同轴三反空间相机结构稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间相机的结构稳定性是空间科学仪器结构设计中的重要问题,历来受到结构设计工作人员的高度重视。近几十年来,随着空间相机在大口径、轻量化方向的发展,为减轻结构重量,增强结构刚度和稳定性,相机的支撑结构和光学元件在材料应用和结构形式上都必须做出相应调整。受重量和发射成本的限制,空间相机结构件的剖面尺寸相对减小,结构刚度和安全裕度相对降低,结构稳定问题变得尤为突出。另外,空间相机从研制、发射到在轨运行,会遭受到振动、冲击、噪声、空间热环境、真空环境、微重力和特殊空间环境等外界载荷和环境因素的考验,这都对结构提出了更高的要求。空间相机的光学性能在很大程度上决定于相机结构在外界载荷和环境影响下的稳定性,因此,对相机结构的稳定性进行深入研究具有重要意义。
     本文结合项目研制进程,根据相机光学结构特点和项目需求,主要对大口径主反射镜和调焦镜的柔性支撑、主镜和次镜间的薄壁连接筒、碳纤维复合材料相机支架和活动部件等关键结构进行了研究。
     首先,介绍了空间相机结构稳定性问题的研究方法。从理论研究出发,分析了空间相机的力学环境,载荷特征和结构响应的评价依据。讨论了有限元分析法的原理、分析过程和分析精度。
     其次,结合课题情况阐述了空间相机光学结构的设计依据、对结构加工装配误差的要求以及研制过程中相机的像质检测方法。然后,介绍了空间相机反射镜材料的性能和选择依据。通过对反射镜支撑理论的分析完成了主镜和调焦镜的支撑结构设计,并进行了相应的工程分析和试验。结果表明,柔性支撑结构具有合理的刚度、环境适应性和结构稳定性,反射镜及其支撑结构的设计比较合理。
     然后,对薄壁圆筒的加强筋结构参数进行了研究,发现了加强筋参数的影响规律。对中筒结构进行了设计、分析和优化,工程分析表明中筒稳定性较好。接着介绍了相机支架和调焦组件的结构特点,以及它们在结构稳定性方面采取的保证措施,通过分析和试验验证了设计的合理性和结构可靠性。
     最后,对整机进行了有限元工程分析和环境试验。并且在研究的同轴光学系统基础上,对第一像面后的光路在垂直主次镜光轴方向上进行了折叠,分析了折轴结构的特征频率和结构稳定性。结果表明,折轴结构相机的特征频率较高,轴向尺寸较短,但径向尺寸较大;空间相机的结构稳定性较好,能够满足指标要求。
The stability of space camera is an important issue in structure design of spacescience instruments, which has aroused the attention of researchers. With thedevelopment of space camera in the direction of large aperture and lightweight, thematerials and form of camera structure must be adjusted accordingly to reduce theweight and enhance the rigidity and stability. Due to the limits of weight and launchcosts, the structure cross-section size, the stiffness and reliability of the space cameraneed to be relatively reduced. The stability of space camera has become aparticularly important research problem. What's more, Space camera has to undergoexternal loads, temperature and other environment influences in the wholetransporting and working process. As the imaging performance is largely determinedby the camera's structure stability, the stability is of great importance.
     According to the camera’s optical structure characteristics, studies/experimentshave been conducted on the flexible support of large-aperture primary mirror andfocusing mirror, the thin-walled cylinder between primary and secondary mirror, thecarbon fiber composite mount, and the moving parts.
     Firstly, the research method of space camera structure stability was introduced.The mechanical environment, the load characteristics and the evaluation of structureresponse were analyzed theoretically. The theory, processing and accuracy of finiteelement analysis were discussed.
     Secondly, the theoretical basis of optical structure design, the assemblytolerances, the imaging quality testing methods and the material of mirrors weredescribed.The support structure of primary mirror and focusing mirror were designed.Flexible support structure has a reasonable stiffness, environment adaptability andstructure stability. The structure design of mirrors and its support is reasonable.
