Th17细胞及相关因子在稳定期慢性阻塞性肺疾病患者肺部的表达及意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分肺功能正常吸烟者和慢性阻塞性肺疾病患者肺组织中白细胞介素17的表达及意义
     目的探讨白细胞介素17(IL-17)在肺功能正常吸烟者和慢性阻塞性肺疾病(COPD)患者肺部炎症反应发生机制中的作用。
     方法将需手术治疗的周围型肺癌患者分为肺功能正常非吸烟组(NS组,10例)、肺功能正常吸烟组(S组,13例)、吸烟COPD稳定期组(COPD组,10例)。于手术切除标本选取距肺癌病灶5~8cm处的新鲜正常肺组织,酶联免疫吸附试验(ELASA)检测各组肺组织匀浆IL-17含量,HE和维多利亚蓝+范吉逊染色检测各组平均肺泡面积、小气道总病理积分和肺腺泡肌型动脉(MA)管壁厚度,免疫组织化学方法检测IL-17+及CD4+、CD8+T细胞在肺泡壁、小气道壁及MA管壁的表达,分析IL-17表达与CD4+、CD8+T细胞以及与肺实质病理改变和肺功能指标的相关关系。
     结果NS组、S组和COPD组肺组织匀浆IL-17含量分别为6.1(3.7~12.4)、9.7(3.5~69.7)和22.7 (7.0~114.4) pg/mg, COPD组明显高于明显NS组(P=0.000),COPD组明显高于S组(P=0.036),S组明显高于NS组(P=0.042);平均肺泡面积分别为(50708±14125)、(106517±13851)和(152344±43783)μm2,小气道总病理积分分别为(49±10)、(101±34)和(163±36)分,MA管壁厚度分别为(119±11)、(139±25)和(172±28)μm,S组和COPD组均明显高于NS组(P<0.05,P<0.01),COPD组明显高于S组(P<0.05, P<0.01)。IL-17主要表达于肺实质浸润的炎症细胞,S组和COPD组肺泡壁、小气道壁及MA管壁IL-17+T细胞均明显多于NS组(均尺0.01),COPD组明显多于S组(均P<0.05)。IL-17表达与平均肺泡面积(r=0.561)、MA管壁厚度(r=0.682)、小气道病理总积分(r=0.425)呈显著正相关(均P<0.05)。肺泡壁、小气道壁和MA管壁中IL-17表达与CD4+、CD8+细胞呈显著正相关(P<0.05,P<0.01)。肺组织匀浆IL-17含量与第1秒用力呼气容积占预计值百分比呈显著负相关(r=-0.471,P=-0.006)。
     结论IL-17在肺功能正常吸烟者和COPD患者肺组织中表达增高,与肺CD4+、CD8+T细胞及肺组织破坏、气道炎症、肺动脉重构和气流受限密切相关,提示IL-17在吸烟者和COPD患者肺部炎症反应发生机制中有促炎作用。
     第二部分辅助T细胞17在肺功能正常吸烟者及COPD患者肺部组织中的活化、分布及作用
     目的观察肺功能正常吸烟者和COPD患者肺组织是否存在活化的辅助T细胞(Th)17即CD4+IL-17+细胞,其活化程度以及与IL-17之间的相关关系,探讨肺实质中IL-17是否来源于Th17细胞。分析CD4+IL-17+细胞在肺部的表达及分布并与肺部病理、肺功能指标改变之间做相关分析关系,探讨Th17细胞在COPD炎症反应中的作用。
     方法实验病例入选及分组同第一章。荧光定量聚合酶链式反应(PCR)方法检测肺组织匀浆Th17细胞特异性转录因子ROR gamma t(维甲酸相关孤独受体γt)的RNA表达水平,蛋白质印迹(Westerm blot)方法检测肺组织匀浆ROR gamma t蛋白表达水平,免疫荧光双标方法检测Th17细胞在肺泡壁、小气道壁、肺小动脉壁的表达。分析肺组织匀浆中ROR gammat RNA表达水平与IL-17蛋白水平及FEV1占预计值百分比相关性;分析肺组织中Th17细胞与肺气肿、小气道病理总积分、肺小动脉管壁厚度,及与IL-17+、CD4+T淋巴细胞之间相关性。
     结果(1)荧光定量PCR结果显示,肺组织匀浆ROR gammat的mRNA表达水平,在NS组为(2.685±0.886),S组(8.564±1.419),COPD组(10.158±1.574),三组间两两比较有显著性差异(P<0.01或P<0.05)以COPD最为显著。(2) Western blot结果显示肺组织匀浆ROR gamma t蛋白表达水平在NS组(0.369±0.094),S组(0.614±0.241),COPD组90.886±0.184),三组间两两比较有显著性差异(P<0.01或P<0.05),以COPD组最为显著。(3)免疫荧光双标结果显示,CD4+IL-17+细胞在肺泡壁的表达,S组为(25±7)个/cm,COPD组为(27±4)个/cm较NS组(14±5)个/cm显著性增强(均P<0.01),但COPD组与S组比较无显著性差异(P>0.05)。