论非线性发展方程求解中辅助方程法的历史演进
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1834年8月,英国科学家罗素发现了孤立波自然现象.1895年,荷兰阿姆斯特丹大学的数学家德弗里斯(G.de Vries)在导师柯特维格(D.J.Korteweg)的指导下,研究单方向运动的浅水波时,建立了描述罗素孤立波现象的数学模型KdV方程,从理论上肯定了孤立波解的存在性.1955年,美国物理学家费米(Enrico Fermi),帕斯塔(John Pasta)和犹拉姆(Stan Ulam)提出的著名的FPU问题,对于发现孤立子提供了第一个实验依据.1965年,美国Princeton大学应用数学家扎布斯基(N.J.Zabusky)和实验室的克鲁斯卡尔(M.D.Kruskal)发现了FPU问题中弦的位移满足KdV方程,而且他们通过计算机模拟重现了孤立波相互作用时表现出类此于粒子的性质,并由此提出“孤立子”的概念.孤立子概念的提出证明了孤立波解的稳定性.
     最近50多年来,人们利用计算机技术,在非线性光学中发现光孤子并应用于通信领域取得了成功.生物学中发现了达维多夫(Davydov)孤立子,海洋学中发现了内孤立波.另外,在凝聚态物理、激光物理、超导物理、经济学、人口问题和医学等诸多科学领域中相继发现了光滑孤立子解、尖峰孤立子解和紧孤立子解等多种孤立子.
     孤立子理论的研究内容大致分为以下两类.
     (1)构造系统的求解方法:即构造和发展求解非线性方程的一种系统的方法.这里指的非线性方程包括非线性偏微分方程,非线性常微分方程,非线性积分微分方程和非线性差分微分方程.对于许多非线性发展方程,已经有了多种有效的求解方法,但是没有一种通用的方法.
     (2)解释解的性质:研究解释可积方程的代数和几何的一系列美妙的性质.这里所说的可积方程是能够转化成线性方程的非线性方程.对于研究解的性质方面一般有如下三个情况.第一种情况:当难以获得显示精确解时,分析研究非线性发展方程的适定性问题;第二种情况:利用计算数学的理论知识和计算机,对解进行模拟分析研究;第三种情况:利用试探法和构造变换法等数学技巧,获得非线性发展方程的精确解.虽然以上三种研究方法的角度不同,但是目的都是解释解的变化规律.
     数学史研究数学概念、数学方法和数学思想的起源与发展,以及与社会政治、经济和一般的文化的联系.1974年,吴文俊开始研究中国数学史.他在“古证复原”原则下,利用“反辉格”与“中西方数学对比”相结合的综合性方法来研究中国传统数学,揭开了中国数学的构造性和机械化性两个特点.在此基础上与计算机技术相结合发明了著名的“吴消元法”.吴文俊的工作成就是“古为今用”的典范.他提出的“新方法论”对于数学史和数学研究工作来说具有指导性和启发性作用.
     构造非线性发展方程的精确解是孤立子理论的重要研究课题之一.试探函数法与辅助方程法在构造非线性发展方程精确解领域发挥了非常重要的作用,已经获得了许多新成果.本文从“吴消元法”的发明得到启示,利用“新方法论”对2009年以前的辅助方程法和试探函数法有关的大量文献进行认真比较和仔细分析研究,获得了这两种方法的构造性和机械化性.在第四章中总结了试探函数法的构造性和机械化性两大特点.在此基础上,提出了新的试探函数法,构造了非线性连续(离散)发展方程新的精确解.
     在第五章中首先通过对Riccati方程法等辅助方程法有关的大量文献进行研究,梳理了辅助方程法的思想基础和来源问题,总结了辅助方程法的四个应用步骤体现了该方法的构造性和机械化性两大特点.在此基础上,初步发挥辅助方程法的两大特点,提出了三角函数型辅助方程法与双曲函数型辅助方程法等新的方法,构造了非线性发展方程的新精确解.
     (1)把非线性发展方程转化为非线性常微分方程的变换具有构造性.
     (2)辅助方程与非线性常微分方程的形式解具有构造性.
     (3)非线性方程组的求解问题具有机械化性.
     (4)非线性发展方程解的验证具有机械化性.
     理论上说:《非线性发展方程存在无穷多个解》.但是,辅助方程法有关的诸多博士(硕士)学位论文以及相关的文献只获得了有限多个精确解.本文为了获得非线性发展方程的无穷序列精确解,挖掘辅助方程法的两大特点的含义获得了Riccati方程、第一种椭圆辅助方程、第二种椭圆辅助方程等几种常用辅助方程的自Backlund变换、拟Backlund变换和解的非线性叠加公式,构造了连续(离散)和变系数(常系数)非线性发展方程的多种类型的无穷序列新精确解.
     (1)单函数型无穷序列精确解.就是Jacobi椭圆函数、双曲函数、三角函数和有理函数单独构成的无穷序列新精确解.这里包括无穷序列光滑孤立波解、无穷序列尖峰孤立波解和尤穷序列紧孤立子解.本文不仅获得了K(m,n)方程、Degasperis-Procesi方程和CH方程的无穷序列尖峰孤立波解和无穷序列紧孤立子解,而目.其他的非线性发展方程中也获得了此类精确解.
     (2)复合函数型无穷序列精确解.就是Jacobi椭圆函数、双曲函数、三角函数和有理函数通过几种形式复合而成的无穷序列精确解.这里包括光滑孤立波解、尖峰孤立波解和紧孤立子解通过几种形式复合而成的无穷序列新精确解.
In 1834, J. Scott Russell observed natural phenomenon of solitary waves. In 1895, D.J.Korteweg and G.de Vries governed mathematical model for descriptirrg phenomenon of Rus-sell solitary wave in KdV equation when they investigated shallow water wave in one dimensional, and confirmed the existence of solitary wave solutions in theory. In 1955, Enrico Fermi, John Pasta and Stan Ulam presented FPU problem which proposed the first experimental foundation for discoverying soliton.
     In 1965, N.J.Zabusky and M.D.Kruskal discovered the length between speings in FPU problem satisfying KdV equation and reappeared the nature of the particles as interaction of solitary wave by computer simulation. Because of this, Zabusky and Kruskal named these special waves as solitons, which testified stabilization of solitary wave solutions.
     In the rencent fifty years, with the development of the computer, optical soliton, Davydov soliton and inner solitary wave were discovered in the nonlinear optics, biology and oceanol-ogy, respectively. And smooth soliton solutions, peak soliton solutions and compact soliton solutions, etc in several fields are investigated, such as condense state physics, laser physics, superconductivity physics, economics, population problem, medical science and so on.
     Now we would like to extend the two contents of the study of solitary theory as follows
     (1) Constructing solving method of systems. The systematic method for constructing and developing solving nonlinear equations was presented, which include nonlinear partial differential equations, nonlinear ordinary differential equations, nonlinear integrable differential equations and nonlinear difference differential equations. Many powerful solving methods of nonlinear evolution equations are introduced, but a few common methods are proposed.
     (2) Explaining the property of solutions. One of our aim is to study and explain many more algebraic and geometric properties of integrable equations, where integrable equations are nonlinear equations which can transformed into linear equations. Here will give three aspects about properties of solutions. For example, firstly, we will analyze and study qualitative prob-lems of nonlinear evolution equations when explicit exact solutions are difficult to be obtained. Secondly, the solutions are simulated and analyzed with the help of computation mathematical theory and computer. Finally, exact solutions of nonlinear evolution equations are obtained using trial function methods and constructive transformation methods, etc. Though the three research methods are different, the aims are to explain change rule of solutions.
     The history of mathematics is to study origin and development of mathematics concepts, mathematics method and mathematics thinking, and the relation between these with social politics, economics and general cultures. In 1974, Wu Wentsun began to study the history of Chinese mathematics. Under "Make the Past to the Present" principle, he applied the method for combing anti-Whig with the comparison of Chinese and Western mathematics to study the Chinese classical mathematics and obtained the two characteristics of constructively and mechanization about Chinese mathematics. On this basis with computer, the world-famous "Wu elimination method" was presented. Therefore, the work of Wu Wentsun is a model of make the past to the present, and new methodology Wu proposed is the guidance and enlightening for the history and the research of mathematics.
     The construction of exact solutions to nonlinear evolution equations is one of important researches in the solitary theory. The auxiliary method and trial function method have played significance on constructing exact solutions of nonlinear evolution equations, and much more work has been done. In the dissertation, according to Wu elimination method and applying new methodology to study references on the auxiliary equation method and the trial function method before 2009, we have searched for the two characteristics of constructively and mechanization of two methods. Hence, in chapter 4, we will summarize the two characteristics of constructively and mechanization about, the trial function method and propose the new trial function method to seek new exact solutions of nonlinear continuous(or discrete) evolution equations.
