commun. Theor. Phys.,43 (2005) 39.
    [84]F.D. Xie, Y. Zhang and Z.S. Lu, Symbolic computation in non-linear evolution equation:application to (3+1)-dimensional Kadomtsev-Petviashvili equation, Chaos, Solitons and Fractals,24 (2005) 257.
    [85]C.P. Liu, Comment on "Computer algebra and solutions to the Karamoto-Sivashinsky equation" [Commun. Theor. Phys. (Beijing, China) 43 (2005) 39], Commun. Theor. Phys.,44 (2005)609.
    [86]A.M. Wazwaz, The tanh-coth method combined with the Riccati equation for solving the KdV equation, Arab J. Math. Math. Sci.,1 (2007) 27.
    [87]J.T. Pan and L.X. Gong, Exact solutions to Maccari's system, Commun. Theor. Phys.,48 (2007) 7.
    [88]E.G. Fan, Travelling wave solutions in terms of special functions for nonlinear coupled evolution systems, Phys. Lett. A,300 (2002) 243.
    [89]E.G. Fan, Multiple travelling wave solutions of nonlinear evolution equations using a unified algebraic method, J. Phys. A:Math. Gen.,35 (2002) 6853.
    [90]V. A. Vladimirov and E. V. Kutafina, Exact travelling wave solutions of some nonlinear evolutionary equations, Rep. Math. Phys.,54 (2004) 261.
    [91]Z.Y. Yan, An improved algebra method and its applications in nonlinear wave equations, Chaos, Solitons and Fractals,21 (2004) 1013.
    [92]Y. Chen and Q. Wang, A series of new soliton-like solutions and double-like periodic solutions of a (2+1)-dimensional dispersive long wave equation, Chaos, Solitons and Fractals,23 (2005) 801.
    [93]Y. Chen, Q. Wang and B. Li, A series of soliton-like and double-like periodic solutions of a (2+1)-dimensional asymmetric Nizhnik-Novikov-Vesselov equation, Commun. Theor. Phys.,42 (2004) 655.
    [94]E. Yomba, The extended Fan's sub-equation method and its application to KdV-MKdV, BKK and variant Boussinesq equations, Phys. Lett. A,336 (2005) 463.
    [95]J.L. Zhang, M.L. Wang and X.Z. Li, The subsidiary ordinary differential equations and the exact solutions of the higher order dispersive nonlinear Schrodinger equation, Phys. Lett. A,357 (2006) 188.
    [96]M.L. Wang, X.Z. Li and J.L. Zhang, Various exact solutions of nonlinear Schrodinger equation with two nonlinear terms, Chaos, Solitons and Fractals,31 (2007) 594.
    [97]X.Z. Li and M.L. Wang, A sub-ODE method for finding exact solutions of a generalized KdV-mKdV equation with high-order nonlinear terms, Phys. Lett. A,361 (2007)115.
    [98]M.L. Wang, X.Z. Li and J.L. Zhang, Sub-ODE method and solitary wave solutions for higher order nonlinear Schrodinger equation, Phys. Lett. A,363 (2007) 96.
    [99]E. Yomba, The sub-ODE method for finding exact travelling wave solutions of generalized nonlinear Camassa-Holm, and generalized nonlinear Schrodinger equations, Phys. Lett. A,372 (2008) 215.
    [100]Z.L. Li, Solitary wave and periodic wave solutions for the thermally forced gravity waves in atmosphere, J. Phys. A:Math. Theor.,41 (2008) 145206.
    [101]W.G. Zhang, Q.S. Chang and E.G. Fan, Methods of judging shape of solitary wave and solution formulae for some evolution equations with nonlinear terms of high order, J. Math. Anal. Appl.,287 (2003) 1.
    [102]Z.S. Feng, On explicit exact solutions for the Lienard equation and its applications, Phys. Lett. A,293 (2002) 50.
    [103]D.J. Huang, D.S. Li and H.Q. Zhang, New exact travelling wave solutions to Kundu equation, Commun. Theor. Phys.,44 (2005) 969.
    [104]D.J. Huang and H.Q. Zhang, The extended first kind elliptic sub-equation method and its application to the generalized reaction Duffing model, Phys. Lett. A, 344 (2005) 229.
    [105]D.J. Huang and H.Q. Zhang, New exact travelling waves solutions to the combined Kdv-MKdv and generalized Zakharov equations, Rep. Math. Phys.,57 (2006) 257.
    [106]D.J. Huang and H.Q. Zhang, Link between travelling waves and first order nonlinear ordinary differential equation with a sixth-degree nonlinear term, Chaos, Solitons and Fractals,29 (2006) 928.
    [107]D.J. Huang, D.S. Li and H.Q. Zhang, Explicit and exact travelling wave solutions for the generalized derivative Schrodinger equation, Chaos, Solitons and Fractals,31 (2007) 586.
    [108]Y.J. Ren, S.T. Liu and H.Q. Zhang, A new generalized algebra method and its application in the (2+1) dimensional Boiti-Leon-Pempinelli equation, Chaos, Solitons and Fractals,32 (2007) 1655.
