过渡族金属氧化物纳米材料的水热法制备及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料/纳米结构由于新颖的物理、化学和生物学特性以及在纳米器件中的潜在用途成为当今材料领域中十分重要的研究对象。水热法由于设备简单,成本低,可控性好,制备的材料纯度高、结晶好等优点,广泛用于纳米材料的制备。
     本文采用有机物辅助水热法合成了CuO纳米花、Co_3O_4纳米线、ZnO纳米荔枝,还合成了过渡族金属氧化物纳米片、纳米球。通过透射电镜(TEM)、场发射扫描电镜(FESEM)、X射线衍射(XRD)等手段对上述纳米材料/纳米结构进行了表征。本文的主要结果如下:
     1.提出N-N-二甲基甲酰胺辅助溶剂热法合成CuO空心花状纳米结构,并且探讨了相关的形成机理。以这种CuO空心花状纳米结构作为负极材料的锂离子电池的放电容量和循环寿命都优于以实心CuO纳米颗粒作为负极材料的锂离子电池。
     2.利用水热法先制备出一维碱式碳酸钴纳米结构,再利用后续热处理得到Co_3O_4纳米线。以Co_3O_4纳米线作为负极的锂离子电池首次放电容量达到1540mAhg~(-1),经过10个充放电循环之后,放电容量稳定在1100 mAhg~(-1)。
     3.利用乙二醇辅助溶剂热法制备出荔枝状ZnO纳米结构,该结构是由直径在50nm左右,长度为几百纳米的ZnO纳米棒自组装形成的。荔枝状ZnO纳米结构由于具有很大的比表面积而在室温下对酒精和氨气有很高的灵敏度和快速的响应恢复。
     4.通过甲醛的还原作用结合水热法制备了金属氧化物(Fe_2O_3)纳米球。研究发现,由于甲醛的还原作用,Fe~(3+)离子先被还原成非晶态Fe纳米球核心,通过水热过程中的长大和氧化形成Fe_2O_3纳米球。
     5.提出了一种普适的柠檬酸辅助水热制备六角晶系金属氧化物纳米片的方法。实验发现柠檬酸的鳌合作用限制了六方晶系晶体的C轴方向的生长,这是形成六角晶系金属氧化物纳米片的关键。
Nanomaterials and nanostructures have attracted great interests due to their novel physical, chemical, and biological properties as well as the potential applications in nanodevices. Hydrothermal method has been widely employed to prepare nanomaterials and nanostructures due to its advantage of low synthesis temperature, simplicity, cost-effectiveness, high crystallization, environmental friendliness and high yield.
    In this thesis, organic molecules assisted hydrothermal methods are used to prepare CuO nanoflowers, Co_3O_4 nanowires, litchi-like ZnO nanostructures and transition metal oxides nanoplates (e.g. Fe_2O_3, Co(OH)_2 and Ni(OH)_2) and nanospheres (e.g. Fe_2O_3, Ni and Cu). The samples synthesized are characterized by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and so on. The primary results achieved in the thesis are listed in the following.
    1. Hollow flower-like CuO nanostructures were synthesized by DMF-assisted solvothermal method. The formation mechanism of such nanostructures has been preliminary presented. The lithium battery using the Flower-like CuO nanostructures as the cathode exhibited higher capacity and better cycle life than that using the conventional CuO nanoparticles as the cathode.
    2. The Co_3O_4 nanorods were prepared by the calcination of the cobalt-hydroxide-carbonate nanorods which were synthesized by the formaldehyde-assisted hydrothermal method. The first cycle discharge capacity of the electrodes made from Co_3O_4 nanorods was about 1540 mAh/g, and maintains about 1100 mAh/g after ten cycles.
    3. A novel solvothermal process using ethylene glycol (EG) as solvent has been employed to synthesize the litchi-like ZnO nanostructures consisting of the numerous ZnO nanorods with the diameter of about 50 nm and the length of about several hundred nanometers. The litchi-like ZnO nanostructures based gas
    sensor exhibited high sensitivity for ethanol and ammonia as well as quick response and recovery time when operating at room temperatures due to the high surface-to-volume ratio of litchi-like ZnO nanostructures.
    4. Fe_2O_3 nanospheres were synthesized by a hydrothermal process in which formaldehyde was used as the reducing agent. During the hydrothermal process, the amorphous metal Fe nanospheres with the diameters of 20 nm were firstly formed by the reduction of Fe~(3+) ions, subsequently, they were oxidized and further grew up into Fe_2O_3 nanospheres.
    5. A citric acid (CA)-assisted hydrothermal process was used to prepare Fe_2O_3 hexagonal nanoplates with a lateral size of about 100 nm. In addition, the hexagonal nanoplates of Co(OH)_2, MnCO_3, and Ni(OH)_2 were also synthesized by this route, indicative of the universality of the solution route presented herein. Furthermore, the mechanism for the formation of the platelike nanostructures has been preliminarily discussed. It is believed that the capping molecule of CA, which inhibits crystal growth along the <001> direction due to its chelating effect, plays a critical role in the hydrothermal formation of the nanoplates.
引文
1.张立德,牟季美,“纳米材料与纳米结构”科学出版社,2001.
    2.李新勇,张桂兰,汤国庆,陈文驹,“纳米晶体材料研究进展”化学进展,1996,8:231-239.
    3. Yadong Li, Yitai Qian, Hangwei Liao, Yi Ding, Li Yang, Cunyi Xu, Fangqing Li, and Guien Zhou, "A reduction-pyrolysis-catalysis synthesis of diamond" Science, 1998, 281: 246-247.
    4.霍启华、冯守华、徐如人,“非水体系中全硅沸石分子筛合成的研究—全硅方钠石与ZSM—39的晶化”化学学报,1998,48:639—642.
    5.徐如人、庞文琴,“无机合成与制备化学”高等教育出版社 2001.
    6. J. R. Heath, F. K. LeGoues, "A liquid solution synthesis of single crystal germanium quantum wires" Chem. Phys. Lett., 1993, 208: 263-268.
    7. Hong Yu, Yong-Sheng Wu, Jian Yang, Zhao-Hui Han, Yi Xie, Yi-Tai Qian, and Xian-Ming Liu, "A novel solventothermal synthetic route to nanocrystalline CdE (E=S, Se, Te) and Morphological Control" Chem. Mater., 1998, 10: 2309-2312.
    8. Jun Lu, Pengfei Qi, Yiya Peng, Zhaoyu Meng, Zhiping Yang, Weichao Yu, and Yitai Qian, "Metastable MnS crystallites through solvothermal synthesis" Chem. Mater., 2001, 13: 2169-2172.
    9. Bin Yu, Debao Wang, Zhaoyu Meng, Jun Lu, and Yitai Qian, "Synthesis of closed PbS nanowires with regular geometric morphologies" J. Mater. Chem., 2002, 12: 403-404.
    10. Debao Wang, Mingwang Shao, Dabin Yu, Gongpu Li, and Yitai Qian, "Polyol-mediated preparation of Bi_2S_3 nanorods" J. Cryst. Growth, 2002, 243: 331-335.
    11. Wenzhong Wang, Yah Geng, Yitai Qian, Mingrong Ji, and Xianming Liu, "A Novel Pathway to PbSe Nanowires at Room Temperature" Adv. Mater., 1998, 10: 1479-1481.
    12. Fanghua An, Kaibin Tang, Guozhen Shen, Chunrui Wang, Qing Yang, Bin Haia, and Yitai Qian, "Growth of belt-like SnS crystals from ethylenediamine solution" J. Cryst. Growth, 2002,244: 333-338.
    