     In chapter 5, based on the references, ideological foundation and sources of Riccati equation and other auxiliary equation methods, we sum up four applicable procedures to reflect the two characteristics of constructively and mechanization about auxiliary equation methods. Accord-ing to this, developing the characteristics of auxiliary equation method, the auxiliary equation methods of triangular function type and hyperbolic function type,etc. have been presented to construct exact solutions of nonlinear evolution equations.
     (1) There is constructive for becoming nonlinear envolution equations into nonlinear ordi-nary differential equations.
     (2) There is constructive for formal solutions of auxiliary equations and nonlinear ordinary differential equations.
     (3) There is mechanization for solving the sets of nonlinear equations.
     (4) There is mechanization for illustrating the solutions of nonlinear evolution equations.
     In theory, nonlinear envolution equations exist infinite solutions. However, the auxiliary equation methods in many Master's thesises, doctoral dissertations and references can obtain fi-nite exact solutions. Therefore, in this dissertation, to seek new infinite sequence exact solutions to nonlinear evolution equations, studying highly references and summing up the characteris-tics of the auxiliary equation method, the auto-Backlund transformation, the quasi-Backlund transformation and the formula of nonlinear superposition of the solutions of Riccati equation, the first kind of elliptic equation and the second kind of elliptic equation,etc. are presented to construct new infinite sequence exact solutions of continuous(or discrete) nonlinear envolution equations with variable coefficients(or constant coefficients) as follows.
     Firstly, infinite sequences exact solutions of single function. The infinite sequences exact solutions are constructed by Jacobi elliptic function, hyperbolic function, trianglar function and rational function. respectively, which include infinite sequences smooth solitary wave solutions, infinite sequences peak solitary wave solutions and infinite sequences compact soliton solutions. In this dissertation, beside K(m,n) equation, Degasperis-Procesi equation and CH equation, infinite sequences peak solitary wave solutions and infinite sequences compact soliton solutions are discovered in other nonlinear evolution equations.
     Secondly. infinite sequences exact solutions of composite function.The infinite sequences exact solutions are composited by Jacobi elliptic function, hyperbolic function, trianglar func- tion and rational function in several forms, where include infinite sequences exact solutions are combined by smooth solitary wave solutions, peak solitary wave solutions and compact soliton solutions.
引文
[1]梁芳.几何定理机器证明的方法[J].数学通报,2003,(6):4-6.
    12]郭世荣.吴文俊院士与我国高等数学史研究[J].内蒙古师范大学学报,2009,38(5):496-502.
    [3]李文林.古为今用的典范—吴文俊教授的中国数学史研究[J].北京教育学院学报,2001,15(2):1-5.
    [4]李文林.数学史概论[M].高等教育出版社,2002.
    [5]吴文俊.数学机械化研究回顾与展望[J].系统科学与数学,2008,28(8):898-904.
    [6]Wang H. Toward mechanical mathematics[J]. IBM Journal, 1960,(4):2-22.
    [7]Wu W J. On the decision problem and the mechanization of theorem-proving in elemen-tary gcometry[J]. Scientia Sinica, 1978.(21):159-172.
    [8]吴文俊.吴文俊论数学机械化[M].山东教育出版社(济南),1995.
    [9]Wu W J. On the fo(?)dation of algebraic differential gcom gcometry(?)try[J]. Systems Sci.Math.Sci 1989,2(4):289-312.
    [10]吴文达.吴文俊的数学机械化理论及方法[J].中国科学院院刊,1991,(1):39-41.
    [11]C.S.Gardner, J.M.Greene, M.D.Kruskal. R.M.Miura. Method for solving the Korteweg-de Vries equation.[J]. Phys.Rev.Lell..1967. 19: 1095-1097.
    [12]Lox P D.Integrals of nonlinear eqnations of evolntion and solitary waves[J]. Co(?)n.Purc Appl.Math.,1968. 21:467-490.
    [13]Zakharov V E,Shabat A B.Exact theory of two dimensional self focusing and one-dimensional self modulation of waves in the nonlinear media[J]. Soviet Phys.J.E.T.P., 1972, 34:62-67.
    [14]Ablowtz M J, Kaup D J, Newll A C, Segur H. The initial value solution for the sine-Gordon equation[J]. J.Phys.Soc. Jpn, 1973, 32:1261;1973.31:125.
    [15]Hirota R. Exact solution of the KdV equation for multiple collisions of solitons[J]. Phys.Rev.Lett,1971,27:1192-1194.
    [16]Hereman W,Zhuang W. Symbolic Computation of solitons with Macsyma, in "Computational and applied mathematics Ⅱ:Differential equation". W. F.Ames and P.J. van der Houwen. eds. North Holland, Amsterdam, The Netberlands. 1992.
    [17]Darboux G. Compts Rendus Hebdomadaires des Seances de Ⅰ Academie des Sciences,Paris, 1882,2794:1456-1459.
    [18]谷超豪,·胡和生,周子翔.孤立子理论中的Darboux变换及其几何应用[M].上海科技出版社(上海),1999.
    [19]Gu C H. A unified explicit form Backlund transformations for generalized hierarchies of KdV equatious[J]. Lett.Math.Phys.,1986.11(4):325-335.
    [20]Gu C H,Zhou Z X. On the Darboux matrices of Backlund transformations for AKNS systems[J]. Lett.Math,Phys., 1987, 13(3):179-187.
    [21]曾云波.带附加项的AKNS方程族的达布变换[J].数学物理学报,1998,15:337-345.
    [22]Li Y S,Zhang J F. Darbonx transformation of classical Boussinesq system and its multi-soliton solutions[J]. Phys.Lett.A,2001, 284:253-258.
    [23]Lou S Y, Tang X Y, Jia M, et al. Vortices, circumfluence, symmetry groups and Darboux transformations of the Euler equations[J]. ar Ⅹⅳ:nlin.PS/0509039.
    [24]Fan E G. A unified and explicit construction of N-soliton solutions for the nonlinear Schrodinger equation[J]. Commun. Thcor.Phys.,2001, 36:401-405.
    [25]Geng X G,Tam H W. Darboux transformation and soliton solutions for generalized non-linear Schrodinger equation[J]. J.Phys.Soc.Jpn.,1998, 68:1508-1511.
    [26]周振江,李志斌Broer-Kaup系统的达布变换和新的精确解[J].物理学报,2003,52:262-266.
    [27]Miura. M.R. Backlund Transformations[J]. Berlin:Soringer-Verlag, 1978.
    [28]Li Z B, Wang M L. Travelling wave solutions to the two-dimensional KdV-Burgers equa-tion[J].J.Phys. A. Math. Gen., 1993. 26: 6027-6030.
    [29]Wang M L. Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics[J]. Phys.Lett.A.,1996, 216(1-5):67-75.
    [30]Wang M L. Solitary wave solutions for variant Boussinesq equations[J]. Phys. Lett.A., 1995, 199:169-172.
    [31]兰慧彬.汪克林.一类非线性方程的函数级数解法[J].中国科学技术大学学报.1990,20(1):15-26.
    [32]Li Z B. Wu method and solutions, Proc.of ASCM95 eds Shi H. and Kobayashi H. Scientists Incorporated(Tokyo), 1995, 157.
    [33]Li Z B,Shi H. Exact solutions of Belousov-Zhabotinskii reaction diffusion system[J]. Appl. Math. JCU.,1996, 118:1-6.
    [34]李志斌.张善卿.非线性波方程孤立波解的符号计算[J].数学物理学报,1997,1:81-89.
    [35]Li Z B, Liu Y P. RATH: A Maple package for finding travelling solitary wave solutions to nonlinear evolution equations[J]. Compu.Phys. Commun.,2002, 148:2,56-266.
    [36]Porubov A V.Periodical solution to the nonlinear dissipative equation for surface waves in a convecting liquid layer[J]. Phys.Lett.A.,1996, 221:391-395.
    [37]刘式适,付遵涛.刘式达.赵强.Jacobi椭圆函数展开法及期在求解非线性波动方程中的应用[J].物理学报,2001.50(11):2068-2073.
    [38]Lou S Y.Ni G J. The relations among a special type of solutions in some (D+1)-dimensional nonlinear equations[J]. J.Math.Phys.,1989,30:1614-1617.
    [39]Fan E G,Zhang H Q.New exact solutions of a system of coupled KdV equations[J]. Phys. Lett. A.,1998, 245:389-392.
    [40]范恩贵.孤立子与可积系统[D].大连理工大学博士论文,1998.
    [41]Fan E G.Extended tanh-function method and its applications to nonlinear cquations[J]. Phys.Lett.A., 2000, 277:212-218.
    [42]斯仁道尔吉.双曲正切函数展开法的两种推广[J].内蒙古师范大学学报,2000,3:4-10.
    [43]李志斌,姚若侠.非线性耦合微分方程组的精确解析解[J].物理学报,2001,50:2062-2067
    [44]Sirendaoerji,Sun J. Auxiliary equation method for solving nonlinear partial differental equations[J]. Phys. Lett.A. 2003,309: 387-390.
