Ⅱ-Ⅵ族低维纳米半导体材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低维Ⅱ-Ⅵ族半导体纳米材料由于其新颖的物理、化学和生物学特性以及在纳米器件和生物医药领域中的潜在应用价值成为当今纳米技术的研究热点。而形貌和粒度人工可控的Ⅱ-Ⅵ族半导体材料的制备无论从基础研究还是应用的角度来看,都有着重要的意义。
     本文利用有机物辅助水热法制备了不同形貌的氧化锌,研究表明不同的有机添加剂对产物的形貌有很大影响,乙二胺四乙酸二钠(EDTA)辅助水热法制备的产物为一维棒状氧化锌,十六烷基三甲基溴化铵(CTAB)辅助水热法制备的产物为片状氧化锌,聚丙烯酰铵(PAM)辅助水热法制备的产物为针状团簇氧化锌,而十二烷基苯磺酸钠辅助水热法制备的产物和纯水热法制备的产物类似,形状不规则。研究了不同EDTA用量、温度、时间对产物的影响。并从过饱和度的角度结合负离子配位多面体生长基元理论模型和有机物的软模板作用对不同有机物添加剂对ZnO纳米结构形貌的影响机理作了初步解释。
     本文还用含硫配体为包覆剂在水浴回流条件下制备了水溶性的CdSe量子点,通过尺寸选择沉积方法得到了不同粒度的样品。并研究了包覆剂、温度、pH值、Cd~(2+)/HSe~-比、浓度、镉盐等反应条件对CdSe量子点水相生长过程的影响。研究结果表明:包覆剂、温度、pH值、Cd~(2+)/HSe~-比对产物的生长过程影响较大:巯基乙酸比巯基丙酸更有利于CdSe量子点的生长;温度越高,产物生长越快;pH值对含硫配体的包覆效果有影响,pH为11.5时产物的稳定性最好;随着Cd~(2+)/HSe~-的增加,CdSe的生长不断变慢。浓度和补偿离子对生长过程影响不大。
Low-dimensionalⅡ-Ⅵgroup semiconductor nanomaterials have received intensive interests due to their novel physical,chemical,and biological properties as well as the potential applications in nanodevices and bio-medicine field.Synthesis ofⅡ-Ⅵgroup semiconductor nanomaterials which morphology and size can be controlled artificially is of importance for the fundamental research and application.
     ZnO nanomaterials with different morphology were prepared by organic matters assisted hydrothermal method in the paper.The results of research suggested that organic matters had great influence to the morphology of samples,The samples were rod-like,slice and needle cluster ZnO respectively by adding EDTA Disodium Salt(EDTA),cetyltrimethylammonium bromide(CTAB) and Polyacrylamide(PAM).The samples prepared by Sodium dodecylbenzene sulfonate(SDBS)assisted hydrothermal method had irregular morphology similar to that prepared by pure hydrothermal method.The influence of the quantity of EDTA, temperature and reaction time were also studied.From supersaturation of view,combining Anion Coordination Polyhedron Growth Unity Theory and soft template theory of organic matters,we explained roughly the influence of organics to the growth of ZnO.
     The water-soluble CdSe QDs were also prepared using thio-ligands as capping agents by water-hath reflux method in the paper.And the CdSe with different size were got by size-selective precipitation method.The influence of thio-ligands,temperature,pH value, Cd~(2+)/HSe~- molar ratio,precursor concentration and cadmium salt to the growth of CdSe QDs were studied.The results suggested that thio-ligands,temperature,pH value and Cd~(2+)/HSe~-molar ratio had considerable influence:The crystal growth rate in the presence of mercaptoacetic acid(MAA) was faster than that in the presence of 3-mercaptopropionic acid(3-MPA);The reaction temperature was higher,the growth rate of CdSe QDs was faster; The pH value of precursor had influence to the growth of CdSe QDs,when the pH value was 11.5,the stability of sample was best;As the Cd~(2+)/HSe~- molar ratio became bigger,the growth rate of CdSe QDs became slower.Precursor concentration and cadmium salt have little influence to the growth of CdSe QDs.
引文
[1]Feynman R.P.,There's Plenty of Room at the Bottom[J].Engineering and Science(California Institute of Technology),1960:22-36
    [2]Wang,Y.,Herron,N..Nanometer-sized semiconductor cluster:materials synthesis,quantum size effects,and photophysical properties[J].J.Phys.Chem.,1991,95(2):525-532.
