奇异摄动半线性椭圆型方程多解计算方法及相关问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了一类典型的奇异摄动Neumann问题,一类一般的奇异摄动Neumann问题以及一类半线性椭圆Dirichlet问题的多解计算理论与数值算法。对奇异摄动多解模型提出了改进型LMM算法并对算法的收敛性进行了分析,对半线性椭圆Dirichlet问题设计了基于Chebyshev谱配点法的SEM算法并对算法的收敛性进行了分析。本文还证明了奇异摄动多解模型的一些理论结果。
     首先,本文通过放松传统局部极小极大算法(LMM)在选择初始上升方向时的严格正交性条件的限制,并引入局部加密网格策略及其它策略,提出了改进型LMM算法。证明了新算法产生的点列在满足峰选择p连续、可分离条件以及能量泛函下方有界三个条件之下一定能收敛到新解。本文的数值算例首次比较系统地计算得到了奇异摄动Neumann问题的最小能量解、边界角落处多峰解、边界非角落处多峰解、内部单峰解、内部多峰解以及其它一些特殊的解。
     接下来,受数值结果启发,本文先后证明了奇异摄动模型(1-1)和(4-1)的平凡解在任意ε值时的Morse指标、平凡解的分叉点以及决定非平凡正解与非平凡负解是否存在的临界值εc1与εc2。讨论了最小能量解和变号解的一些性质,当ε充分大时,得到一个同类变号解的能量与最大值的增长阶分别为两p+1/p-1和1/p-1的猜想。这些理论结果被大量数值结果所验证。
     最后,本文对一类半线性椭圆Dirichlet问题设计了基于Chebyshev谱配点法的SEM算法。在基本假定(5-18)下分析了该算法的收敛性,证明通过Chebyshev谱配点法求解模型方程(1-3)得到的数值解与其相对应的真解的Hω1和Hω2误差分别为O(N1-σ)和O(N-σ),它们反映了谱配点法的丰满阶。而且,当N充分大时,充分靠近某一真解u的数值解uN是唯一的。数值结果表明基于Chebyshev谱配点法的SEM算法比传统的基于有限元离散及两网格法的SEM算法效率更高。
In this paper, the theory and numerical methods for solving multiple solu-tions to a classical singularly perturbed Neumann problem, a general singularly perturbed Neumann problem and a semi-linear elliptic Dirichlet problem are investigated. A modified local minimax method (LMM) and its convergence analysis are proposed for the singularly perturbed multiple solution models. A search extension method (SEM) based on the Chebyshev spectral collocation method and its convergence analysis are displayed for the semi-linear ellip-tic Dirichlet problem. Some theoretical results for the singularly perturbed multiple solution models are also proved in this paper.
     Firstly, by relaxing the strict orthogonality requirement in selecting an initial guess for the traditional local minimax method(LMM) and introducing the local refinement strategy and other strategies, a modified LMM algorithm is designed in this paper. The sequences generated by the new algorithm are proved to converge to a new solution if the three conditions that the peak selection p is continuous, the separable condition and the energy functional is bounded below are all satisfied. The least energy solutions, boundary cor-ner multi-peak solutions, boundary non-corner multi-peak solutions, interior single-peak solutions and interior multi-peak solutions of the singularly per-turbed Neumann problems are systematically computed for the first time in the numerical examples.
     Next, motivated by the numerical results, the Morse indices of the trivial solutions at any value of ε, the bifurcation points of the trivial solutions and the critical values εc1and εc2, which determine the existence or nonexistence of a nontrivial positive solution and a nontrivial negative solution, are verified for the singularly perturbed models (1-1) and (4-1) respectively. The paper discusses some properties of the least energy solutions and sign-changing so-lutions and proposes a conjecture that the increasing orders of the energy and the maximum for the same kind of sign-changing solutions are p+1/p-1and1/p-1respectively, provided that ε is sufficiently large. All these theoretical results are proved by a large number of numerical results.
     Finally, a SEM based on Chebyshev spectral collocation method is de-veloped for a semi-linear elliptic Dirichlet problem in this paper. Under the basic assumption (5-18), we analyze the convergence results of this method and show that the Hw1and Lw2errors between the numerical solutions by solv-ing model equation (1-3) with the Chebyshev spectral collocation method and the corresponding true solutions are O(N1-σ) and O(N-σ) respectively, which reflect the full orders of spectral collocation method. Furthermore, when N is sufficiently large, the numerical solution μN which sufficiently approaches a true solution u is unique. The numerical results state that the SEM based on Chebyshev spectral collocation method is more efficient than the traditional SEM based on finite element discretization and two-grid method.