    13. Congkang Xu, Yingkai Liu, Guoding Xu, and Guanghou Wang, "Preparation and characterization of CuO nanorods by thermal decomposition of CuC_2O_4 precursor" Mater. Res. Bull, 2002,37:2365-2372.
    
    14. J Q. Hu, Q. Y. Lu, K. B. Tang, B. Deng, R. R. Jiang, Y. T. Qian, W. C. Yu, G. E. Zhou, X. M. Liu, and J. X. Wu, "Synthesis and characterization of SiC nanowires through a reduction-carburization route" J. Phys. Chem. B, 2000, 104: 5251-5254.
    
    15. X. Wang, J. Lu, Y. Xie, G. Du, Q. Guo, and S. Zhang, "A novel route to multiwalled carbon nanotubes and carbon nanorods at low temperature" J. Phys. Chem. B., 2002, 106: 933-937.
    
    16. Bin Liu, Hua Chun Zeng, "Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm" J. Am. Chem. Soc, 2003,125:4430-4431.
    
    17. Xun Wang, Xiaoming Sun, Dapeng Yu, Bingsuo Zou, and Yadong Li, "Rare earth compound nanotubes" Adv. Mater., 2003,15:1442-1445.
    
    18. Jiaguo Yu, Jimmy C. Yu, Wingkei Ho, Ling Wu, and Xinchen Wang, "A simple and general method for the synthesis of multicomponent Na_2V_6O_(16).3H_2O single-crystal nanobelts" J. Am. Chem. Soc, 2004,126: 3422-3423.
    
    19. Zhong-Yong Yuan, Zaoli Zhang, Gaohui Du, Tie-Zhen Ren, and Bao-Lian Su, "A simple method to synthesise single-crystalline manganese oxide nanowires" Chem. Phys. Lett. 2003, 378: 349-353.
    
    20. Y. D. Li, J. W. Wang, Z. X. Deng, Y. Y. Wu, X. M. Sun, D. P. Yu, and P. D. Yang, "Bismuth nantubes: A rational low-temperature synthesis route" J. Am. Chem. Soc, 2001, 123:9904-9905.
    
    21. Y.D. Li, J. W. Wang, Z. X. Deng, Y. Y. Wu, X. M. Sun, D. P. Yu, and P. D. Yang, "Bismuth nantubes: A rational low-temperature synthesis route" J. Am. Chem. Soc. 2001, 123: 9904-9905.
    
    22. Maosong Mo, Jinghui Zeng, Xianming Liu, Weichao Yu, Shuyuan Zhang, and Yitai Qian, "Controlled hydrothermal synthesis of thin single-crystal tellurium nanobelts and nanotubes" Adv. Mater., 2002,14:1658-1662.
    
    23. Xiaoming Sun, "From surfactant-inorganic mesostructures to tungsten nanowires" Angew. Chem. Int. Ed., 2002,41: 333-335.
    
    24. Xun Wang, Yadong Li, "Selected-control hydrothermal synthesis of a- and β-MnO_2 single crystal nanowires" J. Am. Chem. Soc., 2002,124: 2880-2881.
    
    25. Minhua Cao, Changwen Hu, Ge Peng, Yanjuan Qi, and Enbo Wang, "Selected-control synthesis of PbO_2 and Pb_3O_4 single-crystalline nanorods" J. Am. Chem. Soc, 2003, 125, 4982-4983,
    
    26. Weixin Zhang, Zeheng Yang xinmin Huang, Shuyuan Zhang, Weichao Yu, Yitai Qian, Yunbo Jia, Guien Zhou, and Lin Chen, "Low temperature growth of bismuth sulfide nanorods by a hydrothermal method" Solid Stat. Comm. 2001, 119:143-146.
    
    27. Yujie Ji, Hui Zhang, XiangYang Ma, Jin Xu, and Deren Yang, "Single crystalline SnS_2 nanobelts fabricated by a novel hydrothermal method" J. Phys.: Condens. Mater., 2003,15:L661-L665.
    
    28. Yujie Ji, Deren Yang, Hui Zhang, XiangYang Ma, Jin Xu, and Duanlin Que, "Morphology control of PbS nanocrystals by a novel hydrothermal process" E-MRS 3003 Fall Meeting, September 2003
    
    29. Dong-Feng Zhang,, Ling-Dong Sun, Jin-Lu Yin, and Chun-Hua Yan, "Low temperature fabrication of highly crystalline SnO_2 nanorods" Adv. Mater., 2003, 15: 1022-1025.
    
    30. Lionel Vayssieres, Karin Keis, Sten-Eric Lindquist, and Anders Hagfeldt, "Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO" J. Phys. Chem. B, 2001, 105: 3350-3352.
    
    31. Jinhua Zhan, Xiaogang Yang, Dunwei Wang, Shengdong Li, Yi Xie, Younan Xia, and Yitai Qian, "Polymer-controlled growth of CdS nanowires" Adv. Mater., 2000, 12: 1348-1351.
    