    [109]S. Zhang and T.C. Xia, A generalized auxiliary equation method and its application to (2+1)-dimensional asymmetric Nizhnik-Novikov-Vesselov equations, J. Phys. A:Math. Theor.,40 (2007) 227.
    [110]E. Yomba, A generalized auxiliary equation method and its application to nonlinear Klein-Gordon and generalized nonlinear Camassa-Holm equations, Phys. Lett. A,372 (2008) 1048.
    [111]B.C. Li and Y.F. Zhang, Explicit and exact travelling wave solutions for Konopelchenko-Dubrovsky equation, Chaos, Solitons and Fractals,38 (2008) 1202.
    [112]J.T. Pan and L.X. Gong, A new expansion method of first order nonlinear ordinary differential equation with at most a sixth-degree nonlinear term and its application to mBBM model, Chin. Phys. B,17 (2008) 399.
    [113]Z.B. Li and Y.P. Liu, RATH:A Maple package for finding travelling solitary wave solutions to nonlinear evolution equations, Computer Phys. Comm.,148 (2002) 256.
    [114]Y.P. Liu and Z.B. Li, An automated Jacobi elliptic function method for finding periodic wave solutions to nonlinear evolution equations, Chin. Phys. Lett.,19 (2002) 1228.
    [115]Y.P. Liu and Z.B. Li, A Maple package for finding exact solitary wave solutions of coupled nonlinear evolution equations, Computer Phys. Comm.,155 (2003) 65.
    [116]Y.P. Liu and Z.B. Li, An automated algebraic method for finding a series of exact travelling wave solutions of nonlinear evolution equations, Chin. Phys. Lett.,20 (2003)317.
    [117]G.Q. Xu, Z.B. Li and Y.P. Liu, Exact solutions to a large class of nonlinear evolution equations, Chin. J. Phys.,41 (2003) 232.
    [118]Z.B. Li and Y.P. Liu, RAEEM:A Maple package for finding a series of exact traveling wave solutions for nonlinear evolution equations, Computer Phys. Comm., 163(2004)191.
    [119]B. Denardo, B. Galvin, A. Greenfield, A. Larraza, S. Putterman and W. Wright, Observations of localized structures in nonlinear lattices:Domain walls and kinks, Phys. Rev. Lett.,68 (1992) 1730.
    [120]W.Z. Chen, Experimental observation of solitons in a 1D nonlinear lattice, Phys. Rev. B,49 (1994) 15063.
    [121]R. Hirota and K. Suzuki, Studies on lattice solitons by using electrical networks, J. Phys. Soc. Jpn.,28 (1970) 1366.
    [122]Yu. S. Kivshar and B. A. Malomed, Dynamics of solitons in nearly integrable systems, Rev. Mod. Phys,61 (1989) 763.
    [123]J. Wright, Soliton production and solutions to perturbed Korteweg-deVries equations, Phys. Rev. A,21 (1980) 335.
    [124]A. Gasch, T. Berning and D. Jager, Generation and parametric amplification of solitons in a nonlinear resonator with a Korteweg-de Vries medium, Phys. Rev. A,34 (1986)4528.
    [125]H. Aspe and M.C. Depassier, Evolution equation of surface waves in a convecting fluid, Phys. Rev. A,41 (1990) 3125.
    [126]F. Kh. Abdullaev, S. A. Darmanyan, M. R. Djumaev, A. J. Majid and M. P. Sφrensen, Evolution of randomly perturbed Korteweg-de Vries solitons, Phys. Rev. E, 52 (1995) 3577.
    [127]J.R. Yan and Y. Tang, Direct approach to the study of soliton perturbations, Phys. Rev. E,54 (1996) 6816.
    [128]R.A. Kraenkel, First-order perturbed Korteweg-de Vries solitons, Phys. Rev. E, 57(1998)4775.
    [129]M. Scalerandi, A. Romano and C.A. Condat, Korteweg-de Vries solitons under additive stochastic perturbations, Phys. Rev. E,58 (1998) 4166.
    [130]V.V. Konotop and V.E. Vekslerchik, Direct perturbation theory for dark solitons, Phys. Rev. E,49 (1994) 2397.
    [131]M. Midrio, S. Wabnitz and P. Franc, Perturbation theory for coupled nonlinear Schrodinger equations, Phys. Rev. E,54 (1996) 5743.
    [132]J.R. Yan, Y Tang, G.H. Zhou and Z.H. Chen, Direct approach to the study of soliton perturbations of the nonlinear Schrodinger equation and the sine-Gordon equation, Phys. Rev. E,58 (1998) 1064.
    [133]V.M. Lashkin, Perturbation theory for dark solitons:Inverse scattering transform approach and radiative effects, Phys. Rev. E,70 (2004) 066620.
    [134]F.G. Mertens, N.R. Quintero and A.R. Bishop, Nonlinear Schrodinger equation with spatiotemporal perturbations, Phys. Rev. E,81 (2010) 016608.