     Thirdly, the Stiffener parameters of thin-walled cylinder were studied. Thedesign, analysis and optimization of the cylinder structure have been carried out.Theanalysis results show that the cylinder structure is stable. The structurecharacteristics, assurance measures, analysis and testing of camera mount andfocusing mechanism have been carried out. The testing results show that the designof camera mount and focusing mechanism is reasonable and reliable.
     Lastly, the finite element analysis and space camera structure test have beencarried out. The optical path after the first image plane was fold back on the basis ofthe coaxial optical system. The natural frequency analysis and structural stabilityevaluation of the folding space camera have also been carried out.The results haveproved that the space camera meets the customer’s requirements and is of goodstructure stability.
引文
[1]姜景山,王文魁等.空间科学与应用[M].北京:科学出版社.2001
    [2]徐朋.美军成像侦察卫星的未来发展[J].现代军事.2009,(10):52-55
    [3]闵桂荣,郭舜.航天器热控制[M].北京:科学出版社,1998
    [4]徐俊,姚行中,乔哲.美国KH-12照相侦察卫星及其情报处理体系研究[J].中国水运,2008,6(1):212-213
    [5]闵桂荣.卫星热控技术[M].北京:宇航出版社,1991
    [6]李积慧等.空间相机的热分析与热控制技术[J].光学精密工程.1999,7(6):36-41
    [7]李国强等.影响CCD相机温度分布的因素[J].中国空间科技技术.2001,5:62-70
    [8]吴清文等.空间光学遥感器热分析[J].光学精密工程.2002,10(2):205-208
    [9]陈恩涛,卢锷.空间光学遥感器的热控制技术[J].光机电信息.2000,17(12):12-16
    [10]牛晓明.空间光学遥感器的热响应分析及热控[J].光学精密程.1998,6(6):74-78
    [11]R.L.Edeson, B.M.Shaughnessy, M.S.Whalley, K.Burke, J.Lucas.The mechanicaland thermal design and analysis of the VISTA infrared camera[J].Proc. SPIE,2004,5497:508-519
    [12]邹振宁,周芸.美国卫星发展战略探要[J].飞航导弹2005,(4):17-22
    [13]吴培中.星载陆地光学观测器的类别与特性[J].国际太空,2002,(9):8-12
    [14]John W.Figoski.The QuickBird telescope: the reality of large, high-quality,commercial space optics [J]. Proc. SPIE,1999,3779:22-30
    [15]BICKNELL.W.E,DIGENIS C J,FORMAN S E.EO-1Advanced land imager[J].SPIE,1999,3750:80-88
    [16]SHIMODA H.Japanese earth observation programs [J]. SPIE,1999,3870:37-48
    [17]Gilles Moury, Christophe Latry. In-orbit commissioning of SPOT5imagecompression function [J]. SPIE,5151:540-551
    [18]王金堂,乌崇德.国外几种星载光学遥感器的发展情况简介[J].航天返回与遥感,2002,23(2):15-20
    [19]韩昌元.近代高分辨地球成像商业卫星[J].中国光学与应用光学,2010,3(10):201-208
    [20]陈宜元.中巴地球资源卫星[J].中国工程科学,2001,3(3):9-15
    [21]周胜利.三线阵TDICCD在测图卫星中的应用分析[J].航天器工程,2007,16(4):19-22
    [22]郭今昌.商用高分辨光学遥感卫星及平台技术分析[J].航天器工程,2009,18(2):83-89
    [23]刘勇,王秋刚.成像侦察卫星及其发展综述[J].电子对抗,2005,105(6)39-43
    [24]李喜来,徐军,曹付允等.导弹紫外预警技术研究[J].战术导弹技术[J].2008,(3):70-72