    32. Minhua Cao, Changwen Hu, and Enbo Wang, "The first fluoride one-dimensional Nanostructures: microemulsion-mediated hydrothermal synthesis of BaF_2 whiskers" J. Am. Chem. Soc., 2003, 125: 11196-11197.
    33. Jun Zhang, Lingdong Sun, Huayong Pan, Chunsheng Liao, and Chunhua Yan, "ZnO nanowires fabricated by a convenient route" New J. Chem., 2002, 26: 33-34.
    34. Peng Zhang, Lian Gao, "Synthesis and characterization of CdS nanorods via hydrothermal microemulsion" Langmuir, 2003, 19: 208-210.
    35. Qiu-Lin Nie, Zhu-De Xu, Qiu-Li Yuan, and Guo-Hua Li, "Chemical control synthesis of CdS nanorods with different diameter" Mater. Chem. Phys. 2003, 82: 808-811.
    36.吉宇杰,巯基乙酸辅助水热法制备硫化物纳米结构及其表征,浙江大学硕士学位论文,42—44.
    37. Shenzhong Li, Hui Zhang, Yujie Ji, and Deren Yang, "CuO nanodendrites synthesized by a novel hydrothermal route" Nanotechnology, 2000, 15: 1428-1432.
    38. W. I. Park, Gyu-Chul Yi, J. W. Kim, and S. M. Park, "Schottky nanocontacts on ZnO nanorod arrays" Appl. Phys. Lett., 2003, 82: 4358-4360.
    39. Matt Law, Hannes Kind, Benjamin Messer, Franklin Kim, and Peidong Yang, "Photochemical sensing of NO_2 with SnO_2 nanoribbon nanosensors at room temperature" Angew. Chem. Int. Ed., 2002, 41: 2405-2408.
    40. Zhonglin Wang, "Nanobelts, nanowires, and nanodiskettes of semiconducting oxides-from materials to nanodevices" Adv. Mater., 2003, 15: 432-436.
    41. E. Comini, G. Faglia, G. Sberveglieri, Zhengwei Pan and Zhong L. Wang, "Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts" Appl. Phys. Lett., 2002, 81: 1869-1871.
    42. Yuliang Wang, Xuchuan Jiang, and Younan Xia, "A solution-phase, precursor route to polycrystalline SnO_2 nanowires that can be used for gas sensing under ambient conditions" J. Am. Chem. Sot., 2003, 125: 16176-16177.
    43. Chao Li, Daihua Zhang, Xiaolei Liu, Song Han, Tao Tang, Jie Han, and Chongwu Zhou, "In_2O_3 nanowires as chemical sensors" Appl. Phys. Lett., 2003, 82: 1613-1615.
    44. Alexander Gurlo, Nicolae Barsan, Udo Weimar, Maria Ivanovskaya, Antonietta Taurino, and Pietro Siciliano, "Polycrystalline well-shaped blocks of indium oxide obtained by the sol-gel method and their gas-sensing properties" Chem. Mater., 2003,15:4377-4383.
    
    45. Michael H. Huang, Samuel Mao, Henning Feick, Haoquan Yan, Yiying Wu, Hannes Kind, Eicke Weber, Richard Russo, and Peidong Yang, "Room-Temperature Ultraviolet Nanowire Nanolasers" Science, 2001, 292:1897-1899.
    
    46. Justin C. Johnson, Haoquan Yan, Richard D. Schaller, Louis H. Haber, Richard J. Saykally, and Peidong Yang, "Single Nanowire Lasers" J. Phys. Chem. B, 2001, 105:11387-11390.
    
    47. Kuveshni Govender, David S. Boyle, Paul O'Brien, David Binks, Dave West, and Dan Coleman, "Room-temperature lasing observed from ZnO nanocolumns grown by aqueous solution deposition" Adv. Mater., 2002,14:1221-1224.
    
    48. Changhong Liu, Juan Antonio Zapien, Yuan Yao, Xiangmin Meng, Chun Sing Lee, Shoushan Fan, Yeshayahu Lifshitz, and Shuitong Lee, "High-density, ordered ultraviolet light-emitting ZnO nanowire arrays" Adv. Mater., 2003, 15:838-841.
    
    49. Haoquan Yan, Rongrui He, Justin Johnson, Matthew Law, Richard J. Saykally, and Peidong Yang, "Dendritic nanowire ultraviolet laser array" J. Am. Chem. Soc., 2003, 125:4728-4729.
    
    50. Justin C. Johnson, Kelly P. Knutsen, Haoquan Yan, Matt Law, Yanfeng Zhang,Peidong Yang, and Richard J. Saykally, "Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers" Nano Lett., 2004,4:197-204.
    
    51. Andrei, K., Zhang You-xiang, and Cheng Guo-sheng, "Detection of CO and O_2 using tin oxide nanowire sensors" Adv. Mater.2003, 15: 997-1000.
    
    52. Zhang Dai-hua, Li Chao, and Liu Xiao-lei, "Doping dependent NH3 sensing of indium oxjde nanowires" Appl. Phys. Lett. 2003, 83: 1845-1847.
    
    53. Varghese, K.; Gong Da-wei, "Hydrogen sensing using Titania nanntubes" Sens. Actuators B 2003, 93: 338-344.
    54. Whitehead A H, Elliott J M, and Owen J R, "Nanostructured tin for use as a negative dectrode material in Li-ion Batteries" J. Power Source, 1999, 81-82: 33-38.
    
    55. Stefan M, Takahisa S, and Yoji S, "Electrochemical characterization of tin based composite oxides as negative dectrodes for lithium batteries" J. Power Source 1998,73:216-223.
    
    56. Huang H, Kdder E M, Chen L, "Electrochem ical characteristics of Sn_1-x)Si_xO_2 as anode for lithium-ion Batteries" J. Power Source, 1999, 81-82: 362-367.
    
    57. Yoshio I, Tadahiko K, and Akihim M, "Tin-based amorphous oxide: A high-capacity lithium ion storage material" Science 1999.276: 1395-1397.
    
    58. Ayouchi R, Martin F, and Ramos Barrdo J R, "Use of amorphoustin oxide filmsobtained by spray pyrolysis as electrodes in lithium batteries" J. Power Source, 2000,87:106-111.
    
    59. Mohamedi M, Seo J, and Takahshi D, "Amorphous tin oxide films: preparation and cbaracterizafion as an anode active material for lithium ion batteries" Electrochimica Acta 2001,46:1161-1168.
    
    60. Weifeng L, Xuejie L, and ZhaoxiangW, "Studies of stannic oxide as an anode material for lithium-ion batteries" J. Electrochem. Soc, 1998,145: 59-62.
    
    61. Belliard F, Cormor P A, and Irvine J T S, "Novel tin oxide-based for Li-ion batteries" Solid state Ion., 2000, 135:163-167.
    