    [45]Wu Jun Ru,R Keolian I. Rudnick[J],Physical Review Letters,1984,52:1421-1424.
    [46]Camassa R,Holm D D.An integrable shallow water equation with peaked solitons[J].Phys. Re. Lett.,1993,71(11): 1661-1664.
    [47]Rosenau P,Hyman J M.Compactons: Solitons with finite wavelength[J]. Phys. Re. lett.,1993.70(5):.564-567.
    [48]Yan Z Y. New families of solito(?)s with compact support for Boussinesq-like B(m.n) equa-tion with fully nonlinear dispersion[J]. Chaos,Solitons and Fractals,2002,14:1151-1158.
    [49]夏铁成.吴方法及其在偏微分方程中的应用[D].大连理工大学博士学位论文,2002.
    [50]陈勇.孤立子理论中的若干问题的研究及机械化实现[D].大连理工大学博士学位论文,2D03.
    [51]李彪.孤立子理论中若干精确求解方法的研究及应用[D].大连理工大学博士学位论文,2004.
    [52]李德生.若干非线性演化方程精确求解法的研究[D].大连理工大学博士学位论文,2004.
    [53]任玉杰.非线性发展方程求解的研究与数学机械化实现[D].大连理工大学博士学位论文,2007.
    [54]郑莹.非线性发展方程精确求解中若干问题的研究[D].大连理工大学博士学位论文,2007.
    [55]张渊渊.孤子方程求解中的若干构造性技巧[D].大连理工大学博士学位论文,2007.
    [56]宋丽娜.非线性微分方程求解和群分析[D].大连理工大学博士学位论文,2009.
    [57]张晓岭.微分方程的精确解、群与群不变解的分类问题[D].大连理工大学博士学位论文,2009.
    [58]李文婷AC=BD模式下非线性发展方程求解的若干问题研究[D].大连理工大学博士学位论文,2009.
    [59]张善卿.微分方程精确解及李对称符号计算研究[D].华东师范大学博士学位论文,2004.
    [60]徐桂琼.非线性演化方程的精确解与可积系统及其符号计算研究[D].华东师范大学博士学位论文,2004.
    [61]马正义.非线性波动方程的精确解及其孤子结构[D].上海大学博士学位论文,2007.
    [62]王丽霞.一类非线性波动方程行波解的研究[D].江苏大学博士学位论文,2008.
    [63]刘志芳.弹性杆波导中几类非线性演化方程及其孤波解和冲击波解[D].太原理工大学博士学位论文,2006.
    [64]罗见今.著名数学家吴文俊院士的简介[J].高等数学研究,1999,2(3):42-44.
    [65]王学信.用中国古人的智慧引领数学的未来-记首届国家最高科技奖获得者、世办著名数学家吴文俊[J].从横,2009,10:34-38.
    [66]张维.不断创新的著名数学家-吴文俊[J].自然杂志,2007,29(4):244-248.
    [67]胡作幺.吴文俊-从拓扑学到数学机械化[J].自然辩证法通讯,2003,143(1):81-89.
    [68]高小山、石赫.卓越的贡献高度的评价--吴文俊及其科学成就[J].中国科学院院刊,2001.(1):64-66.
    [69][丹]赫尔奇·克拉夫.科学史学导论[M].任定成,翻译,北京大学出版社(北京),2005.
    [70]塔斯基.初等代数和几何的判定法[M].科学出版社,1959.
    [71]吴文俊.数学机械化[M].科学出版社(北京).2003.
    [72]康东升.曹玉玉.数学大师吴文俊的科学成就[J].天中学刊.2002.17(2):54-56.
    [73]郝新鸿.从科学哲学视角评价家吴文俊的学术创新与贡献[J].太原师范学院学报,2009,8(2):6-11.
    [74]郝新鸿.吴文俊数学史研究方法论及启示[J].淮阴师范学院学报,2009,31(3):290-294.
    [75]胡作玄.吴文俊工作的历史分析[J].高等数学研究.2009.12(4):3-7.
    [76]李涛.中国传统科学思想对现代科技创新的启示[J].科技管理研究,2007(11):2[261-263.
    [77]李文林.中国古代数学的发展及其影响[J].科学发展.2004.20(1):477-482.
    [78]Wu W J. On zeros of algebraic equations: an application of Ritt principle[J]. Kexue Tongbao, 1986, (31): 1-5.
    [79]柏万良.吴文俊解放人脑的数学家[J].科学中国人,2001,9:21-23.
    [80]李文林.古为今用、自主创新的典范-吴文俊院士的数学史研究[J].内蒙古师范大学学报,2009,38(5):31-36.
    [81]Wang D M,Gao X S. Geometry theorems proved mechanically using Wu method[J]. MM-Research Preprints,1987;(2):23-30.
    [82]Ko H. Geometry theorems proving by decomposition of quasi-algebraic sets: an applica-tion of the Ritt-Wu principle[J]. Artif.Intell, 1988,(37):95-122.
    [83]Kapur D,Wan H K. Refutational proofs of geometry theorems via characteristic sets: Proceeding of ISSAC-90[J]. Tokyo,Japan, 1990,277-284.
    [84]Chou S C. Automated reasoning in differential geometry and mechanics using the char-acteristic set method.Ⅰ. An improved version of Ritt-Wus decomposition algorithm[J]. J. Auto. Reasoning, 1993, (10): 161-172.
    [85]Gao X S. An Introduction to Wu Method of Mechanical Geometry Theorem Proving.IFIP Trans action on, Automated Reasoning,North-Holland.1993,(13).
    [86]Wu J Z,Liu Z J. Proceedings of Ist Asian Symposium on Computer Mathematics, Beijing of China 1995.
    [87]Sun X D,Wang K,Wu K. Solutions of Yang-Baxter equation with spectral parameters for a six-vertex model[J].Acta. Phys. sina.,1995.44(1):1-8(in Chinese).
    [88]Sun X D,Wang K,Wu K. Classification of six-vertex-type solutious of the colored Yang-Baxter equation[J].J. Math. Phys., 1995,36(10): 6043-6063.
    [89]Li Ⅱ B,Cheng M T. Proving theorems in elementary geometry with Clifford algebraic method[J]. Chinese Math Progress,1997,26(4):357-371.
    [90]Russell J S. Reports on waves, Edinburgh: Proc. Royal. Soc.,1844,311-390.
    [91]王丽霞.孤立波的KdV方程前史[D].中国科学院研究生院博士学位论文,2006.
    [92]戴世强.孟庆勋.孤立波史话--浅谈观察与思考[D].中外力学思维纵横-第四届全国力学史与方法论学术研讨会论文集,2009.162-169.
    [93]Pierre-Antonie Bois, Joseph Boussineq (1842-1929):a Pioneer of mathematicl modellig, Comptes Rendus Mecanique, 2007, 335:479-495.
    [94]Lord Rayleigh.On waves, Philosophical Magazine,S.5.Vol.1.No.4,April 1876.
    [95]J.McCowan. On the solitary wave. Philosophical Magazine.[J].S.5.1891.32:45-58.
    [96]Lin C C.A Clark Jr. On the theory water waves[J]. Tsing Hua Journal of Chinese Stud-ies. Spccial. 1959, 1:54-62.
    [97]Korteweg D J de Vries G. On the change of form long wave advancing in a rectangular canal, and on a new type of long stationary waves, Phil. Mag., 1895, 39:422-443.
    [98]Hopf E. The partial differential equation ut+uux=(?)uxx[J]. Commun. Pure Appl. Math., 1950,3:201-205.
    [99]Cole J D. On a quasilinear parabolic equation occuring in aerodynamics[J]. Q. Appl. Math., 1951,9:225-229.
    [100]Fermi E. Pasta J,Ulam S. Studies of nonlinear problems I, Los Alamos Rep. LA1940,1955.
    [101]J.E.Allen,The Early History of solitons (solitary waves)[J]. Phys.Scr. Vol.,1958,57:436-441.
    [102]Perring J. K. Skyrme T.H.R. A model unified field equation[J].Nucl.Phs..1962,31:550-552.
    [103]N.J.Zabusky,M.D.Kruskal.Interaction of "Solitions" in a CollisionIess Plasma and the Recurrence of Initial States[J].Physical Review Letters,1965,15,no.6,9Aug.
    [104]刘之景.等离子体中的孤立子[J].中国科学技术大学学报,1982.(6):53-61.
    [105]陈吕民.孤立子[J].山西大学学报,1982.(4):50-64.
    [106]C.S.Gardner J.M.Greene M.D.Kruskal R.M.Miura. Method for solving the Korteweg-de Vries equation[J],Phys. Rev. Lett., 1967.19: 1095-1097.