    [25]高洪涛,陈虎,刘晖,等.国外对地观测卫星技术发展[J].航天器工程,2009,18(3):84-91
    [26]叶培建,彭兢.深空探测与我国深空探测展望[J].中国工程科学,2006,8(10):13-18
    [27]何绍改.近年来全球探月活动扫描[J].科苑,2008,(11):56-59
    [28]赵葆常,杨健峰,贺应红,等.探月光学[J].光子学报,2009,38(3):461-467
    [29]韩昌元.光学与光学工程[M].北京:科学出版社,2005:230-241
    [30]郁道银,谈恒英.工程光学基础教程[M].北京机械工业出版社,2007:171-180
    [31]韩昌元.高分辨力空间相机的光学系统[J].光学精密工程,2008,16(11):2164-2172
    [32]Steven E. Forman. EO-1Advanced Land Imager (ALI) TechnologyTransferForum [R],2001.9
    [33]Bronowicki A J. Dual-stage vibration isolation for optical interferometer missions[J].SPIE,2002
    [34]Li Chao-Ming,Pan Jun-Hua.Research on the influence of secondary mirrorshadow coefficient upon Pan-Cassegrain system [J],SPIE,2006.6034:031-6
    [35]续强等.空间光学遥感器主反射镜轻量化及支撑设计[J].应用光学,2007,28(1):43-46
    [36]韩昌元.空间光学的发展与波前传感技术[J].中国光学,2008,1(1):13-24
    [37]杜艳丽等.太赫兹波探测器的研究进展[J].半导体光电,2009,30(4):481-491
    [38]焦亮斌.星载小型CCD相机发展现状与趋势[J].空间电子技术,1995,(4):34
    [39]王孝坤,张学军,王丽辉.郑立功.环形子孔径拼接干涉检测非球面的数学模型和仿真研究[J].光学精密工程,2006,14(4):527-532
    [40]HOU X,WU F.Annular subaperture interferometric testing technique for largeaspheric surfaces[J].SPIE,2005,Vol.5638:992-997
    [41]张志伟,马骏.微小型自适应光学系统及其在星载光学遥感器上的应用[J].红外与激光工程,2000,29(1):49-52
    [42]Ii Kweon Moon, InWoo Han.Design Study of a KAO Telescope with a1-rnDouble Arch Prirnary Mirror [J]. SPIE,1995.2542:154-166
    [43]Myung Cho.Design Study of the GNIRS Bracket Structure[R].2000
    [44]Nella J.JWST observatory architecture and performance[R].SPIE,2004
    [45]周承惆.弹性稳定性理论[M].四川人民出版社,1981
    [46]吴连元.板壳稳定性理论[M].华中理工大学出版社,1996
    [47]陈志平,杨世模,胡企千,施浒立.空间太阳望远镜主构架的力学分析和优化[J].计算力学学报,2005,22:89-94
    [48]Timoshenko S P, Gere J M. Theory of Elastic Stability [M]. NewYork:McGraw-Hill,1961
    [49]Gerard G, Becker H. Handbook of Structural Stability [M].NASA-TN-3781,1957
    [50]崔德刚.结构稳定性设计手册[M].北京:航空工业出版社,1996
    [51]吴清文.空间相机中主镜的轻量化技术及其应用[J].光学精密工程,1997,5(6):69-81
    [52]陈志平.空间太阳望远镜的结构分析与主桁架试验研究[D].中国科学院国家天文台博士论文,2004
    [53]高明辉.空间光学遥感器超薄反射镜与支撑结构设计方法研究[D].中国科学院长春光学精密机械与物理研究所博士学位论文,2004
    [54]吴清文.高精度轻型长条形反射镜多点支撑方案[J].光学精密工程,1999.7(3):61-65
    [55]谢祚水.结构优化设计概论[M].北京:国防工业出版社,1997
    [56]孙靖民.结构优化设计[M].北京:机械工业出版社,2005
    [57]陈建军,车建文等.结构动力优化设计述评与展望[J].力学进展,2001,31(2):181-19
    [58]Keith B.Doyle, Design of Optical Structures for Maximum FundamentalFrequency [J]. SPIE,1993,1998:50-59
    [59]Moore Gregory J Ph D. Msc/Nastran Design Sensitivity and Optimization,Msc/Nastran User’s Guide [M]. Msc/Nastran,2000