    [135]N.R. Quintero, F.G. Mertens and A. R. Bishop, Generalized traveling-wave method, variational approach, and modified conserved quantities for the perturbed nonlinear Schrodinger equation, Phys. Rev. E,82 (2010) 016606.
    [136]N.F. Pedersen, M.R. Samuelsen and D. Welner, Soliton annihilation in the perturbed sine-Gordon system, Phys. Rev. B,30 (1984) 4057.
    [137]P.J. Pascual and L. Vazquez, Sine-Gordon solitons under weak stochastic perturbations, Phys. Rev. B,32 (1985) 8305.
    [138]Y. Tang and W. Wang, Perturbation theory for the kink of the sine-Gordon equation, Phys. Rev. E,62 (2000) 8842.
    [139]P. Niarchou, G. Theocharis, P.G. Kevrekidis, P. Schmelcher and D. J. Frantzeskakis, Soliton oscillations in collisionally inhomogeneous attractive Bose-Einstein condensates, Phys. Rev. A,76 (2007) 023615.
    [140]T. Busch and J.R. Anglin, Dark-bright solitons in inhomogeneous Bose-Einstein condensates, Phys. Rev. Lett.,87 (2001) 010401.
    [141]D.J. Frantzeskakis, G. Theocharis, F.K. Diakonos, P. Schmelcher and Yu. S. Kivshar, Interaction of dark solitons with localized impurities in Bose-Einstein condensates, Phys. Rev. A,66 (2002) 053608.
    [142]S. Bujarbarua, E.W. Laedke and K.H. Spatschek, Motion of damped Langmuir solitons in inhomogeneous plasmas, Phys. Rev. A,27 (1983) 1164.
    [143]M.R. Rouhani, H. Abbasi, H.H. Pajouh, P.K. Shukla and N. L. Tsintsadze, Interaction of a relativistic soliton with a nonuniform plasma, Phys. Rev. E,65 (2002) 066406.
    [144]D.J. Wu, G.L. Huang and D.Y. Wang, Dipole density solitons and solitary dipole vortices in an inhomogeneous space plasma, Phys. Rev. Lett.,77 (1996) 4346.
    [145]S. Burtsev, D.J. Kaup and B.A. Malomed, Interaction of solitons with a strong inhomogeneity in a nonlinear optical fiber, Phys. Rev. E,52 (1995) 4474.
    [146]Y. Kubota and T. Odagaki, Numerical study of soliton scattering in inhomogeneous optical fibers, Phys. Rev. E,68 (2003) 026603.
    [147]D. Hennig and G.P. Tsironis, Wave transmission in nonlinear lattices, Phys. Rep.,307 (1999) 333.
    [148]O.M. Braun and Yu.S. Kivshar, Nonlinear dynamics of the Frenkel-Kontorova model, Phys. Rep.,306 (1998) 1.
    [149]B.B. Hu, B.W. Li and H. Zhao, Heat conduction in one-dimensional chains, Phys. Rev. E,57 (1998) 2992.
    [150]P.Q. Tong, B.W. Li and B.B. Hu, Wave transmission, phonon localization, and heat conduction of a one-dimensional Frenkel-Kontorova chain, Phys. Rev. B,59 (1999) 8639.
    [151]B.W. Li, L. Wang and G. Casati, Thermal diode:Rectification of heat flux, Phys. Rev. Lett.,93 (2004) 184301.
    [152]B.W. Li, J.H. Lan and L. Wang, Interface thermal resistance between dissimilar anharmonic lattices, Phys. Rev. Lett.,95 (2005) 104302.
    [153]B.B. Hu, L. Yang and Y. Zhang, Asymmetric Heat Conduction in Nonlinear Lattices, Phys. Rev. Lett.,97 (2006) 124302.
    [154]L. Wang and B.W. Li, Thermal logic gates:computation with phonons, Phys. Rev. Lett.,99 (2007) 177208.
    [155]L. Wang and B.W. Li, Thermal memory:a storage of phononic information, Phys. Rev. Lett.,101 (2008) 267203.
    [156]O.M. Braun and Yu.S. Kivshar, Nonlinear dynamics of the Frenkel-Kontorova model with impurities, Phys. Rev. B,43 (1991) 1060.
    [157]R. Scharf and A.R. Bishop, Properties of the nonlinear Schrodinger equation on a lattice, Phys. Rev. A,43 (1991) 6535.
    [158]N.V. Alexeeva, I.V. Barashenkov and G.P. Tsironis, Impurity-induced stabilization of solitons in arrays of parametrically driven nonlinear oscillators, Phys. Rev. Lett.,84 (2000) 3053.
    [159]W.Z. Chen, B.B. Hu and H. Zhang, Interactions between impurities and nonlinear waves in a driven nonlinear pendulum chain, Phys. Rev. B,65 (2002) 134302.
    [160]W.Z. Chen, Y.F. Zhu and L Lu, Observations of impurity-soliton interactions in driven Frenkel-Kontorova chains, Phys. Rev. B,67 (2003) 184301.
    [161]朱逸斐,陈伟中,吕镭,晶格模型中缺陷与孤波相互作用的实验观测,中国科学,G辑,33(2003)97.