引文
[1]Adimurthi, F. Pacella & S. L. Yadava. Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity, J. Funct. Anal.,113(1993) 318-350.
    [2]Adimurthi, F. Pacella & S. L. Yadava. Characterization of concentration points and L∞-estimates for solutions involving the critical Sobolev exponent, Differ-ential Integral Equations,8(1)(1995) 41-68.
    [3]Adimurthi, G. Mancinni & S. L. Yadava. The role of mean curvature in a semilinear Neumann problem involving the critical Sobolev exponent, Comm. Partial Differential Equations,20(1995) 591-631.
    [4]Agmon, S., A. Douglis & L. Nirenberg. Estimates near the boundary for solu-tions of elliptic partial differential equations satisfying general boundary condi-tions, Comm Pure Appl Math, (Part 1),12(1959) 623-727; (Part 2),17(1964) 35-92.
    [5]Alikakos, N.& M. Kowalczyk. Critical points of a singular perturbation problem via reduced energy and local linking, J. Differential Equations,159(1999) 403-426.
    [6]Allen, S. M.& J. W. Cahn. A microscopic theory for antiphase boundary mo-tion and its application to antiphase domain coarsening. Acta Met all. Mater., 27(1979) 1085-1095.
    [7]Anderson, D. M., G. B. McFadden & A. A. Wheeler. Diffuse-interface methods in fluid mechanics,30(1998) 139-165.
    [8]Ambrosetti, A.& P. Rabinowitz. Dual variational methods in critical point theory and appli cations [J]. Funct. Anal.,14(1973) 327-381.
    [9]Bartsch, T., K. C. Chang & Z. Q. Wang. On the Morse indices of sign changing solutions of nonlinear elliptic problems, Math. Z.233(2000) 655-677.
    [10]Bartsch, T.& Z. Q. Wang. On the existence of sign changing solutions for semilinear Dirichlet problem[J]. Topological Meth. Nonlinear Anal.,7(1996) 115-131.
    [11]Bates, P., E. N. Dancer & J. Shi. Multi-spike stationary solutions of the Cahn-Hilliard equation in higher-dimension and instability, Adv. Differential Equa-tions,4(1999) 1-69.
    [12]Bates, P.& G. Fusco. Equilibria with many nuclei for the Cahn-Hilliard equa-tion, J. Differential Equations,4(1999) 1-69.
    [13]Bates, P.& J. Shi. Existence and instability of spike layer solutions to singular perturbation problems, J. Funct. Anal.,196(2002) 211-264.
    [14]Bernardit, C.& Y. Madayt. Properties of some weighted sobelev spaces and application to spectral approximations, SIAM J. Numer. Anal.,26(1989) 769-829.
    [15]Berestycki, H.& J. C. Wei. On singularly pertuabation problems with robin boundary condtion, Ann. Scuola Norm. Sup. Pisa CI. Sci. (5). Vol II (2003), 199-230.
    [16]Brezis, H.& E. Lieb. A reaction between piontwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc.,88(1983) 486-490.
    [17]Cahn, J. W.& J. E. Hilliard. Free energy of a nonuniform system. I. interfacial free energy, J. Chem. Phys.,28(2005) 258-267.
    [18]Canuto, C., M. Y. Hussaini, A. Quarteroni & T. A. Zang. Spectral methods, Springer,2006.
    [19]Cao, D. M.& T. Kupper. On the existence of multipeaked solutions to a semi-linear Neumann problem, Duke Math. J.,97(1999) 261-300.
    [20]Cerami, G.& J. Wei. Multiplicity of multiple interior spike solutions for some singularly perturbed Neumann problem, International Math. Research Notes, 12(1998) 601-626.
    [21]陈传淼,谢资清.非线性微分方程多解计算的搜索延拓法[M].北京:科学出版社,2005.
    [22]陈传淼.有限元超收敛构造理论[M].长沙:湖南科技出版社,2001.
    [23]Chen, C. M.& Z. Q. Xie. Search extension method for multiple solutions of nonlinear problem, Comp. Math. Appl.,47(2004) 327-343.