    62. Jesse L C, Rowsell, and Pralong V, "Layered lithium iron nitride: A promising anode material for Li-ion batteries" J. Am. Chem. Soc, 2001,123: 8598-8599.
    
    63. Poizot P, Laruelle S, and Grugeon S, "Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries" Nature, 2000, 407: 496-450.
    
    64. R. V. Kumar, Y. Diamant, and A. Gedanken, "Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetates" Chem. Mater., 2000, 12,2301-2305.
    
    65. H. Cao, S. L. Suib, "Highly efficient heterogeneous photooxidation of 2-propanol to acetone with amorphous manganese oxide catalysts" J. Am. Chem. Soc, 1994, 116:5334-5342.
    
    66. R. Ao, L. Kummerl, and D. Haarer, "Present limits of data storage using dye molecules in solid materials" Adv. Mater., 1995, 7:495-499.
    
    67. M. Singhal, P. Chabra, P. Kang, and D. O. Shah, "Synthesis of ZnO nanoparticlesfor varistor application using Zn-substituted aerosol OT microemulsion" Mater. Res. Bull., 1997,32:239-247.
    
    68. J. F. Xu, W. Ji, Z. X. Shen, S. H. Tang, X. R. Ye, Z. Jia, and X. Q. Xin, "Preparation and characterization of CuO nanocrystals" J. Solid State Chem., 1999,147:516-519.
    
    69. A. Junod, D. Eckert, G. Triscone, J. Muler, and V. Reichardt, "A study of the magnetic transitions in CuO: specific heat (1-330 K), magnetic susceptibility and phonon density of states" J. Phys. Condens. Matter., 1989,1: 8021-8034.
    
    70. F. Marabelli, G. B. Parravicini, and F. Salghetti-Krioli, "Optical gap of CuO" Phys. Rev. B, 1995, 52:1433-1436.
    
    71. T. Ishihara, M. Higuchi, T. Takagi, M. Ito, H. Nishiguchi, and T. Takita,"Preparation of CuO thin films on porous BaTiO_3 by self-assembled multibilayer film formation and application as a CO_2 sensor" J. Mater. Chem., 1998, 8: 2037-2042.
    
    72. H. E. Curry-Hyde, H. Musch, A. Busch, and A. Baiker, "Selective catalytic reduction of nitric oxide over amorphous and crystalline chromia: I. Comparative study of activities" Appl. Catal., 1990,65,211-223.
    
    73. Y. Jiang, S. Decker, C. Mohs, and K. J. Klabunde, "Catalytic solid state reactions on the surface of nanoscale metal oxide particles" J. Catal., 1998, 180:24-35.
    
    74. P. O. Larsson, A. Andersson, R. L. Wallengerg, and B. Svensson, "Combustion of CO and toluene; characterisation of copper oxide supported on titania and activity comparisons with supported cobalt, iron and manganese sxides" J. Catal., 1996, 163: 279-293.
    