    [162]H. Lin, W.Z. Chen, L. Lu and R.J. Wei, Interactions between impurities and breather-pairs in a nonlinear lattice, Phys. Lett. A,316 (2003) 65.
    [163]H. Xu, W.Z. Chen and Y.F. Zhu, Influence of the bond defect in driven Frenkel-Kontorova chains, Phys. Rev. B,75 (2007) 224303.
    [164]M. Toda, Vibration of a chain with nonlinear interaction, J. Phys. Soc.Jpn.,22 (1967)431.
    [165]N. Saitoh and S. Watanabe, An Analysis of the Toda Lattice with Weak Dissipation, J. Phys. Soc. Jpn.,50 (1981) 1774.
    [166]M. Aoki and Y. Tabata, Cut-off frequency and the localized mode oscillation excited by a soliton in the Toda lattice, J. Phys. Soc. Jpn.,53 (1984) 3293.
    [167]M. Aoki and Y. Tabata, Energy of the localized mode oscillation induced by a soliton in the Toda lattice, J. Phys. Soc. Jpn.,54 (1985) 23.
    [168]M. Aoki and Y. Tabata, Localized mode oscillations of clustered impurities excited by a soliton in the Toda lattice, J. Phys. Soc. Jpn.,56 (1987) 2448.
    [169]A. Nakamura and S. Takeno, Scattering of a soliton by an impurity atom in the Toda lattice and localized modes, Prog. Theor. Phys,58 (1977) 1074.
    [170]A. Nakamura, Interaction of Toda lattice soliton with an impurity atom, Prog. Theor. Phys,59 (1978) 1447.
    [171]N. Yajima, Scattering of lattice solitons from a mass impurity, Phys. Scr.,20 (1979)431.
    [172]A. Nakamura, Surface impurity localized mode vibration of the Toda lattice, Prog. Theor. Phys,61 (1979) 427.
    [173]A. Nakamura and S. Takeno, Undamping of strongly nonlinear surface impurity localized mode in the Toda lattice, Prog. Theor. Phys,62 (1979) 33.
    [174]S. Watanabe and M. Toda, Interaction of soliton with an impurity in nonlinear lattice, J. Phys. Soc. Jpn.,50 (1981) 3436.
    [175]Y. Kubota and T. Odagaki, Resonant transmission of a soliton across an interface between two Toda lattices, Phys. Rev. E,71 (2005) 016605.
    [176]H. Nagashima and Y. Amagishi, Experiment on the Toda lattice using nonlinear transmission lines, J. Phys. Soc. Jpn.,45 (1978) 680.
    [177]H. Nagashima and H. Amagishi, Experiment on solitons in the dissipative Toda lattice using nonlinear transmission lines, J. Phys. Soc. Jpn.,47 (1979) 2021.
    [178]S. Watanabe, M. Miyakawa and M. Tada, Asymptotic behaviour of collisionless shock in nonlinear LC circuit, J. Phys. Soc. Jpn.,45 (1978) 2030.
    [179]K. Muroya and S. Watanabe, Experiment on lattice soliton by nonlinear LC circuit-Energy of soliton, J. Phys. Soc. Jpn.,50 (1981) 2762.
    [180]K. Muroya, N. Saitoh and S. Watanabe, Experiment on lattice soliton by nonlinear LC circuit-Observation of a dark soliton, J. Phys. Soc. Jpn.,51 (1982) 1024.
    [181]S. Watanabe, Solitons in nonlinear transmission line, J. Phys. Soc. Jpn.,51 (1982) 1030.
    [182]T. Kofane, B. Michaux and M. Remoissenet, Theoretical and experimental studies of diatomic lattice solitons using an electrical transmission line, J. Phys. C: Solid State Phys.,21 (1988) 1395.
    [183]T. Tsuboi, Phase shift in the collision of two solitons propagating in a nonlinear transmission line, Phys. Rev. A,40 (1989) 2753.
    [184]T. Tsuboi, Formation process of solitons in a nonlinear transmission line: Experimental study, Phys. Rev. A,41 (1990) 4534.
    [185]T. Tsuboi and F.M. Toyama, Computer experiments on solitons in a nonlinear transmission line. I. Formation of stable solitons, Phys. Rev. A,44 (1991) 2686.
    [186]P. Marquie and J.M. Bilbault, Bistability and nonlinear standing waves in an experimental transmission line, Phys. Lett. A,174 (1993) 250.
    [187]P. Marquie, J.M. Bilbault and M. Remoissenet, Generation of envelope and hole solitons in an experimental transmission line, Phys. Rev. E,49 (1994) 828.
    [188]P. Marquie, J.M. Bilbault and M. Remoissenet, Observation of nonlinear localized modes in an electrical lattice, Phys. Rev. E,51 (1995) 6127.
    [189]D. Yemele, P. Marquie and J.M. Bilbault, Long-time dynamics of modulated waves in a nonlinear discrete LC transmission line, Phys. Rev. E,68 (2003) 016605.