    [107]C.S.Gardner J.M.Greene M.D.Kruskal R.M.Miura Korteweg-de Vries equation and gen-eralization. Ⅵ, Methods for exact solution[J],Comn.Pure.Appi.Math.,1974,27:97-133.
    [108]Lax P D.Integrals of nonlinear equations of evolution and solitary waves[J]. Commnu. Pure Appl. Math., 1968,21:467-490.
    [109]Wadati M.The modified Korteweg-de-Vries equation[J].J.Phys.Soc.,Jpn, 1973. 32:1289-1296.
    [110]Ablowitz M J,Segur H.Solitons and the inverse scattering transformation[J]. Philadel-phia:SIAM,, 1981.
    [111]Ablowitz M J,Clarkson P A.Solitons, nonlinear evolution equations and inverse scatter-ing[J]. Cambridge:Cambridge University Press, 1991.
    [112]R.M.Miura.The Korteweg-de-Vries equation: A Survey of Results[J]. SIAM. Rev.. 1976, 18(3): 412-459.
    [113]曹策问.孤立子与反散射[M].郑州大学出版社(郑州),1983.
    [114]李翊神,庄大尉.两类非线性演化方程的等价[J].北京大学学报,1983,(2):107-118.
    [115]顾新身.相应的特征值问题有二重特征根的复KdV方程的一个求解实例[J].中国科学技术大学学报数学专辑,1983,(5):82-89.
    [116]斯仁道尔吉.非线性发展方程的精确解、Hamilton结构与Painleve性质[D].内蒙古大学研究生院博士学位论文,2002.
    [117]曾云波Lagrangian-Hamilton系统和AKNS方程族高阶约束流的Lax表示[J].科学通报,1993,(13):1161-1162.
    [118]Ma W X. Symmetry constraint of MKdV equatious by binary uoulinearization[J]. Non-linear Mathematical Physics, 1994, 1:420-433.
    [119]Li Y S. Ma W X. Hamilton structures of binary high-order coustyained flows associated with two 3×3 spectral problems[J]. Phys.Lett.A,2000,272:245-256.
    [120]Hirota. R. Exact solution of the sine-Gordon equation for multiple collisions of solitons[J]. J.Phys.Soc.Jpn, 1972, 33:1459-1463.
    [121]Hirota R. Exact N-soliton solutions of the wave equation of long wave in shallow-water and in nonlinear lattice[J]. J.Math.Phys.,1973,14:810-814.
    [122]Hirota R. Exact envelope-soliton solution of a nonlinear wave equation[J].J. Math. Phys., 1973, 14:805-809.
    [123]Hirota R. Exact Bilinearization of solution equation[J]. J.Phys.Soc.Jpn.,1982,51:323-331.
    [124]Satsuma J. N-soliton solution of the two-dimensional Korteweg-de Vries equation[J]. J. Phys.Soc.Jpn.. 1976. 40:286-290.
    [125]Hirota R. Nonlinear partial difference equation.Ⅲ.Discrete sine-Gordon equation[J]. J.Phys.Soc.Jpn., 1977,43: 2079-2086.
    [126]Hirota R. Nonlinear partial differeuce equation.Ⅱ.Discrete-time Toda equation[J]. J.Phys.Soc.Jpn., 1977,43: 2074-2078.
    [127]Hirota R. Nonlinear partial difference equation.Ⅰ.difference analogue of the KdV equa-tion[J].J.Phys.Soc.Jpn.. 1977,43: 1424-1433.
    [128]Newell A C. Soliton in mathematics and physics,CBMS-NSF Regional conference series in applied mathematical society lecture note series[M]. New York::Cambridge,1991,149.
    [129]Oishi S. A method of constructing generalized solutions for certain bilinear soliton equations [J]. J. Phys. Soc. Jpn.,1979, 47:1341-1346.
    [130]Nakamura. A. A direct method of constructing periodic wave solutions to nonlinear evo-lution equations. Ⅰ. Exact two-periodic wave solution[J].J.Phys.Soc.Jpn.,1979, 47:1701-1705.
    [131]Nakamura A. A direct method of constructing periodic wave solutions to nonlinear evolution equations. Ⅱ. Exact One and two-periodic wave solution of the coupled bilinear equation[J].J. Phys. Soc.Jpn., 1980, 48:1365-1370.
    [132]Satsuma M, Ablowitz M J. Two dimensional lumps in nonlinear dispersive systems[J]. J. Math. Phys., 1979. 20:1496-1503.
    [133]Matsnuo Y. A new proof of the rational N-soliton solutious for Kadomtsev-Petviashvili equation[J]. J.Phys.Soc.Jpn.,1989, 58:67-72.
    [134]Hietarint J, Hirota R.Multidromion solutions to the Davey-Stewarson equation[J]. Phys.Lett.A,1990,145:237-244.
    [135]Lou S Y. Generalized dromion solutions of the (2+1)-dimensional KdV equation[J]. J.Phys.A.,1995, 28:7227-7232.
    [136]Deng S F,Chen D Y. The novel multisoliton solutions of the KP equation[J].J. Phys. Soc. Jpn.,2001, 70: 3174-3175.
    [137]Chen D Y, Zhang D J,Deng S F. The novel multisoliton solutions of the MkdV-sine Gordon equations[J]. J.Phys.Soc.Jpn.,2002, 71:658-659.
    [138]Zhang Y, Deng S F,Chen D Y. The novel multisoliton solutions of equation for shallow water waves[J]. J.Phys,Soc.Jpn.,2003. 72:763-764.
    [139]Hirota R. A new form of Backlund transformations and its relation to inverse scattering problem[J]. Prog. Theor. Phys.,1974, 52:1498-1512.
    [140]Hirota R., Satsuma J. A simple structure of superposition formula of Backlund transfor-mation[J]. J.Phys.Soc.Jpn.,1978, 45:1741-1750.
    [141]Zhang Y, Shen D Y. Backlund transformation and soliton solutions for the shallow water wave equation[J]. Chaos.Solitons and Fractals,2004, 20:343-351.
    [142]Hu X B. Nonlinear superposition formulac of Boussinesq hierarchy[J]. Acta. Math. Appl.
    Sinica.1993, 9:17-27.
    [143]Hu X B. Rational solutions of integrable equations via nonlinear superposition formu-lae[J]. J. Phys.A.,1997, 30:8225-8240.
    [144]Hu X B,Bullough R K. A Backlund transformation and nonlinear superposition formulae of the Caudrey-Dodd-Gibbon-Kotera-Sawada hierarchy[J].J. Phys. Soc.Jpn., 1998.67:772-777.
    [145]Hu X B.Wu Y T. A new integrable differential-difference system and its explicit solu-tions[J]. J.Phys.A.,1999. 32:1515-1521.
    [140]Adler M,Moser J. On a class of polynomals counected with the Korteweg-de-Verlag equation[J]. Comm. Math. Phys.,1978, 61:1-30.
    [147]Satsuma J. A Wronskian representation of n-soliton solutions of nonlinear evolution equations[J]. J.Phys. Soc.Jpn.,1979, 46:359-360.
    [148]Matveev V B,Salle M A. Darboux transformation and soliton[M]. Berlin:Springer-Verlag,1991.
    [149]Freeman N C, Nimmo J J C. Soliton solutions of the KdV and KP equations:the Wron-skian technique[J]. Phys.Lett.A.,1983, 95:1-3.
    [150]Nimmo J J C,Freeman N C. The use of Backlund transformation in obtaining N-Soliton solutions in Wronskian form[J]. J. Phys. A:Math. Cen..1984. 17:1415-1424.
    [151]Liu Q M. Solving formula of the two-dimensional Toda lattice[J].J.Phys.A.,1989. 22:L255-L257.
    [152]Nimmo J J C,Freeman N C. Rational solutions of the KdV equation in Wronskian form[J]. Phys. Lett. A.,1983, 96:443-446.
    [153]Liu Q M. Double Wronskian solutions of the AKNS and the classical Boussinesq hierar-chies[J]. J. Phys. Soc. Jpn.,1990. 59:3520-3527.
    [154]Matveev V B. Generalized Wronskian formula for solutions of the KdV equation:first applications[J]. Phys. Lett. A.,1992, 166:205-208.
    [155]Ma W X. Complexiton solutions to the KdV equation[J]. Phvs.Lett.A.,2002, 301:35-44.
    [156]Zhaug D J, Chen D Y. Negatons, Positons, rational-like solutions and conservation laws of the KdV equation with loss and nonuniformity terms[J]. J. Phys.A:Gen.Math..2004, 37:851-865.
    [157]Hirota R, Ito M,Kako F. Two-dimensional Toda lattica equation[J]. Progr. Theor. Phys. Suppl.,1989,94:42-58.
    [158]Hirota R. Soliton solution to BKP equation Ⅰ. The Pfaffian technique[J].J. Phys. Soc. Jpn.,1989,58:2285-2296.