    75. S. Oyhama, H. Kishida, "XRD, HRTEM and XAFS studies on structural transformation by milling in a mixture of CuO and Cr_2O_3 as an active catalyst component for low-temperature methanol synthesis" Appl. Catal. A, 1999, 184: 239-248.
    76.余建群,徐政,方明豹,贾殿赠,“一步室温固相化学反应法合成CuO纳米粉体”同济大学学报(自然版)28(2000)364-367.
    77.洪伟良,刘剑洪,田德余,王芳,“室温固相化学反应制备纳米CuO粉体研究”深圳大学学报(理工版)17(2000)66-69.
    78.师江柳,刘金尧,朱起明,“CuO/ZrO2超细粒子催化剂的制备和物性结构表征:Ⅰ.水凝胶pH值的影响”催化学报 17(1996)277-280.
    79.陈玉凤,林宝启,黎先财,陈卫玲,“由海绵铜制备高纯超微CuO粉末的研究”南昌大学学报(理工版) 23(1999)132-135.
    80. A. E. Rakhshani, "Preparation, characteristics and photovoltaic properties of cuprous oxide-a review" Solid State Electron., 1986, 29: 7-17.
    81. A. D. Berry, K. D. Gaskill, R. T. Holm, E. J. Cukauskas, R. Kaplan, and R. L. Henry, "Formation of high T_c superconducting films by organometallic chemical vapor deposition" Appl. Phys. Lett., 1988, 52: 1743-1745.
    82. G. Malandrino, G. G. Condorelli, G. Lanza, and I. L. Fragala, "Growth of epitaxial TlBaCaCuO a-axis oriented films on LaAlO_3 buffer layers grown on SrTiO_3(100) substrates" J. Alloys Compd., 1997, 251: 314-317.
    83. G. Malandrino, G. G. Condorelli, G. Lanza, I. L. Fragala, U. S. Uccio, and M. Valentine, "Twinning behaviour in YBCO and PBCO thin films and in PBCO-YBCO superlattices" J. Alloys Compd., 1997, 251: 322-327.
    84. A. Punnoose, H. Magnone, and M. S. Seehra, "Bulk to nanoscale magnetism and exchange bias in CuO nanoparticles" Phys. Rev. B, 2001, 64: 174420:1-174420:8.
    85. M. S. Seehra, A. Punnoose, "Deviations from the Curie-law variation of magnetic susceptibility in antiferromagnetic nanoparticles" Phys. Rev. B, 2001, 64: 132410:1-132410:4.
    86. K. Borgohain, J. B. Singh, M. V. Rama Rao, T. Shripathi, and S. Mahamuni, "Quantum size effects in CuO nanoparticles" Phys. Rev. B, 2000, 61: 11093-11096.
    87. C. C. Chusuei, M. A. Brookshier, and D. W. Goodman, "Correlation of relative X-ray photoelectron spectroscopy shake-up intensity with CuO particle size" Langmuir, 1999, 15: 2806-2808.
    88. V. R. Palkar, P. Ayyub, S. Chattopadhyay, and M. Multani, "Size-induced structural transitions in the Cu-O and Ce-O systems" Phys. Rev. B, 1996, 53: 2167-2170.
    89.王文亮,李东升,王振军,催华莉,薛岗林,“CuO超细粉体的形貌与红外特性研究”无机化学学报 18(2002)823-826
    90. M. A. Brookshier, C. C. Chusuei, and D. W. Goodman, "Control of CuO particle size on SiO_2 by spin coating" Langmuir, 1999, 15: 2043-2046.
    91. R. T. Clay, R. E. Cohen, "Sequential addition of H_2O_2, pH and solvent effects as key factors in the oxidation of 2,4,6-trichlorophenol catalyzed by iron tetrasulfophthalocyanine" New J. Chem., 1998, 7: 45-51.
    92. I. Lisiecki, M. P. Pileni, "Synthesis of copper metallic clusters using reverse micelles as microreactors" J. Am. Chem. Sot., 1993, 115: 3887-3896.
    93. A. Galembeck, O. L. Alves, "Planar heterostructures oxide/conducting polymer (CuO/polypyrrole and CeO_2/polypyrrole)" Synth. Met., 1999, 102: 1238-1239.
    94. Novak, P. "CuO cathode in lithium cells—Ⅱ. Reduction mechanism of CuO" Electrochim. Acta, 1985, 30: 1687-1692.
    95. Kavan, L., Rathousky, J., Gratzel, M., Shklover, V., and Zukal, A. "Surfactant-templated TiO_2 (Anatase): characteristic features of lithium insertion electrochemistry in organized nanostructures" J. Phys. Chem. B, 2000, 104: 12012-12020.
    96. F. Svegl, B. Orel, M. G. Hutchins, and K. Kalcher, "Structural and spectroelectrochemical investigations of sol-gel derived electrochromic spinel Co_3O_4 Films" J. Electrochem. Soc., 1996, 143: 1532-1539.
    97. M. Ando, T. Kobayashi, S. Lijima, and M. Haruta, "Optical recognition of CO and H_2 by use of gas-sensitive mu-Co_3O_4 composite films" J, Mater. Chem., 1997, 7: 1779-1783.
    98. R. J. Wu, C. H. Hu, C. T. Yeh, and P. G. Su, "Nanogold on powdered cobalt oxide for carbon monoxide sensor" Sens. Actuator B, 2003, 96: 596-601.
    99. Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J.-M., and Van Schalkwijk, W., "Nanostructured materials for advanced energy conversion and storage devices" Nat. Mater., 2005,4: 366-377.
    100.Li, W.-Y.; Xu, L.-N.; and Chen, J., "Co_3O_4 nanomaterials in lithium-ion batteries and gas sensors" Adv. Func. Mater., 2005, 15: 851-857.
    101.B. B. Lakshmi, C. J. Patrissi, and C. R. Martin, "Sol-gel template synthesis of semiconductor oxide micro- and nanostructures" Chem. Mater., 1997, 9: 2544-2550.
    102.P. L. Taberna, S. Mitra, P. Poizot, P. Simon, J. M. Tarascon, "High rate capabilities Fe_3O_4-based Cu nano-architectured electrodes for lithium-ion battery applications" Nat. Mater. 2006, 5: 567-573.
    103.K. T. Nam, D.-W. Kim, P. J. Yoo, C.-Y. Chiang, N. Meethong, P. T. Hammond, Y.-M Chiang, and A. M. Belcher, "Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes" Science, 2006,312: 885-888.
    104.Yanguang Li, Bing Tan, and Yiying Wu, "Freestanding mesoporous quasi-single-crystalline Co_3O_4 nanowire arrays" J. Am. Chem. Soc, 2006, 128: 14258-14259.
    105.R. Xu, H. C. Zeng, "Dimensional control of cobalt-hydroxide-carbonate nanorods and their thermal conversion to one-dimensional arrays of Co_3O_4 nanoparticles" J. Phys. Chem. B, 2003, 107: 12643-12649.
    106.E. Hosono, S. Fujihara, I. Honma, and H. Zhou, "Fabrication of morphology and crystal structure controlled nanorod and nanosheet cobalt hydroxide based on the difference of oxygen-solubility between water and methanol, and conversion into Co_3O_4" J. Mater. Chem., 2005,15:1938-1945.
    107.Tao Li, Shaoguang Yang, Lisheng Huang, Benxi Gu and Youwei Du "A novel process from cobalt nanowire to Co_3O_4 nanotube" Nanotechnology, 2004, 15: 1479-1482.
    108.Yingkai Liu, Guanghou Wang, Congkang Xu, and Wenzhong Wang "Fabrication of Co_3O_4 nanorods by calcinations of precursor powders prepared in a novel inverse micromulsion" Chem. Commun., 2002,1486-1487.
    109.Zhenghua Wang, Xiangying Chen, Meng Zhang, and Yitai Qian "Synthesis of Co_3O_4 nanorod bunches from a single precursor Co(CO_3)_(0.35)Cl_(0.20)(OH)_(1.10)" Solid State Sci., 2005, 7:13-15.
    110.M. Winter, J. O. Besenhard, M. E. Spahr, and P. Novak, "Insertion electrode materials for rechargeable lithium batteries" Adv. Mater., 1998,10: 725-763.
    
    111.D. C. Look, "Recent advances in ZnO materials and devices" Mater. Sci. Eng. B, 2001, 80: 383-387.
    112.Z. K. Tang, G. K. L. Wong, P, Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, "Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films" Appl. Phys. Lett., 1998, 72: 3270-3272.
    113.J. Hu, R. G. Gordon, "Textured aluminum-doped zinc oxide thin films from atmospheric pressure chemical-vapor deposition" J. Appl. Phys. 1992, 71:880-890
    114.T. Yamamoto, H. Katayama-Yoshida, "Solution using a codoping method to unipolarity for the fabrication of p-type ZnO" Jpn J. Appl. Phys. 1999, 38: L166-L169.
    115.Justin C. Johnson, Haoquan Yan, Richard D. Schaller, Poul B. Petersen, Peidong Yang, and Richard J. Saykally, "Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires" Nano Lett., 2002, 2: 279-283.
    116.Y. W. Zhu, H. Z. Zhang, X. C. Sun, S. Q. Feng, J. Xu, Q. Zhao, B. Xiang, R. M. Wang, and D. P. Yu, "Efficient field emission from ZnO nanoneedle arrays" Appl. Phys. Lett., 2003, 83: 144-146.
    117.H. Rensmo, K. Keis, H. Lindstrom, S. Sodergren, A. Solbrand, A. Hagfeldt, S. E. Lindquist, L. N. Wang, and M. Muhammed, "High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes" J. Phys.Chem. B, 1997, 101: 2598-2601.
    118.X. D. Wang, C. J. Summers, and Z. L. Wang, "Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays" Nano Lett., 2004, 4: 423-426.
    
    119.W. L. Park, G.-C. Yi, "Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN" Adv. Mater., 2004,16: 87-90.
    120.M. H. Zhao, Z. L. Wang, and S. X. Mao, "Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope" Nano Lett., 2004,4: 587-590.
    121.W I. Park, J. S. Kim, G. C. Yi, H. J. Lee, "ZnO nanorod logic circuits" Adv. Mater., 2005,17:1393-1397.
    