    [190]K. Tse Ve Koon, J. Leon, P. Marquie and P. Tchofo-Dinda, Cutoff solitons and bistability of the discrete inductance-capacitance electrical line:Theory and experiments, Phys. Rev. E,75 (2007) 066604.
    [191]T. Kuusela, Soliton experiments in transmission lines, Chaos, Solitons and Fractals,5(1995) 2419.
    [192]J.M. Bilbault, P. Marquie and B. Michaux, Modulational instability of two counterpropagating waves in an experimental transmission line, Phys. Rev. E,51 (1995) 817.
    [193]S.B. Yamgoue, S. Morfu and P. Marquie, Noise effects on gap wave propagation in a nonlinear discrete LC transmission line, Phys. Rev. E,75 (2007) 036211.
    [194]K. Tse Ve Koon, P. Tchofo Dinda and P. Marquie, Dispersion-managed electrical transmission lines, Chaos, Solitons and Fractals,40 (2009) 1976.
    [195]D. Yemele, P.K. Talla and T.C. Kofane, Dynamics of modulated waves in a nonlinear discrete LC transmission line:dissipative effects, J. Phys. D:Appl. Phys., 36 (2003) 1429.
    [196]D. Yemele and T.C. Kofane, Suppression of the fast and slow modulated waves mixing in the coupled nonlinear discrete LC transmission lines, J. Phys. D:Appl. Phys.,39(2006)4504.
    [197]D. Yemele and F. Kenmogne, Compact envelope dark solitary wave in a discrete nonlinear electrical transmission line, Phys. Lett. A,373 (2009) 3801.
    [198]W.S. Duan, Nonlinear waves propagating in the electrical transmission line, Europhys. Lett.,66 (2004) 192.
    [199]M.M. Lin and W.S. Duan, Wave packet propagating in an electrical transmission line, Chaos, Solitons and Fractals,24 (2005) 191.
    [200]B.Z. Essimbi and I.V. Barashenkov, Spatially localized voltage oscillations in an electrical lattice, J. Phys. D:Appl. Phys.,35 (2002) 1438.
    [201]B.Z. Essimbi and D. Jager, Observation of localized solitary waves along a bi-modal transmission line, J. Phys. D:Appl. Phys.,39 (2006) 390.
    [202]B.Z. Essimbi and A.A. Zibi, Stationary localized solitary signals in a nonlinear mono-inductance line, J. Phys. D:Appl. Phys.,32 (1999) 3227.
    [203]B.Z. Essimbi, M. Mane and J.M. Ngundam, Stationary localized solitary signals in a bi-inductance electrical transmission line, J. Phys. D:Appl. Phys.,33 (2000) 1022.
    [204]B.Z. Essimbi, A.M. Dikande, T.C. Kofane and A.A. Zibi, Asymmetric gap solitons in a non-linear LC transmission line, Phys. Scr.,52 (1995) 17.
    [205]B.Z. Essimbi, A.A. Zibi and T.C. Kofane, Gap solitons in bi-inductance electrical transmission line, Phys. Scr.,52 (1995) 609.
    [206]M. Marklund and P.K. Shukla, Modulational instability of partially coherent signals in electrical transmission lines, Phys. Rev. E,73 (2006) 057601.
    [207]E. Kengne, S.T. Chui and W.M. Liu, Modulational instability criteria for coupled nonlinear transmission lines with dispersive elements, Phys. Rev. E,74 (2006) 036614.
    [208]F.II. Ndzana, A. Mohamadou and T.C. Kofane, Dynamics of modulated waves in electrical lines with dissipative elements, Phys. Rev. E,79 (2009) 047201.
    [209]R. Stearrett and L.Q. English, Experimental generation of intrinsic localized modes in a discrete electrical transmission line, J. Phys. D:Appl. Phys.,40 (2007) 5394.
    [210]L.Q. English, R.B. Thakur and R. Stearrett, Patterns of traveling intrinsic localized modes in a driven electrical lattice, Phys. Rev. E,77 (2008) 066601.
    [211]F.II. Ndzana, A. Mohamadou, T.C. Kofane and L.Q. English, Modulated waves and pattern formation in coupled discrete nonlinear LC transmission lines, Phys. Rev. E,78 (2008) 016606.
    [212]L.Q. English, F. Palmero, A.J. Sievers, P. G. Kevrekidis and D. H. Barnak, Traveling and stationary intrinsic localized modes and their spatial control in electrical lattices, Phys. Rev. E,81 (2010) 046605.
    [213]K. Muroya and S. Watanabe, Experiment on soliton in inhomogeneous electric circuit. I. Dissipative case, J. Phys. Soc. Jpn.,50 (1981) 3159.
    [214]S. Watanabe and K. Muroya, Experiment on soliton in inhomogeneous electric circuit. Ⅱ. Dissipation-free case, J. Phys. Soc. Jpn.,50 (1981) 3166.
    [215]朱逸斐,缺陷与非线性波相互作用,南京大学硕士毕业论文,2005,第34-39页。
    [216]M. Sato, S. Yasui, M. Kimura, T. Hikihara and A. J. Sievers, Management of localized energy in discrete nonlinear transmission lines, Europhys. Lett.,80 (2007) 30002.