    [3]Alivisatos,A.P..Semiconductor Cluster,Nanocrystals,and Quantum Dots[J].Science,1996,271:933-937
    [4]Brus,L.Electronic Wave Functions In Semiconductor Clusters:Experiment and Theory[J].J.Phys.Chem..1986,90,2555-2560
    [5]Efros AL.,Efros AL..Interband absorption of light in a semiconductor sphere[J].Sov.Phys.Semicond,1980,16:772
    [6]Brus L.E..Electron-electron and electron-hole interactions in small semiconductor crystallites:The size dependence of the lowest excited electronic state[J].J.Chem.Phys.,1984:80(9):4403-4409.
    [7]Kayamma Y..Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape[J].Phys.Rev.B,1988,38:9797-9805
    [8]Halperin W.P..Quantum size effects in metal particles[J].Rev.Mod.Phys.,1986,58:532-606.
    [9]Philip B.,Laura G..Science at the atomic scale[J].Nature,1992,355(761):761-766
    [10]苏品书.超微粒子材料技术[M].台北:复汉出版社,1989
    [11]张立德,牟季美.开拓原子和物质的中间领域-纳米微粒与纳米固体[J].物理,1992,21(3)167-173.
    [12]王彦妮,张志琨,崔作林.纳米粒子在乙炔聚合反应中的催化作用[J].催化学报,1995,16(4):304-307
    [13]成昭华,沈保根.铁基纳米复合永磁材料的相组分与磁性[J].物理,1997,26(5):272-279
    [14]Kong Jing,Franklin Nathan R.,Chongwu Zhou.,et al..Nanotube Molecular Wires as Chemical Sensors[J].Science,2000,287:622-625.
    [15]Favier Frederic,Walter Erich C.,Zach Michael P.,et al.Hydrogen Sensors and Switches from Electrodeposited Palladium Mesowires Arrays[J].Science,2001,293:2227-2231.
    [16]Cui Yi,Wei Qingqiao,Park Hongkun,et al..Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species[J].Science,2001,293:1289-1292.
    [17]Li Z.,Chen Y.,Li X.,et al..Sequence-Specific Label-Free DNA Sensors Based on Scilicon Nanowires[J].Nano Letters,2004,4:245-247.
    [18]Wang Yuliang,Jiang Xuchuan,Xia Younan.A Solution-Phase,Precursor Route to Polycrystalline SnO_2 Nanowires That Can Be Used for Gas Sensing under Ambient Conditions[J].J.Am.Chem.Soc.,2003,125:16176-16177.
    [19]Huang Michael H.,Mao Samuel,Feick Henning,et al.Room-Temperature Ultraviolet Nanowire Nanolasers[J].Science,2001,292:1897-1899
    [20]Johnson Justin C.,Yan Haoquan,Schaller Richard D.,et al.Single Nanowire Lasers[J].J.Phys.Chem.B,2001,105:11387-11390
    [21]Johnson Justin C.,Chol Heon Jin,Knutsen Kelly P.,et al.Single gallium nitride nanowire lasers[J].Nature Materials,2002:1-4
    [22]Duan Xiangfeng,Huang Yu,Agarwal Ritesh,et al.Single-nanowire electrically driven lasers[J].Nature,2003,421:241-245
    [23]Bailey,R.E.,Smith,A.M.,Nie,S.Quantum dots in biology and medicine[J].Physica E,2004,25(1):1-12
    [24]WANG Z.L.,SONG J.H.,Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J].Science,2006,312:242-246
    [25]Service R.F.Assembling Nanocircuits From the Bottom Up[J].Science,2001,293:782-784
    [26]Dai Ying,Zhang Yue,Bai Yuan Qiang,et al.Bicrystalline zinc oxide nanowires[J].Chemical Physics Letters,2003,375:96-101
    [27]Zhang Ye,Jia Hongbo,Luo Xuhui,et al.Synthesis,Microstructure,and Growth Mechanism of Dendrite ZnO Nanowires[J].J.Phys.Chem.B,2003,107:8289-8293
    [28]Ding Yong,Gao Pu Xian,Wang Zhong Lin.Catalyst-Nanostructure Interfacial Lattice Mismatch in Determining the Shape of VLS Grown Nanowires and Nanobelts:A Case of Sn/ZnO[J].J.Am.Chem.Soc.,2004,126:2066-2072
    [29]Huang Michael H.,Wu Yiying,Feick Henning,et al.Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport[J].Adv.Mater,2001,13:113-116
    [30]Gao P.X.,Ding Y.,Wang Z.L..Crystallographic Orentation-Aligned ZnO Nanorods Grown by a Tin Catalyst[J].Nano Lett.,2003,3:1315-1320