    122.L. Vayssieres, "Growth of arrayed nanorods and nanowires of ZnO from aqueoussolutions" Adv. Mater., 2003,15:464-466.
    123.Z. W. Pan, Z. R. Dai, and Z. L. Wang, "Nanobelts of semiconducting oxides" Science, 2001,291:1947-1949.
    124.Z. R. R. Tian, J. A. Voigt, J. Liu, B. McKenzie, M. J. McDermott, M. A. Rodriguez, H. Konishi, and H. F. Xu, "Complex and oriented ZnO nanostructures" Nat. Mater., 2003,2: 821-826.
    125.J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee, and S. T. Lee, "Thermal reduction route to the fabrication of coaxial Zn/ZnO nanocables and ZnO nanotubes" Chem. Mater., 2003,15:305-308.
    126.J. Q. Hu, Y. Bando, J. H. Zhan, Y. B. Li, and T. Sekiguchi, "Two-dimensional micrometer-sized single-crystalline ZnO thin nanosheets" Appl. Phys. Lett., 2003, 83:4414-4416.
    127.J. Y. Lao, J. G. Wen, and Z. F. Ren, "Hierarchical ZnO Nanostructures" Nano Lett., 2002, 2:1287-1291.
    
    128.C. Pacholski, A. Kornowski, and H. Weller, "Self-assembly of ZnO: from nanodots to nanorods" Angew. Chem. Int. Ed., 2002,41: 1188-1191.
    129.H. T. Ng, J. Li, M. K. Smith, P. Nguyen, A. Cassel, J. Han, and M. Meyyappan, "Growth of epitaxial nanowires at the junctions of nanowalls" Science, 2003, 300: 1249.
    130.X. Y. Kong, Y. Ding, R. S. Yang, and Z. L. Wang, "Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts" Science, 2004, 303: 1348-1351.
    131.A. Taubert, D. Palms, O. Weiss, M. T. Piccini, and D. N. Batchelder, "Polymer-assisted control of particle morphology and particle size of zinc oxide precipitated from aqueous solution" Chem. Mater., 2002,14:2594-2601.
    132.A. Taubert, C. Kubel, and D. C. Martin, "Polymer-induced microstructure variation in zinc oxide crystals precipitated from aqueous solution" J. Phys. Chem. B, 2003,107: 2660-2666.
    133.Z. Wang. X.-F. Qian, J. Yin, and Z.-K. Zhu, "Large-scale fabrication of tower-like, flower-like, and tube-like ZnO arrays by a simple chemical solution route" Langmuir, 2004,20: 3441-3448.
    134.M. Mo, J. C. Yu, L, Zhang, S. A. Li, "Self-Assembly of ZnO Nanorods and Nanosheets into Hollow Microhemispheres and Microspheres" Adv. Mater. 17 (2005) 756-760.
    135.H. Tang, M. Yan, X. Ma, H. Zhang, M. Wang, and D. Yang, "Gas sensing behavior of polyvinylpyrrolidone-modified ZnO nanoparticles for trimethylamine" Sens. Actuators B, 2006,113:324-328.
    136.X. Jiang, Y. Wang, T.Herrick, Y. Xia, "Ethylene glycol-mediated synthesis of metal oxide nanowires" J. Mater. Chem. 2004,14: 695-703.
    137.M. Bendahan, R. Boulmani, J. L. Seguin, and K. Aguir, "Characterization of ozone sensors based on WO_3 reactively sputtered films: influence of O_2 concentration in the sputtering gas, and working temperature" Sens. Actuator. B, 2004,100:320-324.
    138.H. Zhang, D. Yang, X. Ma, N. Du, J. Wu, D. Que, "Straight andthin ZnO nanorods: hectogram-scale synthesis at low temperature and cathodoluminescence" J. Phys. Chem. B, 2006, 110: 827-830.
    139.Ulrich Hoefer, Joachim Frank, and Maximilian Fleischer, "High temperature Ga_2O_3-gas sensors and SnO_2-gas sensors: a comparison" Sensor. Actuator. B,2001,78:6-11.
    140.B. Bhooloka Rao, "Zinc oxide ceramic semi-conductor gas sensor for ethanol vapour" Mater. Chem. Phys., 2000, 64: 62-65.
    