    [217]S. Watanabe and M. Toda, Experiment on soliton-impurity interaction in nonlinear lattice using LC circuit, J. Phys. Soc. Jpn.,50 (1981) 3443.
    [218]T. Tsuboi and F.M. Toyama, Computer experiments on solitons in a nonlinear transmission line. Ⅱ. Propagation of solitons in an impurity-doped line, Phys. Rev. A, 44(1991)2691.
    [219]C.C. Mei, Radiation of solitons by slender bodies advancing in a shallow channel, J. Fluid Mech.,162 (1986) 53.
    [220]M.H. Teng and T.Y. Wu, Evolution of long water waves in variable channels, J. Fluid Mech.,266(1994)303.
    [221]A. Shi, M.H. Teng and T.Y. Wu, Propagation of solitary waves through signicantly curved shallow water channels, J. Fluid Mech.,362 (1998) 157.
    [222]T. Kakutani, Effect of an uneven bottom on gravity waves, J. Phys. Soc. Jpn.,30 (1971)272.
    [223]H. Ono, Wave propagation in an inhomogeneous anharmonic lattice, J. Phys. Soc. Jpn.,32(1972)332.
    [224]R.S. Johnson, On the development of a solitary wave moving over an uneven bottom, Proc. Camb. Phil. Soc.,73 (1973) 183.
    [225]R.S. Johnson, Solitary wave, soliton and shelf evolution over variable depth, J. Fluid Mech.,276 (1994) 125.
    [226]V.D. Djordjevic and L.G. Redekopp, The fission and disintegration of internal solitary waves moving over two-dimensional topography, J. Phys. Oceanogr.,8 (1978) 1016.
    [227]R.H.J. Grimshaw and N. Smyth, Resonant flow of a stratified fluid over topography, J. Fluid Mech.,169 (1986) 429.
    [228]L.G. Redekopp and Z. You, Passage through resonance for the forced Korteweg-de Vries equation, Phys. Rev. Lett.,74 (1995) 5158.
    [229]朱勇,具表面张力(Ⅰ. Bond数大于1/3)的流体流过地形的共振流动,水动力学研究与进展,A辑,13(1998)272.
    [230]G.L. Grataloup and C.C. Mei, Localization of harmonics generated in nonlinear shallow water waves, Phys. Rev. E,68 (2003) 026314.
    [231]C.C. Mei and Y. Li, Evolution of solitons over a randomly rough seabed, Phys. Rev. E,70 (2004) 016302.
    [232]J. Gamier, R. A. Kraenkel and A. Nachbin, Optimal Boussinesq model for shallow-water waves interacting with a microstructure, Phys. Rev. E,76 (2007) 046311.
    [233]V.P. Ruban, Water waves over a strongly undulating bottom, Phys. Rev. E,70 (2004) 066302.
    [234]T.Y. Wu, Generation of upstream advancing solitons by moving disturbances, J. Fluid Mech.,184(1987)75.
    [235]S.J. Lee, GT. Yates and T.Y. Wu, Experiments and analyses of upstream-advancing solitary waves generated by moving disturbances, J. Fluid Mech., 199 (1989) 569.
    [236]D.H. Zhang and A.T. Chwang, Generation of solitary waves by forward-and backward-step bottom forcing, J. Fluid Mech.,432 (2001) 341.
    [237]R.H.J. Grimshaw, D.H. Zhang and K.W. Chow, Generation of solitary waves by transcritical flow over a step, J. Fluid Mech.,587 (2007) 235.
    [238]K.R. Helfrich, W.K. Melville and J.W. Miles, On interfacial solitary waves over slowly varying topography, J. Fluid Mech.,149 (1984) 305.
    [239]Y. Matsuno, Forced Benjamin-Ono equation and its application to soliton dynamics, Phys. Rev. E,52 (1995) 6333.
    [240]W.Z. Chen, L. Lu and Y.F. Zhu, Influence of impurities on hydrodynamic solitons, Phys. Rev. E,71 (2005) 036622.
    [241]吕镭,陈伟中,朱逸斐,林翰,水波孤子与缺陷相互作用的实验观测,科学通报,49(2004)1036.
    [1]O.M. Braun and Yu.S. Kivshar, Nonlinear dynamics of the Frenkel-Kontorova model with impurities, Phys. Rev. B,43 (1991) 1060.
    [2]R. Scharf and A.R. Bishop, Properties of the nonlinear Schrodinger equation on a lattice, Phys. Rev. A,43 (1991) 6535.
    [3]N.V. Alexeeva, I.V. Barashenkov and G.P. Tsironis, Impurity-induced stabilization of solitons in arrays of parametrically driven nonlinear oscillators, Phys. Rev. Lett.,84 (2000)3053.
    [4]W.Z. Chen, B.B. Hu and H. Zhang, Interactions between impurities and nonlinear waves in a driven nonlinear pendulum chain, Phys. Rev. B,65 (2002) 134302.