    [159]Hirota R,Ohta Y. Hierarchies of coupled soliton equation[J]. J.Phys.Soc.Jpn., 1991,60: 798-809.
    [160]Wadati M, et al. Simple derivation of Backlund transformation from Riccati form of inverse method[J]. Prog. Theor. Phys., 1975,53:418-421.
    [161]Backlund A V.Lund Universitests Arsskrift[J].1885,10.
    [162]Wahlquist H D,Estabrook F B. Backlund transformation for solitons of the Korteweg-de-Vriu equation[J].Phys. Rev. Lett.,1973,31:1386-1390.
    [163]Wahlquist H D,Estabrook F B. Prolongation Structures and nonlinear evolution equa-tion[J].J. Math. Phys.,1976,17: 1293-1298.
    [164]屠规彰Boussiesq方程的Backlund变换变换与守恒律[J].应用数学学报,1981,4:63-68
    [165]屠规彰.非线性σ模型的无穷小Backlund变换和对称[J].应用科学学报,1983,1:83-85
    [166]Weiss J, Tabor M, Carnvale G. The Painleve Property for partial differential equations[J]. J. Math. Phys., 1983,24:522-526.
    [167]Weiss J. The Painleve Property for partial differential equations.Ⅱ.Backlund transfor-matiou, Lax pairs, and the Schwarzian derivative[J]. J.Math,Phys.,1983,24:1405-1413.
    [168]Wang M L. Homogeneous balance method and applications[J]. Phys.Lett.A,1993, 213(2) :279-284.
    [169]范恩贵,张鸿庆.齐次平衡法若干新的应用[J].数学物理学报,1999,19(3):286-292.
    [170]斯仁道尔吉,孙炯.齐次平衡法的一个新应用[J].内蒙古师范大学学报.2001.(4):1-4.
    [171]斯仁道尔吉,孙炯.二维色散长波方程组的精确解[J].高校应用数学学报,2002,(3):308-312.
    [172]那仁满都拉.色散长波方程和变形色散水波方程特殊形状的多孤子解[J].物理学报,2002,51(8):1672-1674.
    [173]那仁满都拉,王克协.(2+1)维耗散长波方程与(2+1)维Broer-Kaup方程a新的类多孤子解[J].物理学报,2003,52(7):1565-1568
    [174]卢竞,颜家壬.非线性偏微分方程的多孤子解[J].物理学报,2002,51(7):1428-1433.
    [175]张春荣.扩展齐次平衡法与Backlund变换[J].光子学报,2002,31(11):1348-1351.
    [176]Wang M L,Wang X M,Zhou Y B. An auto-Backlund transformation and exact solutions to a generalized KdV equation with variable coeffieients and their applications[J].Phys. Lett. A,2002, 303:45-49.
    [177]Tian B, Gao Y T. Extension of generalized tanh method and soliton-like solutions for a set of nonlinear evolution equations[J]. Chaos, Solitons and Ftactals ,1997, 8:1651-1653.
    [178]Gao Y T,Tian B. New families of exact solutions to the integrable dispersive long wave equations in (2+1)-dimensional spaces[J]. J. Phys. A., 1996, 29:2895-2903.
    [179]张解放.长水波近似方程的多孤子解[J].物理学报,1998,47:1416-1420.
    [180]张解放.变更Boussinesq方程和Kupershmidt方程的多孤子解[J].应用数学与力学,2000,21:171-175.
    [181]Yan Z Y, Zhang H Q. Multiple soliton-like and periodic-like Soliton solution to the gen-eralization of integrable of (2+1)-dimensional dispersive long-wave equations[J]. J. Phys. Soc. Jpn.,2002,71:437-440.
    [182]Rosales R.Exact solutions of some nonlinear evolution equations[J]. Stud. Appl. Math.,1978, 59:117-121.
    [183]Korpel A. Solitary wave formation through nonlinear coupling of finite exponential waves[J]. Phys. Lett. A.,1978,68:179-182.
    [184]Hereman W,Banerjee P P, Korpel A,et al. Exact Solitary wave solutions of nonlin-ear evolution and wave equations using a direct algebraic method [J].J. Phys. A:Math. Gen.,1986,19:607-610.
    [185]Hereman W,Takaoka M.Solitary wave solutions of nonlinear evolution and wave equations using a direct method and MACSYMA [J]. J. Phys. A:Math. Gen., 1990,23:4805-4809.
    [186]Parkes E J, Duffy B R. An automated tanh-function method for finding solitary wave solutions to nonlinear evolution eqnations. Comput. Phys.Commun.,1996,98: 288-300.
    [187]刘式达,付遵涛,刘式适,赵强.非线性波动方程的Jacobi椭圆函数包络周期解[J].物理学报,2002,51(4):718-722.
    [188]刘式适,付遵涛,王彰贵.刘式达Lame函数和非线性演化方程的扰动方法[J].物理学报,2003,52(8):1837-1841.
    [189]刘式适,付遵涛,刘式达,赵强.一类非线性方程的新周期解[J].物理学报,2002.51(1):10-14.
    [190]刘式适,付遵涛,刘式达,赵强Jacobi椭圆函数展开法及其在求解非线性波动方程中的应用[J].物理学报,2001,50(11):2068-2073.
    [191]刘式适,付遵涛,刘式达,赵强.变系数非线性方程的Jacobi椭圆函数展开解[J].物理学报2002,51(9):1923-1926.
    [192]朱加民,马正义,郑春龙Hybrid-Lattice系统和Ablowitz-Ladik-Lattice系统的新解探索[J].物理学报,2005.54(2):483-489.
    [193]于亚璇,王琪,赵雪芹,智红燕,张鸿庆.求解非线性差分方程孤立波解的直接代数法[J].物理学报,2005,54(9):3992-3994.
    [194]Zha Q L, Sirendaoerji. A hyperbolic function approach to constructing exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice[J]. 2006. Chin.Phys., 15(3): 475-477.
    [195]Zhu J M. Hyperbolic function method for solving nonlinear differential-different equa-tion[J]. Chin. Phys., 2005,14(7):1290-1295.
    [196]Zhu J M, Ma Z Y.An extended Jacobian elliptic function method for the discrete mKdV lattice[J]. Chin.Phys., 2005,14(1):17-20.
    [197]张善卿.一种修正Volterra链的精确解[J].物理学报,2007,56(4):1870-1874.
    [198]Wang Z, Zhang H Q. New exact solutions to some difference differential equations[J]. Chin. Phys.,2006, 15(10):2210-2215.
    [199]Li H M, Wu F M.Exact discrete soliton solutions of quintic discrete nonlinear Schrodinger equation[J]. Chin. Phys., 2005, 14(06): 1069-1074.
    [200]李德生,张鸿庆.非线性耦合标量场方程的新双周期解(Ⅰ)[J].物理学报,2003,52:2373-2378.
    [201]毛杰健,杨建荣.变系数KP方程新的类孤波解和解析解[J].物理学报,2005,54(2):4999-5002.
    [202]套格图桑,斯仁道尔吉.双曲函数型辅助方程构造具5次强非线性项的波方程的新精确孤波解[J].物理学报,2006,55(1):13-18.
    [203]套格图桑,斯仁道尔吉.辅助方程构造(2+1)维Hybrid-Lattice系统和离散的mKdV方程的精确解[J].物理学报,2007,56(2):627-636.
    [204]贺锋,郭启波,刘辽.用三角函数法获得非线性Boussinesq方程的广义孤子解[J].物理学报,2007,56:4326-4330.
    [205]刘正荣.关于孤立子的研究[J].云南大学学报(自然科学版),2003,25(3):207-211.
    [206]Konn K,Ichikawa Y H,Wadati M. Aloop soliton propagating long a stretched rope[J]. J. Phys.Soc.Japn.,1981, 50:1025-1029.
    [207]Vakanenko V O,Parkes E J. The two loop soliton solution of the Vakhnenko equation[J]. Nonlincarity, 1998, 11 : 1457-1460.
    [208]Hasegawa A, Tappert F D. Transmission of stationary nonlinear optical pulses in disper-sive dialectric fibers-Ⅰ:Anomalous dispelrsion[J]. Appl.Phys.Lett..1973, 23:142-144.
    [209]Hasegawa A. Tappert F D. Transmission of stationary uonlinear optical pulses in disper-sire dialectric fibers-Ⅱ :Normal dispelrsion[J]. Appl. Phys. Lett., 1973, 23:171-173.
    [210]Nakazawa M, Soliton transmission at 20 Gb/sover 2000 km in Tokyo metropolistan optical network[J]. Electron.Lett.,1995, 31(17):1-478.
    [211]Davydov A. S, J. Theor. Biol., 1973, 38:559;[J]. Phys.Scr.,1979, 20:387.
    [212]柳克庭.孤立子与气功科学[J].云南大学学报,1986,2:41-45.