    141.Sang-Jin Jung, Hiroaki Yanagida, "The characterization of a CuO/ZnO heterocontact-type gas sensor having selectivity for CO gas" Sensor. Actuator. B, 1996,37:55-60.
    142.P. Nunes, E. Fortunato, A. Lopes, and R. Martins, "Influence of the deposition conditions on the gas sensitivity of zinc oxide thin films deposited by spray pyrolysis" Int. J. Inorg. Mater., 2001,3:1129-1131.
    143 .P. Feng, Q. Wan, and T. H. Wang, "Contact-controlled sensing properties of flowerlike ZnO nanostructures" Appl. Phys. Lett., 2005, 87:213111-213114.
    144.C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, "Chemistry and properties of nanocrystals of different shapes" Chem. Rev., 2005, 105: 1025-1102.
    145.Z. W. Pan, Z. R. Dai, and Z. L. Wang, "Nanobelts of semiconducting oxides" Science, 2001,291:1947-1949.
    146.H. J. Dai, E. W. Wong, Y. Z. Lu, S. S. Fan, and C. M. Lieber, "Synthesis and characterization of carbide nanorods" Nature, 1995, 375:769-772.
    147.W. Q. Han, S. S. Fan, Q. Q. Li, and Y. D. Hu, "Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction" Science, 1997, 277: 1287-1289.
    148.A. M. Morales, C. M. Lieber, "A laser ablation method for the synthesis of crystalline semiconductor nanowires" Science, 1998,279:208-211.
    149.M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber "Growth of nanowire superlattice structures for nanoscale photonics and electronics" Nature, 2002, 415: 617-620.
    150.Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, "Logic gates and computation from assembled nanowire building blocks" Science, 2001, 294:1313-1317.
    151.M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D.Yang, "Nanoribbon waveguides for subwavelength photonics integration" Science, 2004, 305:1269-1273.
    152.T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein, and M. A. El-Sayed, "Shape-controlled synthesis of colloidal platinum nanoparticles" Science, 1996, 272: 1924-1925.
    153.V. F. Puntes, D.Zanchet, C. K. Erdonmez, and A. P. Alivisatos, "Synthesis of hcp-Co Nanodisks" J. Am. Chem. Soc, 2002,124:12874-12880.
    154.M. B. Sigman, A. Ghezelbash, T. Hanrath, A. E. Saunders, F. Lee, and B. A. Korgel, "Solventless synthesis of monodisperse Cu_2S nanorods, nanodisks, and nanoplatelets" J. Am. Chem. Soc, 2003,125:16050-16057.
    155.R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G Zheng, "Photoinduced conversion of silver nanospheres to nanoprisms" Science, 2001, 294: 1901-1903.
    156.R. C. Jin, Y. C. Cao, E. C. Hao, G. S. Metraux, G. C. Schatz, and C. A. Mirkin, "Controlling anisotropic nanoparticle growth through plasmon excitation" Nature, 2003,425:487-490.
    157.Y. G. Sun, Y. N. Xia, "Shape-controlled synthesis of gold and silver nanoparticles" Science, 2002, 298:2176-2179.
    158.Y. N. Xia, P. D. Yang, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, "One-dimensional nanostructures: synthesis, characterization, and applications" Adv. Mater., 2003,15: 353-389.
    159.P. Alivisatos, "The use of nanocrystals in biological detection" Nat. Biotechnol., 2004, 22:47-52.
    160.J. Hu, T. W. Odom, and C. M. Lieber, "Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes" Acc. Chem. Res., 1999, 32:435-445.
    161.M. Maillard, S. Giorgio, and M. P. Pileni, "Silver nanodisks" Adv. Mater., 2002, 14:1084-1086.
    162.M. Maillard, P. Huang, and L. Brus, "Silver nanodisk growth by surface plasmon enhanced photoreduction of adsorbed [Ag~+]" Nano Lett., 2003, 3:1611-1615.
    163.Z. R. Dai, Z. W. Pan, and Z. L.Wang, "Growth and structure evolution of novel tin oxide diskettes" J. Am. Chem. Soc, 2002,124: 8673-8680.
    164.Y. C. Cao, "Synthesis of square gadolinium-oxide nanoplates" J. Am. Chem. Soc, 2004, 126: 7456-7457.
    165.S. Chen, D. L. Carrol, "Synthesis and characterization of truncated triangular silver nanoplates" Nano. Lett., 2002,2: 1003-1007.
    166.H. Zeng, P. M. Rice, S. X. Wang, and S. Sun, "Shape-controlled synthesis and shape-induced texture of MnFe_2O_4 nanoparticles" J Am. Chem. Soc, 2004, 126: 11458-11459.
    167.F. Dumestre, B. Chaudret, C. Amiens, P. Renaud, and P. Fejes, "Superlattices of iron nanocubes synthesized from Fe[N(SiMe_3)_2]_2" Science, 2004, 303: 821-823.
    
    168.Q. Song, Z. J. Zhang, "Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals" J. Am. Chem. Soc., 2004,126: 6164-6168.
    169.S. Chen, Z. Fan, and D. L. Carroll, "Silver nanodisks: synthesis, characterization, and self-assembly" J. Phys. Chem. B., 2002,106: 10777-10781.
    170.J. Hu,; Y. Zhang, B. Liu, J. Liu, H. Zhou, Y. Xu, Y. Jiang, Z. Yang, and Z. Q. Tian, "Synthesis and properties of tadpole-shaped gold nanoparticles" J. Am. Chem. Soc, 2004, 126:9470-9471.
    171.Y. Sun, B. Mayers, Y. Xia, "Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process" Nano Lett., 2005, 3: 675-679.
    172.K. Asian, J. R. Lakowicz, and C. D. Geddes, "Rapid deposition of triangular silver nanoplates on planar surfaces: application to metal-enhanced fluorescence" J. Phys. Chem. B, 2005,109:6247-6251.
    173.Y. Sun, Y. Xia, "Triangular nanoplates of silver: synthesis, characterization, and use as sacrificial templates for generating triangular nanorings of gold" Adv. Mater., 2003, 15:695-699.
    174.Y. Shao, Y. D. Jin, and S. J. Dong, "Synthesis of gold nanoplates by aspartate reduction of gold chloride" Chem. Commun., 2004, 9: 1104-1105.
    175.Y. Zhou, C. Y. Wang, Y. R. Zhu, and Z. Y. Chen, "A novel ultraviolet irradiation technique for shape-controlled synthesis of gold nanoparticles at room temperature" Chem. Mater., 1999,11: 2310-2312.
    176.A. C.Curtis, D. G. Duff, P. P. Edwards, D. A. Jefferson, B. F. G. Johnson, A. I. Kirkland, and A. S. Wallace, "A morphology-selective copper organosol" Angew. Chem., Int. Ed. Engl., 1988,27: 1530-1533.
    177.V. F. Puntes, K. M. Krishnan, and A. P. Alivisatos, "Colloidal nanocrystal shape and size control: the case of cobalt" Science, 2001,291: 2115-2117.
    178.J. S. Bradley, B. Tesche, W. Busser, M. Maase, and M. T. Reetz, "Surface spectroscopic study of the stabilization mechanism for shape-selectively synthesized nanostructured transition metal colloids" J. Am. Chem. Soc, 2000,122:4631-4636.
     179.R. Fu, S. Xu, Y.-N. Lu, J.J. and Zhu, "Synthesis and Characterization of Triangular Bismuth Nanoplates" Cryst. Growth. Des., 2005,5:1379-1385.
    