    [5]W.Z. Chen, Y.F. Zhu and L Lu, Observations of impurity-soliton interactions in driven Frenkel-Kontorova chains, Phys. Rev. B,67 (2003) 184301.
    [6]朱逸斐,陈伟中,吕镭,晶格模型中缺陷与孤波相互作用的实验观测,中国科学,G辑,33(2003)97.
    [7]H. Xu, W.Z. Chen and Y.F. Zhu, Influence of the bond defect in driven Frenkel-Kontorova chains, Phys. Rev. B,75 (2007) 224303.
    [8]W.Z. Chen, L. Lu and Y.F. Zhu, Influence of impurities on hydrodynamic solitons, Phys. Rev. E,71 (2005) 036622.
    [9]吕镭,陈伟中,朱逸斐,林翰,水波孤子与缺陷相互作用的实验观测,科学通报,49(2004)1036.
    [10]T. Kakutani, Effect of an uneven bottom on gravity waves, J. Phys. Soc. Jpn.,30 (1971)272.
    [11]朱勇,具表面张力(I. Bond数大于1/3)的流体流过地形的共振流动,水动力学研究与进展,A辑,13(1998)272.
    [12]W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical Recipes in C,2nd ed, Cambridge University Press, Cambridge,1997, pp.714-722.
    [1]O.M. Braun and Yu.S. Kivshar, Nonlinear dynamics of the Frenkel-Kontorova model with impurities, Phys. Rev. B,43 (1991) 1060.
    [2]R. Scharf and A.R. Bishop, Properties of the nonlinear Schrodinger equation on a lattice, Phys. Rev. A,43 (1991) 6535.
    [3]N.V. Alexeeva, I.V. Barashenkov and G.P. Tsironis, Impurity-induced stabilization of solitons in arrays of parametrically driven nonlinear oscillators, Phys. Rev. Lett.,84 (2000)3053.
    [4]W.Z. Chen, B.B. Hu and H. Zhang, Interactions between impurities and nonlinear waves in a driven nonlinear pendulum chain, Phys. Rev. B,65 (2002) 134302.
    [5]W.Z. Chen, Y.F. Zhu and L Lu, Observations of impurity-soliton interactions in driven Frenkel-Kontorova chains, Phys. Rev. B,67 (2003) 184301.
    [6]朱逸斐,陈伟中,吕镭,晶格模型中缺陷与孤波相互作用的实验观测,中国科学,G辑,33(2003)97.
    [7]H. Xu, W.Z. Chen and Y.F. Zhu, Influence of the bond defect in driven Frenkel-Kontorova chains, Phys. Rev. B,75 (2007) 224303.
    [8]W.Z. Chen, L. Lu and Y.F. Zhu, Influence of impurities on hydrodynamic solitons, Phys. Rev. E,71 (2005) 036622.
    [9]吕镭,陈伟中,朱逸斐,林翰,水波孤子与缺陷相互作用的实验观测,科学通报,49(2004)1036.
    [10]J.T. Pan, W.Z. Chen and L.J. Zheng, Interactions between defects and propagating hydrodynamic solitons, Chin. Phys. B,19 (2010) 080304.
    [11]S. Watanabe and M. Toda, Experiment on soliton-impurity interaction in nonlinear lattice using LC circuit, J. Phys. Soc. Jpn.,50 (1981) 3443.
    [12]T. Tsuboi and F.M. Toyama, Computer experiments on solitons in a nonlinear transmission line. II. Propagation of solitons in an impurity-doped line, Phys. Rev. A, 44(1991)2691.
    [13]G. Kalbermann, Soliton tunneling, Phys. Rev. E,55 (1997) 6360.
    [14]A. V. Savin and A. V. Zolotaryuk, Dynamics of ionic defects and lattice solitons in a thermalized hydrogen-bonded chain, Phys. Rev. A,44 (1991) 8167.
    [15]K. Tse Ve Koon, J. Leon, P. Marquie and P. Tchofo-Dinda, Cutoff solitons and bistability of the discrete inductance-capacitance electrical line:Theory and experiments, Phys. Rev. E,75 (2007) 066604.
    [16]P. Marquie, J.M. Bilbault and M. Remoissenet, Generation of envelope and hole solitons in an experimental transmission line, Phys. Rev. E,49 (1994) 828.
    [17]D. Yemele, P. Marquie and J.M. Bilbault, Long-time dynamics of modulated waves in a nonlinear discrete LC transmission line, Phys. Rev. E,68 (2003) 016605.
    [18]W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical Recipes in C,2nd ed, Cambridge University Press, Cambridge,1997, pp.714-722.
    [19]T. Taniuti and N. Yajima, Perturbation method for a nonlinear wave modulation. Ⅰ, J. Math. Phys.,10(1969)1369.
    [20]E.J. Parkes, The modulation of weakly non-linear dispersive waves near the marginal state of instability, J. Phys. A:Math. Gen.,20 (1987) 2025.