    [213]Osborne A R, Burch T L.Internal solutions in the Andaman Sea. [J].Science,1980, 208 :451-460.
    [214]Ebbesmeyer C C,Coomes C A, Hamilton R C, et al. New observation on internal wave solntious in the South Shiner Sea using an acon stic doppler current profiler [A].In,:Marine Technology Society 91 Proceeding s [C]. New Orlcans. 1991.: 165-175.
    [215]Ziegenbein J. Spatial observations of short internal waves in the Strait of Gibraltar[J]. Deep.Sea.Res, 1970,17 :867-875.
    [216]Ziegenbein J. Short internal waves in the Strait of Gibraltar[J]. Deep.Sea.Res,1969, 16 :479-487.
    [217]Benjamin T B. Internal waves of finite amplitude and permanent form [J].J Fluid Mech, 1966,25:241-270.
    [218]Benney D J. Long nonlinear waves in fluid flows [J].J Math Phys. 1966, 45:52-63.
    [219]Benjamin T B. Internal waves of permanent form in fluids of great depth[J]. J Fluid Mech,1967, 29:559-592.
    [220]Ono H. Waves propagation in an inhomogeneous anharmonic lattice [J]. J. Phys. Soc. Japan,1972, 32:332-336.
    [221]Joseph R I. Solitary waves in a finite depth fluid [J].J. Phys. A: Math. Gen.1977. 10 :225-227.
    [222]Pierini S. A model for the Alboran Sea internal solitary waves [J].J Phys Oceanogr, 1989, 19:755-772.
    [223]Lan H B, Wang K L.Exact solutions for two nonlinear equations[J]. I. J. Phys.A,1990, 23:3923-3928.
    [224]Parkes F J, Duffy B R. An automated tanh-funetion method for finding solitary wave solutions to nonlinear evolution equations[J]. Comput.Phys.Commun.,1996, 98: 288-300.
    [225]Zhang J F. Backlund transformation and variable separation solutions for the generalized Nozhnik-Novikov-Veselov equation[J]. Chin.Phys.,2002, 11(7): 651-655.
    [226]Zhang J F, Wu F M. Backlund transformation and multiple soliton solutions for the (3+1)-dimensional Jimbo-Miwa equation[J]. Chin. Phys.,2002, 11(5): 425-428.
    [227]白成林,徐炳振,刘希强.高阶Broer-Kaup(BK)方程组的新精确解[J].光子学报,1999,28(5):431-435.
    [228]范恩贵,张鸿庆.非线性波动方程的孤波解[J].物理学报,1997,46(7):1254-1258.
    [229]Yan Q Y, Zhang Y F, Wei X P. New periodic solutions to a generalized Hirota-Satsuma coupled KdV system[J]. Chin.Phys.,2003, 12(2): 131-135.
    [230]Fu Z T, Liu S K, Liu S D. Zhao Q. Lame function and its application to some nonlinear evolution equations[J]. Commun. Theor. Phys.(Beijing), 2003, 40(1):53-56.
    [231]刘官厅,范天佑.一般变换下的Jacobi椭圆函数展开法及应用[J].物理学报,2004,53(3):676-679.
    [232]韩兆秀.非线性Klein-Gordon方程新的精确解[J].物理学报,2005,54(4):1481-1484.
    [233]Liu Y P, Li Z B. An automated Jacobi elliptic function method for finding periodic wave solutions to nonlinear evolution equation[J]. Chin.Phys.lett,2002, 19(9): 1228-1230.
    [234]Chen Y, Wang Q. A series of new double periodic solutions to a (2+1)-dimensional asymmetric Nozhnik-Novikov-Veselov equation[J]. Chin. Phys.,2004, 13(11): 1796-1800.
    [235]石玉仁,郭鹏,呂克璞,段文山.修正Jacobi椭圆函数展开法及其应用[J].物理学报,2004,53(10):3265-3269.
    [236]Zhu J M, Ma Z Y. An extended Jacobian elliptic fuuction method for the discrete mKdV lattice[J]. Chin.Phys., 2005, 14(1): 17-20.
    [237]Wu X F, Zhu J M, Ma Z Y. Discrete doubly periodic and solitary wave solutions for the semi-discrete coupled mKdV equations[J]. Chin.Phys.,2007, 16(8):2159-2166.
    [238]杨先林,唐驾时.利用耦合的Riccati方程组构造微分-差分方程精确解[J].物理学报,2008.57(6):3305-3311.
    [239]套格图桑,斯仁道尔吉.非线性长波方程组和Benjamin方程的新精确孤波解[J].物理学报,2006,55(7):3246-3254.
    [240]Zheng X D, Chen Y, Li B, Zhang H Q. A new Generalization of extended tanh-function method for solving nonlinear evolution equations[J]. Commun. Theor. Phys.(Beijing),2003, 39: 647-652.
    [241]Xie F D. Gao X S. Applications of computer algebra in solving nonlinear evolution equations[J]. Commun. Theor. Phys. (Beijing),2004, 41(3): 353-356.
    [242]Li D S, Zhang H Q. some new exact solutions to the dispersive tong-wave equation in (2+1)-dimensional spaces[J]. Commun. Theor. Phys. (Beijing), 2003, 40:143-146.
    [243]李德生,张鸿庆.改进的Lanh函数方法与广义变系数KdV和MkdV方程新的精确解[J].物理学报,2003,52:1569-1573.
    [244]Yan Z Y. Singularity structure analysis and abundant new dromion-like structures for the (2+1)-dimensional generalized Burgers equation[J]. Chin.J. Phys.,2002,40: 203-213.
    [245]Lin J. Li H M. Painleve Integrability and abundant localized structures of (2+1)-dimensional higher Order Broer-Kaup system[J]. Z. Naturforsch, 2002, 57a: 929-936.
    [246]田畴,田涌波.扩展的Boussinesq系统Lax队的Backlund变换和递推求解公式的导出[J].数学年刊,2003,24:349-354.
    [247]Chen Y. Yan Z Y, Li B, Zhang H Q. New explicit exact solutions for a generalized Hirota-Satsuma coupled KdV system and a coupled MKdV equation[J]. Chin.Phys.,2003 , 12: 1-10.
    [248]Chen Y, Li B, Zhang H Q. Backlund transformation and exact solutions for a new Generalized Zakharov-Kuzentsov equation with nonlinear terms of any order[J]. Com-mun. Theor. Phys.(Beijing),2003, 39: 135-140.
    [249]Li Y Z, Feng W G, Li K M,Lin C. Exponential-fraction trial function method to the 5th-order mKdV equations[J]. Chin.Phys.,2007, 16(9): 2510-2413.
    [250]Bai C L. A class of traveling wave solutions to some nonlinear partial differential equa-tions[J]. Commun. Theor.Phys.(Beijing), 2003, 40(2):147-150.
    [251]Peng Y Z. A polynomial expansion method and new general solitary wave solutions to KS equation[J]. Commun. Theor.Phys.(Beijing). 2003. 39(6):641-642.
    [252]Chen Y, Li B, Zhang H Q. Generalized Riccati equation expansion method and its appli-cation to the Bogoyavlenskiis generalized breaking soliton equation[J]. Chin.Phys.,2003,12: 940-945.
    [253]Chen Y, Li B, Zhang H Q.Symbolic Computation and Construction of Soliton-Like Solutions to the (2+1)-Dimensional Breaking soliton equation[J].Commun. Theor. Phys.(Beijing),2003, 40: 137-142.
    [254]Li D S, Zhang H Q. New families of non-travelling wave solutions to the (2+1)-dimensional modified dispersive water-wave system[J]. Chin.Phys. ,2004, 13: 1377-1381.
    [255]Li D S, Zhang H Q. The soliton-like solutions to the (2+1)-dimensional modified disper-sive water-wave system[J]. Chin.Phys.,2004, 13: 984-987.
    [256]LU Z S, Zhang H Q. On a new modified extended tanh-function method [J]. Commun. Theor. Phys.(Beijing), 2003, 39: 405-408.
    [257]马松华,方建平,朱海平.在Jacobi正弦周期波背景下的dromion孤立波及其演化[J].物理学报,2007,56:4319-4325.
    [258]马松华,吴小红,方建平,郑春龙.(3+1)维Burgers系统的新精确解极其特殊孤子结构[J].物理学报,2008,57:11-17.
    [259]套格图桑,斯仁道尔吉.Volterra差分微分方程KdV差分微分方程新的精确解[J].物理学报,2009,58(9):5887-5893.
    [260]套格图桑,斯仁道尔吉.用Riccati方程构造非线性差分微分方程新的精确解[J].物理学报,2009,58(9):5894-5902
    [261]Chen Y, Fan E G. Complexiton solutions of the (2+1)-dimensional dispersive long wave equation[J]. Chin.Phys., 2007, 16(1): 6-15.