    180.J. C. Yu, A. Xu, L.Zhang, R. Song, and L. Wu, "Synthesis and characterization of porous magnesium hydroxide and oxide nanoplates" J. Phys. Chem. B, 2004,108: 64-70.
    181.Y. C. Cao, "Synthesis of square hadolinium-oxide Nanoplates" J. Am. Chem. Soc, 2004, 126: 7456-7457.
    182.H. Ohgi, T. Maeda, E. Hosono, S. Fujihara, and H. Imai, "Evolution of nanoscale SnO_2 grains, flakes, and plates into versatile particles and films through crystal growth in aqueous solutions" Cryst. Growth Des., 2005, 5:1079-1083.
    183.H. T. Zhang, G. Wu, and X. H. Chen, "Large-scale synthesis and self-assembly of monodisperse hexagon Cu_2S nanoplates" Langmuir, 2005,21:4281-4282.
    184.N. Pinna, K. Weiss, J. Urban, and M. P. Pileni, "Triangular CdS nanocrystals: structural and optical studies" Adv. Mater., 2001, 13: 261-264.
    185.P. Sekar, E. C. Greyson, J. E. Barton, and T. W. Odom, "Synthesis of nanoscale NbSe_2 materials from molecular precursors" J. Am. Chem. Soc, 2005, 127: 2054-2055.
    186.Y. W. Zhang, X.Sun, R. Si, L. P. You, and C. H. Yan, "Single-crystalline and monodisperse LaF_3 triangular nanoplates from a single-source precursor" J. Am. Chem. Soc, 2005, 127: 3260-3261.
    187.C. H. Liang, Y. Shimizu, T. Sasaki, H. Umehara, and N. Koshizaki, "Au-mediated growth of wurtzite ZnS nanobelts, nanosheets, and nanorods via thermal evaporation" J. Phys. Chem. B, 2004, 108: 9728-9733.
    188.L. Z. Wang, Y. Omomo, N. Sakai, K. Fukuda, I. Nakai, Y. Ebina, K. Takada, M. Watanabe, and T. Sasaki, "Fabrication and characterization of multilayer ultrathin films of exfoliated MnO_2 nanosheets and polycations" Chem. Mater., 2003, 15: 2873-2878.
    189.U. K. Gautam, S. R. C. Vivekchand, A. Govindaraj, G. U. Kulkarni, N. R. Selvi, and C. N. R. J. Rao, "Generation of onions and nanotubes of GaS and GaSe through laser and thermally induced exfoliation" J. Am. Chem. Soc., 2005, 127: 3658-3659.
    190.A. Dias, V. S. T. Ciminelli, "Electroceramic materials of tailored phase and morphology by hydrothermal technology" Chem. Mater., 2003,15:1344-1352.
    191.C. Livage, C. Egger, and Ferey, G. "Hydrothermal versus nonhydrothermal synthesis for the preparation of organic-inorganic solids: the example of cobalt(II) succinate" Chem. Mater., 2001, 13:410-414.
    192.Z. Liu, Y. Yang, J. Liang, Z. Hu, S. Li, S. Peng, and Y. Qian, "Synthesis of copper nanowires via a complex-surfactant-assisted hydrothermal reduction process" J. Phys. Chem. B, 2003,107: 12658-12661.
    193.C. Pacholski, A. Kornowski, and H. Weller, "Self-assembly of ZnO: from nanodots to nanorods" Angew. Chem. Int. Ed., 2002,41:1188-1191.
    
    194.Jin Joo, Taekyung Yu, Young Woon Kim, Hyun Min Park, Fanxin Wu, Jin Z. Zhang, and Taeghwan Hyeon "Multigram scale synthesis and characterization of monodisperse tetragonal zirconia nanocrystals" J. Am. Chem. Soc, 2003, 125: 6553-6557.
    195.Xun Wang, Jing Zhuang, Qing Peng, and Yadong Li, "A general strategy for nanocrystal synthesis" Nature, 2005, 437: 121-124.
    196.B. L. Cushing, V. L. Kolesnichenko, and C. J. O'Connor, "Recent advances in the liquid-phase syntheses of inorganic nanoparticles" Chem. Rev., 2004, 104:3893-3946.
    197.G Zhou, X. Wang, and J. Yu, "A low-temperature and mild solvothermal route to the synthesis of wurtzite-type ZnS with single-crystalline nanoplate-like morphology" Cryst. Growth. Des., 2005, 5: 1761-1765.
    198.V. S. Dresco, R.Zaitsev, J. Gambino, and B. Chu, "Preparation and properties of magnetite and polymer magnetite nanoparticles" Langmuir, 1999,15: 1945-1951.
    199.B. Z. Tong, Y. Geng, J. W. Yip Lam, B. Li, X. Jing, X. Wang, F. Wang, A. B. Pakhomov, and X. X. Zhang, "Processible nanostructured materials with electrical conductivity and magnetic susceptibility: preparation and properties of maghemite/polyaniline nanocomposite films" Chem. Mater., 1999, 11: 1581-1589.
    200.Atul. S. Deshpande, Dmitry. G Shchukin, Elena Ustinovich, Markus Antonietti, Rachel. And A. Caruso. "Titania and mixed titania/aluminum, gallium, or indium oxide spheres: Sol-gel/template synthesis and photocatalytic properties" Adv. Funct. Mater., 2005, 15:239-245.
    201.Hong Deng, Xiaolin Li, Qing Peng, Xun Wang, Jinping Chen, and Yadong Li "Monodisperse magnetic single-crystal ferrite microspheres" Angew. Chem. Int. Ed., 2005,44:2782-2785.
    202.S. M. Lee, S. N. Cho, and J. W. Cheon, "Anisotropic shape control of colloidal inorganic nanocrystals" Adv. Mater., 2003,15:441-444.
    203.Jun Cai, Jia Liu, Zi Gao, Alexandra Navrotsky, and Steven L. Suib, "Synthesis and anion exchange of tunnel structure akaganeite" Chem. Mater., 2001, 13: 4595-4602.
    204.M. Matzapetakis, C. P. Raptopoulou, A. Tsohos, V. Papaefthymiou, N. Moon, and A. Salifoglou, "Synthesis, spectroscopic and structural characterization of the first mononuclear, water soluble iron-citrate complex, (NH_4)5Fe(C_6H_4O_7)_2·2H_2O " J. Am. Chem. Soc., 1998, 120: 13266-13267.
    205.L. Finger, "Crystal structure and isothermal compression of Fe_2O_3, Cr_2O_3, and V_2O_3 to 50 kbars" J. App. Phys., 1980, 51: 5362-5367.
    206.Enrique R. Batista, Richard A. Friesner."A self-consistent charge-embedding methodology for ab initio quantum chemical cluster modeling of ionic solids and surfaces: application to the (001) surface of hematite ((?)-Fe_2O_3)" J. Phys. Chem. B, 2002, 106:8136-8141.
    207.Lin X. Chen, Tao Liu, Marion C. Thurnauer, Roseann Csencsits, and Tijana Rajh, "Fe_2O_3 nanoparticle structures investigated by X-ray absorption near-edge structure, surface modifications, and model calculations" J. Phys. Chem. B, 2002, 106: 8539-8546.
    
    208.Hui Zhang, Deren Yang, Dongshen Li, Xiangyang Ma, Shenzhong Li, and Duanlin Que "Controllable growth of ZnO microcrystals by capping molecule assisted hydrothermal process" Cryst. Growth. Des., 2005, 5: 547-550.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700