    [1]E.G. Fan, Travelling wave solutions in terms of special functions for nonlinear coupled evolution systems, Phys. Lett. A,300 (2002) 243.
    [2]E.G. Fan, Multiple travelling wave solutions of nonlinear evolution equations using a unified algebraic method, J. Phys. A:Math. Gen.,35 (2002) 6853.
    [3]V. A. Vladimirov and E. V. Kutafina, Exact travelling wave solutions of some nonlinear evolutionary equations, Rep. Math. Phys.,54 (2004) 261.
    [4]Z.Y. Yan, An improved algebra method and its applications in nonlinear wave equations, Chaos, Solitons and Fractals,21 (2004) 1013.
    [5]Y. Chen and Q. Wang, A series of new soliton-like solutions and double-like periodic solutions of a (2+1)-dimensional dispersive long wave equation, Chaos, Solitons and Fractals,23 (2005) 801.
    [6]Y. Chen, Q. Wang and B. Li, A series of soliton-like and double-like periodic solutions of a (2+1)-dimensional asymmetric Nizhnik-Novikov-Vesselov equation, Commun. Theor. Phys.,42 (2004) 655.
    [7]E. Yomba, The extended Fan's sub-equation method and its application to KdV-MKdV, BKK and variant Boussinesq equations, Phys. Lett. A,336 (2005) 463.
    [8]Z.L. Li, Solitary wave and periodic wave solutions for the thermally forced gravity waves in atmosphere, J. Phys. A:Math. Theor.,41 (2008) 145206.
    [9]D.J. Huang, D.S. Li and H.Q. Zhang, New exact travelling wave solutions to Kundu equation, Commun. Theor. Phys.,44 (2005) 969.
    [10]D.J. Huang and H.Q. Zhang, The extended first kind elliptic sub-equation method and its application to the generalized reaction Duffing model, Phys. Lett. A, 344 (2005) 229.
    [11]D.J. Huang and H.Q. Zhang, New exact travelling waves solutions to the combined Kdv-MKdv and generalized Zakharov equations, Rep. Math. Phys.,57 (2006) 257.
    [12]D.J. Huang and H.Q. Zhang, Link between travelling waves and first order nonlinear ordinary differential equation with a sixth-degree nonlinear term, Chaos, Solitons and Fractals,29 (2006) 928.
    [13]D.J. Huang, D.S. Li and H.Q. Zhang, Explicit and exact travelling wave solutions for the generalized derivative Schrodinger equation, Chaos, Solitons and Fractals,31 (2007) 586.
    [14]Y.J. Ren, S.T. Liu and H.Q. Zhang, A new generalized algebra method and its application in the (2+1) dimensional Boiti-Leon-Pempinelli equation, Chaos, Solitons and Fractals,32(2007)1655.
    [15]S. Zhang and T.C. Xia, A generalized auxiliary equation method and its application to (2+1)-dimensional asymmetric Nizhnik-Novikov-Vesselov equations, J. Phys. A:Math. Theor.,40 (2007) 227.
    [16]E. Yomba, A generalized auxiliary equation method and its application to nonlinear Klein-Gordon and generalized nonlinear Camassa-Holm equations, Phys. Lett. A,372(2008)1048.
    [17]B.C. Li and Y.F. Zhang, Explicit and exact travelling wave solutions for Konopelchenko-Dubrovsky equation, Chaos, Solitons and Fractals,38 (2008) 1202.
    [18]J.T. Pan and L.X. Gong, A new expansion method of first order nonlinear ordinary differential equation with at most a sixth-degree nonlinear term and its application to mBBM model, Chin. Phys. B,17 (2008) 399.
    [19]Y.P. Liu and Z.B. Li, An automated algebraic method for finding a series of exact travelling wave solutions of nonlinear evolution equations, Chin. Phys. Lett.,20 (2003) 317.
    [20]C.P. Liu and X.P. Liu, A note on the auxiliary equation method for solving nonlinear partial differential equations, Phys. Lett. A,348 (2006) 222.
    [21]A. Bekir and A. Boz, Exact solutions for nonlinear evolution equations using Exp-function method, Phys. Lett. A,372 (2008) 1619.
    [22]Y. Ugurlu and D. Kaya, Analytic method for solitary solutions of some partial differential equations, Phys. Lett. A,370 (2007) 251.
    [23]R. Camassa and D.D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett.,71 (1993) 1661.
    [24]L.X. Tian and X.Y. Song, New peaked solitary wave solutions of the generalized Camassa-Holm equation, Chaos, Solitons and Fractals,19 (2004) 621.
    [25]B. He, W.G. Rui, C. Chen and S.L. Li, Exact travelling wave solutions of a generalized Camassa-Holm equation using the integral bifurcation method, Appl.Math.Comput.,206 (2008) 141.
    [26]Sirendaoreji, Auxiliary equation method and new solutions of Klein-Gordon equations, Chaos, Solitons and Fractals,31 (2007) 943.
    [27]X.P. Liu and C.P. Liu, The relationship among the solutions of two auxiliary ordinary differential equations, Chaos, Solitons and Fractals,39 (2009) 1915.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700