    [262]Chen H T, Zhang H Q. New multiple soliton-like solutions to (3+1)-dimensional Burgers equation with variable coefficients[J]. Commun. Theor.Phys.(Beijing),2004 , 42(4): 497-500.
    [263]Xie F D,Chen J.Lu Z S. Using symbolic computation to exactly solve the integrable Broer-Kaup equations in (2+1)-dimensional spaces[J]. Commun. Theor. Phys.(Beijing), 2005, 43:585-590.
    [264]Xie F D, Yuan Z T. Computer algebra and solutions to the Karamoto-Sivashinsky equa-tion[J]. Commun. Theor. Phys.(Beijing), 2005, 43:39-44.
    [265]Taogetusang,Sirendaoerji. New exact solitary wave solutions to generalized mKdV equa-tion and generalized Zakharov-Kuzentsov equation[J]. Chin.Phys.,2006, 15(6): 1143-1148.
    [266]套格图桑,斯仁道尔吉.变系数组合KdV方程的新的孤立波解[J].量子电子学报,2009,26(2):148-154.
    [267]套格图桑,斯仁道尔吉mKdV方程和mKP方程组的新的精确孤立波解[J].高校应用数学学报A辑,2007,22(1):23-34.
    [268]套格图桑,斯仁道尔吉.(2+1)维色散长波方程组和组合KdV-Burgers方程的新的精确孤立波解[J].工程数学学报,2006,23(5):943-946.
    [269]套格图桑,斯仁道尔吉.BBM方程和修正的BBM方程新的精确孤立波解[J].物理学报,2004,53(12):4052-4060.
    [270]套格图桑,斯仁道尔吉.变系数组合KdV方程的新的孤立波解[J].量子电子学报,2009,26(2):148-154.
    [271]套格图桑,一般格子方程新的无穷序列精确解[J].物理学报,2010,59(10):6711-6717.
    [272]套格图桑,斯仁道尔吉、旺吉乐.三角函数型辅助方程法与非线性发展方程的精确解[J].内蒙古师范大学学报,2008,37(5):579-584.
    [273]Chen Y,Li B. New exact travelling wave solutions for Generalized Zakharov-Kuzentsov equations using general Projective Riccati equation method[J]. Commun. Theor. Phys. (Beijing), 2004, 41:1-6.
    [274]卢殿臣,烘宝剑.田立新.带强迫项变系数组合KdV方程的显示精确解[J].物理学报,2006,55:5617-5622.
    [275]黄定江.张鸿庆.扩展的双曲函数法和Zakharov方程组的新精确孤立波解[J].物理学报,2004,53:2434-2438.
    [276]Lu B, Zhang H Q. A new variable coefficient algebraic method and non-travelling wave solutions of nonlinear equations[J]. Chin Phys. B,2008, 17(11): 3974-3984.
    [277]李德生,张鸿庆.非线性演化方程椭圆函数解的一种简单求法及其应用[J].物理学报,2006,55:1565-1570.
    [278]雍雪林,张鸿庆.推广的投影Riccati方程法及其应用[J].物理学报,2005,54:2514-2519.
    [279]Wang Z,Li D S, Lu H F,Zhang H Q. A method for constructing exact solutions and application to Benjamin Ono equation[J].Chin.Phys.,2005, 14(11): 2158-2163.
    [280]张善卿,李志斌.非线性耦合Schrodinger-KdV方程组新的精确解析解[J].物理学报,2002,51:2197-2201.
    [281]赵熙强,唐登斌,王利民,张耀明.高阶(2+1)维Broer-Kaup方程的孤波解[J].物理学报,2003,52:1827-1831.
    [282]聂小兵,汪礼礽.双曲函数法及一类非线性发展方程的精确行波解[J].应用数学,2003,16(1):109-115.
    [283]Yu J,Ke Y Q,Zhang W J. New travelling wave equations to comound KdV-Burgers equation[J], 2004 Commun. Theor.Phys.(Beijing) 40: 493-496.
    [284]Liu Y P, Li Z B. An automated algebraic method for finding a series of exact Travelling wave solutions of nonlinear evolution equations[J]. Chin. Phys. Lett.,2003, 20: 317-320.
    [285]Pan J T, Gong L X. A new expansion method of first order nonlinear ordinary differ-ential equation with at most a sixth-degree nonlinear term and its application to mBBM model[J]. Chin. Phys.B,2008, 17(2): 399-402.
    [286]曾昕,张鸿庆.(2+1)维色散长波方程的新的类孤子解[J].物理学报,2005,54(2):504-510.
    [287]Jiao X Y, Wang J H,Zhang H Q. An extended method for constructing Travelling wave so-lutions to nonlinear Partial differenfial equations[J]. Commun. Theor. Phys.(Beijing). 2005. 44:407-414.
    [288]高亮,徐伟,唐亚宁.申建伟.一类广义Boussinesq方程和Boussinesq-Burgers方程新的显示精确解[J].物理学报,2007,56(4):1860-1869.
    [289]Li Z L. Application of higher-Order KdV-mKdV model with higher-degree nonlinear terms to gravity waves in atmosphere[J].Chin.Phys.B.2009. 18(10): 4074-4082.
    [290]智红燕,王琪,张鸿庆(2+1) Broer-Kan-Kuperslunidt方程一系列新的精确解[J].物理学报,2005,54(3):1002-1008.
    [291]Xu G Q, Li Z B. Travelling wave solutions to a special type of nonlinear evolution equations[J]. Commun. Theor. Phys.(Beijing), 2003, 39: 39-43.
    [292]套格图桑、斯仁道尔吉.构造非线性发展方程的精确解的一种方法[J].物理学报,2006,55(12):6214-6221.
    [293]Zhang J L,Reu D F.Wang M L.Wang Y M. Fang Z D. The periodic wave solutious for the generalized Nizhnik-Novikov-Veselov equation[J].Chin.Phys.,2003, 12(8): 825-830.
    [294]Zhang L,Zhang L F,Li C Y. Some new exact solutions of Jacobian elliptic function about the generalized Boussinesq equation and Boussinesq-Burgers equation[J].Chin. Phys. B, 2008, 17(2): 403-410.
    [295]Zhao X Q.Zhi H Y,Zhang H Q. Construction of doubly-periodic solutions to nonlinear partial differential equations using improved Jacobi elliptic funetion expansion method and symbolic computation [J]. Chin. Phys.,2006, 15 (10): 2202-2209.
    [296]Li J B. Exact traveling wave solutions and dynamical behavior for the (n+1)-dimensional multiple sine-Gordon equation[J].Scie.Chin.Ser.Math.A,2007, 50(2): 153-164.
    [297]Li H M. An extension of mapping deformation method and new exact solutions for three coupled nonlinear partial differential equations[J]. Commun.Theor.Phys.(Beijing),2003, 39: 395-400.
    [298]Li H M. New exact solutions of nonlinear Gross-Pitaevskii equation with weak bias magnetic and time-dependent laser fields[J].Chin.Phys.,2005, 14(2): 251-256.
    [299]Li H M. Mapping deformation method and its application to nonlinear equations[J]. Chin. Phys..2002. 11(11): 1111-1114.
    [300]潘军廷,龚伦训.组合KdV-mKdV方程的Jacobi椭圆函数解[J]. Acta. Phys. Sin., 2007, 56(10): 5585-5590.
    [301]吴海燕,张亮,谭言科,周小滔.三类非线性演化方程新的Jacobi椭圆函数精确解[J].物理学报,2008,57:3312-3318.
    [302]Zhu J M,Zheng C L,Ma Z Y. A general approach and new travelling wave solutions to the general variable coefficient KdV cquation[J].Chin.Phys.,2004, 13(12): 2008-2012.
    [303]Taogetusang,Sirendaoerji. The Jacobi elliptic function-like exact solutions to two kinds of KdV equation with variable coefficients and KdV equation with forcible term[J]. Chin. Phys.,2006, 15(12): 2809-2818.
    [304]套格图桑,斯仁道尔吉.构造变系数非线性发展方程精确解的一种方法[J].物理学报,2009,58(4):2121-2126.
    [305]套格图桑,斯仁道尔吉.辅助方程构造带强迫项变系数组合KdV方程的精确解[J].物理学报,2008,57(3):1295-1300.
    [306]Liu C S. Exact travelling wave solutions of (1+1)-dimensional dispersive long wave equa-tion[J].Chin.Phys..2005, 14(9): 1710-1715.
    [307]Fu Z T,Liu S D.Liu S K.Solving nonlinear wave equations by elliptic equation[J]. Com-mun. Theor. Phys. (Beijing), 2003,39:531-536.
    [308]Fu Z T,Liu S K,Liu S D.Elliptic equation and new solutions to nonlinear wave equa-tions[J]. Commun. Theor.Phys.(Beijing), 2004,42: 343-346.