    [31]Yao B.D.,Chan Y.F.,Wang N..Formation of ZnO nanostruetures by a simple way of thermal evaporation[J].Appl.Phys.Lett.,2002,81:757-759
    [32]Wang Xudong,Christopher J,Summers,et al.Large-Scale hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronies and Nanosensor Arrays[J].Nano Lett.,2004,4:423-426
    [33]Yan Haoquan,He Rongrui,Pham Johnny,et al.Morphogenesis of One-Dimensional ZnO Nano- and Microcrystals[J].Adv.Mater.,2003,15:402-405
    [34]Gao Puxian,Wang Zhong Lin.Self-Assembled Nanowire-Nanoribbon Junction Arrays of ZnO[J].J,Phys.Chem.B,2002,106:12653-12658
    [35]Sun Xiaoming,Deng Zhaoxiang,Li Yadong.Self-organized growth of ZnO single crystal columns array[J],Materials Chemistry and Physics,2003,80:366-370
    [36]M.Haupt,A.Ladenburger,R.Sauer,et al.Ultraviolet-emitting ZnO nanowhiskers prepared by a vapor transport process on prestructured surfaces with self-assembled polymers[J].J.Appl.Phys.,2003,93:6252-6257
    [37]Kong Y.C.,Yu D.P.,Zhang B.,et al.Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach[J].Appl,Phys.Lett.,2001,78:407-409
    [38]Yang Peidong,Yan Haoquan,Mao Samuel,et al.Controlled Growth of ZnO Nanowires and Their Optical Properties[J].Adv.Funct.Mater.,2002,12:323-331
    [39]Hu J.Q.,Bando Y.,Growth and optical properties of single-crystal tubular ZnO whiskers[J].Appl.Phys.Lett.,2003,82:1401 - 1403
    [40]Wu Jih-Jen,Liu Sai-Chang.Catalyst-Free Growth and Charaterization of ZnO Nanorods[J].J.Phys.Chem.B,2002,106:9546-9551
    [41]Wu Jin-Jen,Liu Sai-Chang.Low-Temperature Growth of Well-Aligned ZnO Nnaorods by Chemical Vapor Deposition[J].Adv.Mater.,2002,14:215-218
    [42]Wu Yiying,Yan Haoquan,Huang Michael,et al.Inorganic Semiconductor Nanowires:Rational Growth,Assembly,and Novel Properties[J].Chem.Eur.J.,2002,8:1260-1268
    [43]Heo Y.W.Varadarajan V.,Kaufman M.,et al.Site-specific growth of ZnO nanorods using catalysis-driven molecularbeam epitaxy[J].Appl.Phys.Lett.,2002,81:3467-3469
    [44]Park W.I.,Kim D.H.,Jung S.W.,et al.Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods[J].Appl.Phys.Lett.,2002,80:4232-4234
    [45]Kim Kwang-Sik,Kim Hyoun Woo.Synthesis of ZnO nanorod on bare Si substrate using metal organic chemical vapor deposition[J].Physica B,2003,328:368-371
    [46]Park Won I,Yi Gyu-Chul,Kim Miyoung,et al.ZnO Nanoneedles Grown Vertically on Si Substrates by Non-Catalytic Vapor-Phase Epitaxy[J].Adv.Mater.,2002,14:1841-1843
    [47]Zhang Jun,Sun Lingdong,Liao Chunsheng,et al.A simple route towards tubular ZnO[J].Chem.Commun.,2002:262-263
    [48]Vayssieres Lionel.Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions[J].Adv.Mater.,2003,15:464-466
    [49]Chen Dairong,Jiao Xiuling,Cheng Gang.Hydrothermal synthesis of zinc oxide powders with different morphologies[J].Solid State Communication,2000,113:363-366
    [50]Liu Bin,Zeng Hua Chun.Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm[J].J.Am.Chem.Soc.,2003,125:4430-4431
    [51]Vayssieres Lionel,Keis Karin,Lindquist Sten-Eric,et al.Purpose-Built Anisotropic Metal Oxide Material:3D Highly Oriented Microrod Array of ZnO[J].J.Phys,Chem.B,2001,105:3350-3352
    [52]Vayssieres Lionel,Keis Karin,Hagfeldt Anders,et al.Three-Dimensional Array of Highly Oriented Crystalline ZnO Microtubes[J].Chem.Mater.,2001,13:4395-4398
    [53]Sun X.M.,Chen X.,Deng Z.X.,et al.A CTAB-assisted hydrothermal orientation growth of ZnO nanorods[J].Materials Chemistry and Physics,2002,78:99-104