    [24]Chen, C. M.& Z. Q. Xie. Analysis of search-extension method for finding mul-tiple solutions of nonlinear problem, Science in China Series A:Mathematics, Jan., Vol.51(2008), No.1,42-54.
    [25]Chen, L. Q. Phase-field models for microstructure evolution. Annual Review of Material Research,32(2002) 113.
    [26]Chipot, M.(editor) Handbook of differential equations:stationary partial dif-ferential equations, Volume 5, Elsevier B.V.,2008.
    [27]Choi,Y. S.& P. J. Mckenna. A mountain pass method for the numerical solutions of semilinear elliptic problems [J]. Nonlinear Anal,20(1993) 417-437.
    [28]Chow, S. N.& R. Lauterbach. A bifurcation theorem for critical points of variational problems, Nonlinear Anal,12(1988) 51-61.
    [29]Chen, X. J., J. X. Zhou & X. Yao. A numerical method for finding multi-ple co-existing solutions to nonlinear cooperative systems, Applied Numerical Mathematics 58(2008) 1614-1627.
    [30]Chen, X. J.& J. X. Zhou. A Local Min-Max-Orthogonal Method for finding multiple solutions to noncooperative elliptic systems, Math. Comp.,79(2010) 2213-2236.
    [31]陈亚浙,吴兰成.二阶椭圆型方程与椭圆型方程组[M].北京:科学出版社.1991.
    [32]Dancer, E. N.& J. Wei. On the effect of domain topology in some singular perturbation problems, Top. Meth. Nonlinear Analysis,11(1998) 227-248.
    [33]Dancer, E. N.& S. Yan. Multipeak solutions for a singular perturbed Neumann problem, Pacific J. Math.,189(1999) 241-262.
    [34]Dancer, E. N.& S. Yan. Interior and boundary peak solutions for a mixed boundary value problem, Indiana Univ. Math. J.48(1999) 1177-1212.
    [35]Del Pino, M.& P. Felmer. Spike-layered solutions of singularly perturbed ellip-tic problems in a degenerate setting, Indiana Univ. Math. J.48(1999) 883-898.
    [36]Del Pino, M., P. Felmer & J. Wei. On the role of mean curvature in some singularly perturbed Neumann problems, SIAM J. Math. Anal.,31(1999) 63-79.
    [37]Del Pino, M., P. Felmer & J. Wei. On the role of distance function in some singularly perturbed problems, Comm. Partial Differential Equations,25(2000) 155-177.
    [38]Ding, Z. H., D. Costa & G. Chen. A high-linking algorithm for sign-changing solutions of demilinear elliptic equations[J]. Nonlinear Anal.,38(1999) 151-172.
    [39]Douglas, T., T. Dupont & M. F. Wheeler. An L∞ estimate and supercon-vergence result for a Galerkin method for elliptic equations based on tensor products of piecewise polynomials [J]. RAIRO Anal. Numer.,8(1974) 61-66.
    [40]Du, Q., C. Liu & X. Wang. Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions, J. Comput. Phys.,212(2005) 757-777.
    [41]Du, Q.& R. A. Nicolaides. Numerical analysis of a continuum model of phase transition, SIAM J. Numer. Anal.,28(5) (1991) 1310-1322.
    [42]Feng, X. B.& A. Prohl. Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows, Numer. Math.,94(1)(2003) 33-65.
    [43]Fu, Y. X.& Q. Y. Dai. Partial differential equations-Positive solutions of the Robin problem for semilinear elliptic equations on annuli, Rend. Lincei Mat. Appl.19 (2008),175-188.
    [44]Gierer, A.& H. Meinhardt. A theory of biological pattern formation, Kyber-netik,12(1972) 30-39.
    [45]Grossi, M., A. Pistoia & J. Wei. Existence of multipeak solutions for a semilin-ear Neumann problem via nonsmooth critical point theory, Calc. Var.,11(2000) 143-175.
    [46]Grossi, M., A. Pistoia & J. Wei. Existence of multipeak solutions for a semi-linear Neumann problem via nonsmooth critical point theory, Cal. Var. Partial Differential Equations,11(2000) 143-175.
    [47]Gui, C. Multipeak solutions for a semilinear Neumann problem, Duke Math. J.,84(1996) 739-769.