    [309]套格图桑,斯仁道尔吉,王庆鹏Riccati方程的Backlund变换及其应用[J].内蒙古师范大学学报,2009,38(4):387-391
    [310]套格图桑,斯仁道尔吉.变系数(3+1)维Zakharov-Kuznetsov方程的Jacobi椭圆函数精确解[J].量子电子学报.2010.27(1):6-14.
    [311]套格图桑,斯仁道尔吉.广义Boussinesq方程的无穷序列新精确解[J].物理学报,2010,59(7):4413-4419.
    [312]套格图桑,斯仁道尔吉.(n+1)维双sine-Gordon方程的新精确解[J].物理学报,2010,59(8):5194-5201.
    [313]Taogetusang,Sirendaoerji. New application to Riccati equation[J]. Chin.Phys.B, 2010.19 (8): 080303 (1-8).
    [314]套格图桑,斯仁道尔吉.(2+1)维色散长波方程组新的无穷序列精确解[J].量子电子学报,2010,27(4):402-410
    [315]套格图桑.构造非线性发展方程无穷序列复合型精确解的一种方法[J].物理学报,2011,60(1):010202(1-9).
    [316]Sirendaoerji,Sun J. A direct method for solving sine-Gordon type equations[J]. Phys. Lett. A, 2002,298(3): 133-139.
    [317]套格图桑,斯仁道尔吉.sine-Gordon型方程的Jacobi椭圆函数精确解[J].量子电子学报,2009,26(3):278-287.
    [318]Fu Z T,Liu S K,Liu S D.A New Approach to Solve Nonlinear Wave Equations [J]. Commun. Theor. Phys. (Beijing, China), 2003, 39: 27-30.
    [319]刘式适,陈华,付遵涛,刘式达Lame函数和非线性演化方程的多级准确解的不变性[J].物理学报,2003,52:1842-1846.
    [320]付遵涛,刘式适,刘式达.非线性波方程求解的新方法[J].物理学报,2004,53:343-348.
    [321]Malfliet W. Solitary wave solutions of nonlinear wave equation[J].Am.J.Phys., 1992, 60(7):650-654.
    [322]Xie Y X,Tang J S. A unified approach in seeking the solitary wave solutions to sine-Gordon type equations[J]. Chin.Phys., 2005, 14(7):1303-1306.
    [323]套格图桑,斯仁道尔吉.sine-Gordon型方程的新的孤立波解[J].内蒙古师范大学学报,2004,33:361-365.
    [324]张卫国,常谦顺,李用声.具任意次非线性项的Lienard方程的精确解及其应用[J].数学物理学报,2005,25A(1):119-129.
    [325]Benjamin T B, Bona J L, Mahong J J. Model equations for long waves in nonlinear dispersive systems[J]. Philos Trans R Soc(SerA),1972. 272:57-78.
    [326]Medeiros L A. Perla G M. Existanca and uniqueness for periodic solutions of the Benjamin-Bona-Mahony equation[J].SIAM J Math Anal,1977,8(5):792-799.
    [327]张卫国,王明亮B-BBM方程的一类准确行波解及结构[J].数学物理学报,1992,12(3):325-331.
    [328]闫振亚,张鸿庆.具有三个任意函数的变系数KdV-MKdV方程的精确孤子解[J].物理学报,1999,48(11):1957-1961.
    [329]刘成仕.用试探方程法求变系数非线性发展方程的精确解[J].物理学报,2005,54(10):4506-1510.
    [330]田贵辰,刘希强.含外力项的广义变系数KdV方程的精确解[J].量子电子学报,2005,22(3):339-343.
    [331]付遵涛,刘式达,刘式适等.含变系数或强迫项的KdV方程的新解[J].应用数学和力学,2004,25(1):67-73.
    [332]Li H M. Exact periodic wave and soliton solutions in two-component Bose-Einstein condensates[J]. Chin. Phys., 2007. 16(11): 3187-3191.
    [333]Shivamoggi B K, Rollins D K. Generalized paiuleve formulation of Lie group symmetries of the ZK equation[J]. Phys.Lett.A,1991, 160:263-266.
    [334]Hamza A M. Akinetic derivation of a generalized ZK equation for ion acoustic turbulence in magnetized plasma[J]. Phys. Lett.A,1994.190:309-316.
    [335]Yang H J, LU K P, Duan W S, Shi Y .The solitary wave solutions with varying velucity for the (3+1)-dimensional variable-coefficients ZK equation[J].J.Nor.Norm.Univ.Nat.Sci., 2007, 43(2): 38-40(in Chinese).
    [336]Yah Z L, Liu X Q. Symmetry and similarity solutions of variable coefficients generalized Zakharov-Kuzentsov equation[J]. Appl.Math. Comput., 2006, 180:288-294.
    [337]刘成仕,杜兴华.耦合Klein-Gordon-Schrodinger方程新的精确解[J].物理学报,2005,54:1039-1043.
    [338]Fu Z T, Liu S K, Liu S D.A new approach to solve nonlinear wave equations[J]. Commun. Theor. Phys.(Beijing), 2003, 39: 27-30.
    [339]付遵涛,刘式适,刘式达.非线性波方程求解的新方法[J].物理学报,2004.53:343-348.
    [340]赵长海,盛正卯Zakharov方程的显式行波解[J].物理学报,2004,53:1629-1634.
    [341]那仁满都拉,乌恩宝音,王克协.具5次强非线性项的波方程新的孤波解[J].物理学报,2004,53(1):11-14
    [342]张卫国,陶涛.强非线性项广义Boussinesq方程孤波解的波形分忻及求解[J].数学物理学报,2008,28A(1):86-95.
    [343]张解放,陈芳跃.截断展开方法和广义变系数KdV方程新的精确类孤子解[J].物理学报,2001,50:1648-1650.
    [344]Zhang J F,Guo G P, Wu F M. New multi-soliton solutions and traveelling wave solutions of the dispersive long-wave equations[J]. Chin. Phys.,2002, 11(6): 533-535.
    [345]Zhang S Q, Xu G Q, Li Z B. General explicit solutions of a classical Boussinesq system[J]. Chin. Phys.,2002, 11(10): 993-995.
    [346]Alber M S,Camassa R.The geometry of peaked soliton and billiard solutions of a class of integrable PDEs[J]. Letters Math Phys,1994, 32(2): 137-151.
    [347]Clarkson P A,Mansfield E L,Priestley T J.Symmetries of a class of nonlinear third-order partial differential equations[J]. Math. Comput. Modelling, 1997, 25(8/9): 195-212.
    [348]Xin Zhouping,Zhang Ping.On the weak solutions to a shallow water equation[J]. Comm. Pure.Appl.Math., 2000, 53(9): 1411-1433.
    [349]Michael Fisher,Jeremy Schiff.The camassa Holm equation:Conserved quantities and the initial value problem[J]. Phys.Lett.A,1999, 259(3): 371-376.
    [350]Adrian Constantin,Waner A Atrauss. Stability of peakons[J]. Comm.Pure.Appl.Math., 2000, 53(10): 603-610.
    [351]田立新,许刚.刘曾荣Camassa-Holm方程凹凸尖峰及光滑孤立子解[J].应用数学和力学,2002,23:497-506.
    [352]Boyd J P. Peakons and coshoidal waves:travelling wave solutions of the Camassa-Holm equation[J]. Appl. Math. Comput., 1997, 81(2-3):173-187.
    [353]郭柏灵,刘正荣.CH-r方程的尖波解[J].中国科学A,2003,33(4):325-337.
    [354]殷久利,田立新.一类非线性色散方程中的新型奇异孤立波[J].物理学报,2009,58(6):3632-3636
    [355]余丽琴.田立新Degasperis-Procesi方程的孤立尖波角[J].数学的实践与认识,2006,36(3):261-266.
    [356]余丽琴,田立新.带色散项的Degasperis-Procesi方程的孤立尖波解[J].纯粹数学与应用数学,2005,21(4):310-316.
    [357]徐桂琼,李志斌.两个非线性发展方程的双向孤波解与孤子解[J].物理学报,2003,52:1848-1857.
    [358]吴勇旗.(2+1)维Bonssinesq方程的新的周期解[J].物理学报,2008,57:5390-5394.
    [359]张善卿,李志斌Jacobi椭圆函数展开法的新应用[J].物理学报,2003,52:1066-1070.
    [360]Wazwaz A M. The tanh method and a variable separated ODE method for solving Double Sine-Gordon Equation[J]. Phys.Lett.A..2006, 350: 367-370.
    [361]周建平,闫志莲.一类广义非线性sine-Gordon方程新的显示解[J].量子电子学报,2007,24:535-538.
    [362]李志斌,潘素起.广义五阶KdV方程的孤波解与孤子解[J].物理学报,2001,50:402-405.
    [363]Zheng C L,Zhang J F,Huang W H,Chen L Q. Peakon and foldon excitations in a (2+1)-dimensional Breaking soliton system[J]. Chin.Phys.Lett,2003, 20: 783-786.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700