    [54]Zhang Jun,Sun Lingdong,Pan Huayong,et al.ZnO nanowires fabricated by a convenient route[J].New J.Chem.,2002,26:33-34
    [55]Zhengrong R.Tian,James A.Voigt.Jun Liu,Bonnie Mckenzie,et al.Biomimetic Arrays of Oriented Helical ZnO Nanorods and Columns[J].J.Am.Chem.Soc.,2002,124:12954-12955
    [56]Lori E.Greene,Matt Law,Joshua Goldberger,et al.Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays[J].Angew.Chem.Int.Ed.,2003,42:3031-3034
    [57]Andreas Taubert,Christian Kulbel,David C.Martin.Polymer-Induced Microstrcrure Variation in Zinc Oxide Crystals Precipitated from Aqueous Solution[J].J.Phys.Chem.B,2003,107:2660-2666
    [58]Kuveshni Govender,David S.Boyle,Paul O'Brien,et al.Room-temperature lasing observed from ZnO nanocolumn growth from aqueous solution deposition[J].Adv.Matcr.,2002,14:1221-1224
    [59]Clandia Pacholski,Andrcas Komowski,Horst Wcller.Sclf-AssembIy of ZnO:From Nanodots to Nanorods[J].Angew.Chem.Int.Ed.,2002,41:1188-1191
    [60]Wang,Z L.Nanostructures of zinc oxide[J].Materials Today,2004,7(6):26-33
    [61]Warren C.,Nie Shuming.Quantum dot bioconjugates for ultrasensitive nonisotopic detection[J].Science,1998,281:2016-2018.
    [62]Soth Coe,Wing K.W.,Vladimir Bulovic,et al.Electrolumincscence from single monolayers of nanocrystals in molecular organic devices[J].Nature,2002,420:800-803.
    [63]Epifani M,Giannini C,et al.A novel synthesis of CdSe nanocrystals[J].Mater.Lett.,2004,58:2429-2432
    [64]Sondi I,Siiman O,et al.Synthesis of CdSe nanoparticles in the presence of aminodextran as stabilizing and capping agent[J].J.Col.Int.Sci.,2004,275:503-507
    [65]Zhang Hao,Yang Bai.X-ray photoelectron spectroscopy studies of the surface composition of highly luminescent CdTe nanoparticles in multilayer films[J].Thin Sol.Films,2002,418:169-174.
    [66]纪欣,章伟光.单分散的Q态CdS纳米粒子的制备与分离[J].华南师范大学学报(自然科学版),2004,(1):82-85
    [67]Murray C.B.,Norris D.J.,Bawendi M.G..Synthesis and characterization of nearly monodisperse CdE(E = sulfur,selenium,tellurium) semiconductor nanocrystallites[J].J.Am.Chem.Soc.,1993,115(19):8706 - 8715
    [68]Peng Z.A.,Peng X.Nearly Monodisperse and Shape-Controlled CdSe Nanocrystals via Alternative Roures:Nucleation and Growth[J].J.Am.Chem.Soc.,2002,124(13):3343-3353
    [69]Rogach A.L.,Kornowski A.,Gao M.,et al.Synthesis and Characterization of a Size Series of Extremely Small Thiol-Stabilized CdSe Nanocrystals[J].J.Phys.Chem.B,1999,103:3065-3069
    [70]Deng Da-Wei,Yu Jun-Sheng,Pan Yi,Water-soluble CdSe and CdSe/CdS nanocrystals:A greener synthetic route[J].Journal of Colloid and Interface Science,2006,299:225-232
    [71]Wang Xun,Zhuang Jing,Peng Qing,et al.A general strategy for nanocrystal synthesis[J].Nature,2005,437:121 - 124.
    [72]施尔畏,夏国泰,王步国等.水热法的应用与发展[J].无机材料学报,1996,11(2):193-206
    [73]Alivisatos A.P..Perspectives on the Physical Chemistry of Semiconductor Nanoerystals[J].J.Phys.Chem.1996,100(31):13226-13239
    [74]罗丽庆,林健,黄文山.半导体纳米晶光电性能的研究进展l[J].光电子技术与信息,2005.18(3):1-5
    [75]S.Iijima,Helical microtubules of graphitie carbon[J].Nature,1991,354,56
    [76]仲维卓,刘光照,施尔畏,等.在热液条件下晶体的生长基元与晶体形成机理[J].中国科学(B),1994,24(4):394
    [77]Zhang Hao,Wang Dayang,Yang Bai,et al.Manipulation of Aqueous Growth of CdTe Nanoerystals To Fabricate Colloidally Stable One.Dimensional Nanostruetures[J].J.AM.CHEM.SOC.,2006,128:10171-10180

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700