    [48]Gui, C.& J. Wei. Multiple interior peak solutions for some singularly perturbed Neumann problems, J. Diff. Eqns.,158(1999) 1-27.
    [49]Gui, C., J. Wei & M. Winter. Multiple boundary peak solutions for some singu-larly perturbed Neumann problems, Ann. Inst. H. Poincare, Anal. Nonlinear, 17(2000) 47-82.
    [50]Gui, C.& J. Wei. On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Can. J. Math.,52(2000) 522-538.
    [51]Iron, D., M. Ward & J. Wei. The stability of spike solutions to the one-dimensional Gierer-Meinhardt model, Physica D 50(2001) 25-62.
    [52]Keller, E. F.& L. A. Segel. Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol.,26(1970) 399-415.
    [53]Kessler. D., R. H. Nochetto & Alfred Schmidt. A posteriori error control for the Allen-Cahn problem:circumventing Gronwall's inequality, M2AN Math. Model. Numer. Anal.,38(1)(2004) 129-142.
    [54]Kim, S. D. & B. C. Shin. Chebyshev weighted norm least-squares spectral methods for the elliptic problem, Journal of Computational Mathematics, Vol., 24(2006) 451-462.
    [55]Kowalczyk, M. Multiple spike layers in the shadow Gierer-Meinhardt system: existence of equilibria and approximate invariant manifold, Duke Math. J. 98(1999) 59-111.
    [56]Lin, C. S.& W. M. Ni. On the diffusing coeffient of a semilinear Neumann problem, Lecture Notes in Math., Vol.1340, Springer, Berline (1986),160-174.
    [57]Lin, C. S., W. M. Ni & I. Takagi. Large amplitude stationary solutions to a chemotaxis system, J. Diff. Eqns., (1988) 1-27.
    [58]Li, Y.& J. Zhou. A minimax method for finding multiple critical points and its applications to semilinear PDE, SIAM J. Sci. Comp.,23(2001) 840-865.
    [59]Li, Y.& J. Zhou. Convergence results of a local minimax method for finding multiple critical points, SIAM J. Sci. Comp.,24(2002) 865-885.
    [60]Li, Y. Y. On a singularly perturbed equation with Neumann boundary condi-tion, Comm. Partial Differential Equations.23(1998) 487-545.
    [61]Li, Y. Y.& L. Nirenberg. The Dirichlet problem for singularly perturbed elliptic equations, Comm. Pure Appl. Math.,51(1998) 1445-1490.
    [62]Meinhardt, H. Models of biological pattern formation, Academic Press, London, 1982.
    [63]Meinhardt, H. The algorithmic beauty of sea shells, Springer, Berlin, Heidel-berg,2nd edition,1998.
    [64]Ni, W. M.& I. Takagi. On the Neumann probem for some semilinear elliptic equations and systems of activator-inhibitor type, Trans. Amer. Math. Soc, 297(1986) 351-368.
    [65]Ni, W. M.& I. Takagi. On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math.,44(1991) 819-851.
    [66]Ni, W. M.& I. Takagi. Locating the peaks of least-energy solutions to a semi-linear Neumann problem, Duke Math. J.,70(1993) 247-281.
    [67]Ni, W. M.& I. Takagi. Point-condensation generated by a reaction-diffusion system in axially symmetric domains, Japan J. Industrial Appl. Math.,12(1995) 327-365.
    [68]Ni, W. M., I. Takagi & J. Wei. On the location and profile of spike-layer solu-tions to singularly perturbed semilinear Dirichlet problems:intermediate solu-tions, Duke Math. J.94(1998) 597-618.
    [69]Ni, W. M.& J. Wei. On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math., 48(1995) 731-768.
    [70]Ni, W. M. Diffusion, cross-diffusion, and their spike-layer steady states, Notices Amer. Math. Soc.,45(1998) 9-18.
    [71]Rabinowitz, P. Minimax method in critical point theory with applications to differential equations, CBMS Regional Conf. Series in Math., No.65, AMS, Providence,1986.
    [72]Shen, J.& X. F. Yang. Numerical approximations of Allen-Cahn and Cahn-Hilliard equations, DCDS-A,28(2010) 1669-1691.
    [73]Struwe, M. Variatinal Methods[M]. A Series of Modern Survbeys in Math. Springer.1996.