    [60]Guoping Li, Dehua Yang. Preliminary Structure Design and Analysis of theChinese Future Giant Telescope [J]. SPIE,2004,5495:204-215
    [61]牛晓明.CAE技术在空间相机光机结构设计中的应用[J].光学精密工程,1999.7(4):23-29
    [62]郭喜庆.长焦距相机镜头结构轻量化分析[D].中科院硕士论文,1999
    [63]孙宝玉.轻型大视场遥感器动态特性研究[D].中科院博士论文,2004
    [64]王俊.航天光学成像遥感器动态成像质量评价与优化.中科院博士论文,2000
    [65]张洪武等.有限元分析与CAE技术基础[M].清华大学出版社,2004
    [66]王勋成,邵敏.有限单元法基本原理和数值方法[M].清华大学出版社,1997
    [67]张雷.空间相机桁架式镜头支撑结构研究[D].中国科学院学位论文,2008
    [68]MSCMacr简介[M].北京:MSC公司
    [69]杨光.结构振动有限元分析算法的实现及误差分析[D].吉林大学学位论文,2002
    [70]宋朝辉,卢锷.空间光学仪器研制开发中的虚拟工程技术[J].光学精密工程,1999,6:18-22
    [71]单宝忠等.空间光仪光机热集成分析方法[J].光学精密工程,2001,9(4)377-381
    [72]吴清文等.空间相机中主镜及其支撑方案设计与分析方法[J].光学技术,2004,20(2):153-156
    [73]杨晓飞.三反射镜光学系统的计算机辅助装调技术研究[D].中科院博士学位论文,2004
    [74]李威.空间相机主次镜间支撑结构技术研究[D].中科院博士学位论文,2010
    [75]韩昌元.光学系统成像质量评价及测试[M].中国科学院长春光学精密机械与物理研究所,内部资料,2009.15
    [76]Shepherd G G, Gault W A, Miller D M,et al.WAMDII:wide-angle Michelsonimaging interferometer for spacelab[J].Opt.Appl,1985,24(11):1571-1584
    [77]韩媛媛等.国内外碳化硅反射镜及系统研究进展[J].材料工程,2005,(6):59~63
    [78]付芸,徐长吉,丁亚林.航空遥感相机扫描反射镜支撑技术[J].光学精密工程,2003,11(6):550-554
    [79]刘梅,胡企千.空间太阳望远镜lm主镜支撑结构的研究[J].天文研究与技术,2004,1(2):99-106
    [80]FRIEDMAN E. Photonics Rules of Thumb [M]. New York:McGraw Hill,2003
    [81]YODER P. Opto-Mechanical System Design [M]. Cooperate M. D. Inc,1993
    [82]樊延超.大口径光学遥感器主反射镜支撑设计[J].光机电信息,2010,27(5):1-5
    [83]孙宝玉.空间光学遥感器反射镜柔性调节结构设计[J].哈尔滨工业大学学报,2009,41(9):201-203
    [84]辛宏伟.空间遥感器结构稳定性分析[D].中国科学院研究生院学位论文,2003
    [85]胡海昌.弹性力学的变分原理[M].科学出版社,1981
    [86]杨剑,张璞,陈火红. MSC.Nastran有限元实例教程[M].机械工业出版社,2007
    [87]曾攀.有限元分析及应用[M].清华大学出版社,2004:225-228
    [88]Mecitoglu Z, et al. Free vibrat ions of a thin, stiffened, cylindrical shallow shell[J]. AIAA Journal,1991,30(3):848-850
    [89]陈立恒,吴清文.高分辨率空间相机遮光罩结构参数的有限元分析[J].应用光学,2008,34(3):445-448
    [90]韩涵.运载火箭加筋壳结构稳定性分析[D].国防科学技术大学硕士论文,2005
    [91]李贤辉.光机集成有限元分析光学面形后处理研究与实现[D].中科院学位论文,2004
    [92]CODE V, Zernike Polynomials. CODE V9.50Help
    [93]巩盾.温度对遥感器光学系统成像质量的影响[D].中科院博士学位论文,2010
    [94]杜华军等.航天支架结构的被动振动控制[J].应用力学学报,2002,9:10-13
    [95]Norman Owen and Reuben Hale. Factors in the Design and Selection of VibrationSensitive Equipment [J].SPIE,1991,1619,56-70
    [96]刘兆军等.长焦距同轴三反空间相机光学系统研究[J].航天返回与遥感,2011,32(6):46-52
    [97]Lampton M and Sholl M. Comparison of on-axis Three-mirror-anastigmatTelescopes [J]. SPIE,2007,6687:66870S.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700