    [74]Sobolev, S. L. Some applications of functional analysis in mathematical physics, Third edition, AMS,1991.
    [75]Takagi, I. Point-condensation for a reaction-diffution system, J. Diff. Eqns., 61(1986) 208-249.
    [76]Thomee, V. Galerkin Finite element Methods for Parabolic Problems. Berlin: Springer,1997.
    [77]Wang, Z. Q. On the existence of multiple single-peaked solution for a semilinear Neumann problem, Arch. Rat. Mech. Anal.,120(1992) 375-399.
    [78]Wang, Z. Q. On a superlinear elliptic equation [J]. Ann. Inst.Henri. Poincare, 8(1991) 43-57.
    [79]Wang, Z. Q. & J. Zhou. An efficient and stable method for computing multiple saddle points with symmetries, SIAM J. Num. Anal.,43(2005),891-907.
    [80]Wang, Z. Q.& J. Zhou. A Local Minimax-Newton Method for Finding Critical Points with Symmetries, SIAM J. Num. Anal.,42(2004),1745-1759.
    [81]Wei, J. On the boundary spike layer solutions of singularly perturbed semilinear Neumann problem, J. Diff. Eqs.,134(1997) 104-133.
    [82]Ward, M. J.& J. Wei. Asymmetric spike patterns for the one-dimensional Gierer-Meinhardt model:equilibria and stability, Europ. J. Appl. Math., 13(2002) 283-320.
    [83]Ward, M. J.& J. Wei. Hopf bifurcations and oscillatory instabilities of spike solutions for the one-dimensional Gierer-Meinhardt model, J. Nonlinear Sci., 13(2003) 209-264.
    [84]Ward, M. J.& J. Wei. Hopf bifurcation of spike solutions for the shadow Gierer-Meinhardt model, European J. Appl. Math.,14(2003) 677-711.
    [85]Wei, J. On the boundary spike layer solutions of singularly perturbed semilinear Neumann problem, J. Diff. Eqs.,134(1997) 104-133.
    [86]Wei, J.& M. Winter. Stationary solutions for the Cahn-Hilliard equation, Ann. Inst. H. Poincare Anal. Non Lineaire,15(1998) 459-492.
    [87]Wei, J. On the construction of single-peaked solutions to a singularly perturbed semilinear Dirichlet problem, J. Differential Equations,129(1996) 315-333.
    [88]Wei, J. "Point-condensation generated by the Gierer-Meinhardt system:a brief survey" in New Trend In Partial Differential Equations 2000, ed. Y. Morita, H. Ninomiya, E. Yanagida, and S. Yotsutani,2000 46-59.
    [89]Wei, J.& M. Winter. Multiple boundary spike solutions for a wide class of singular perturbation problems, J. London Math. Soc.,59(1999) 585-606.
    [90]Wei, J.& M. Winter. On the two-dimensional Gierer-Meinhardt system with strong coupling, SIAM J. Math. Anal.,30(1999) 1241-1263.
    [91]Wei, J.& M. Winter. Spikes for the two-dimensional Gierer-Meinhardt system: The strong coupling case, J. Differential Equations,178(2002) 478-518.
    [92]Wei, J.& M. Winter. Spikes for the two-dimensional Gierer-Meinhardt system: The weak coupling case, J. Nonlinear Science,11(2001) 415-458.
    [93]向新民.谱方法的数值分析[M].北京:科学出版社.2000.
    [94]Xie, Z. Q., C. M. Chen & Y. Xu. An improved search-extension method for com-puting multiple solutions of semilinear PDEs, IMA J. Numer. Anal.,25(2005) 549-576.
    [95]Yang, X., J. J. Feng, C. Liu & J. Shen. Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method, J. Comput. Phys.,218(2006) 417-428.
    [96]Yang, Z. H., Z. X. Li & H. L. Zhu. Bifurcation method for solving multiple positive solutions to Henon equation, Science in China Series A:Mathematics, Vol.51, No.12(2008) 2330-2342.
    [97]Zhou, J. Instability analysis of saddle points by a local minimax method, Math. Comp.,74(2005) 1391-1411.
    [98]Zhou, J. Global sequence convergence of a local minimax method for finding multiple solutions in Banach spaces, Numerical Functional Analysis and Opti-mization,32(12)(2011) 1365-1380.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700