在小气道壁的表达,COPD组为(220[81,422])个/mm2较S组(121[22,170])个/mm2及NS组(54[16,258])个/mm2表达增强(P<0.05),S组较NS组表达有增强的趋势,但无显著性差异(P>0.05)。NS组、S组、COPD组三组在血管壁的表达有增强的趋势但无显著性差异(均P>0.05)。(4)肺组织匀浆中ROR gammat RNA与FEV1占预计值百分比呈显著负相关(r=-0.643, p= 0.000), ROR gammat蛋白含量与FEV1占预计值百分比呈显著负相关(r=-0.539,p=0.002),肺组织IL-17蛋白含量与ROR gammat RNA含量呈显著正相关(r=0.678,p=0.000)。(5)肺泡壁中CD4+IL-17+细胞数与平均肺泡面积呈显著正相关(r=0.738,p=0.000),在气道壁中Th17细胞数与气道总病理评分呈显著正相关(r=0.476,p=0.034),在MA管壁中的Th17细胞数与血管壁厚度无显著性相关(r=0.355,p=0.125)。(6)肺泡壁中CD4+IL-17+细胞数与IL-17+、CD4+T淋巴细胞之间相关系数(分别r=0.584,0.646,均P<0.01),气管壁中CD4+IL-17+细胞数与IL-17+、CD4+T淋巴细胞之间相关系数(分别r=0.510,0.518,均P<0.05),肺小动脉壁CD4+IL-17+细胞数与IL-17+淋巴细胞之间相关系数(r=0.517,P<0.05),与CD4+T淋巴细胞无显著性相关(r=0.200,p=0.399)。
     结论Th17细胞特异性转录因子ROR gammat mRNA及蛋白水平在正常吸烟者的肺组织已经开始增高,COPD患者更为显著,并与IL-17蛋白含量密切相关;Th17细胞表达增强并与IL-17+细胞、CD4+T淋巴细胞及肺组织破坏、气道和肺动脉炎症与重构、气流受限密切相关。结果提示CD4+T淋巴细胞参与吸烟者和COPD患者肺部炎症免疫反应,肺组织中Th17处于增殖活化状态,并分泌IL-17参与并促进肺部炎症反应。
     第三部分Th17细胞及相关因子参与肺功能正常吸烟者和COPD患者肺部炎症的相关机制
     目的观察Th17细胞活化的上游因子IL-23受体(IL-23R), CC趋化因子受体6(CCR6)及其分泌的相关因子IL-17、IL-21在肺组织的表达及意义,探讨Th17细胞在COPD肺部炎症中活化及放大炎症反应的可能机制。
     方法实验病例入选及分组同第一章。肺组织蜡块病理切片免疫组化技术检测肺泡壁1L-17, IL-23R, CCR6的表达,并分析三者之间及与Th17细胞之间的相关性。荧光定量PCR检测肺组织匀浆IL-21mRNA、1L-17mRNA含量,并分析二者之间,以及与RORγtmRNA和FEV1的相关关系。分析肺泡壁、气道壁、肺动脉壁Th17细胞与CD8+T细胞的相关性。
     结果(1)在肺泡壁中,NS组、S组、COPD组IL-23R+细胞数分别为(46±7)个/cm, (60±15)个/cm, (65±12)个/cm,S组和COPD组与NS组比较,有显著性差异(P<0.05或P<0.01),COPD组较S组有增高趋势,但无显著性差异(P>0.05)。在肺泡壁中,NS组、S组、COPD组CCR6+细胞数分别为(42±6)个/cm, (56±8)个/cm, (62±8)个/cm,S组和COPD组与NS组比较,有显著性差异(P<0.05或P<0.01),COPD组较S组有增高趋势,但无显著性差异(P>0.05)。(2)荧光定量PCR检测结果显示,肺组织匀浆中,NS组、S组、COPD组三组的IL-21mRNA分别为(4.784±2.282),(46.312±15.463),(84.804±21.884),三组间两两比较有显著性差异(均P<0.01),COPD组表达增高最明显。NS组、S组、COPD组三组的IL-17mRNA分别为(3.121±1.262),(26.434±7.529),(44.929±15.303),三组间两两比较有显著性差异(P<0.01),COPD组表达增高最明显。(3)肺泡壁中,CD4+IL-17+细胞数与IL-17+细胞数、IL-23R+细胞数、CCR6+细胞数有显著正相关(r分别为0.584,0.422,0.670,P<0.01或P<0.05)。IL-17+细胞数与IL-23R+细胞数无显著性相关(r=0.302,p=0.105)。IL-23R+细胞数与CCR6+细胞数有显著正相关(r=0.572,p=0.001),IL-17+细胞数与CCR6+细胞数有显著正相关(r=0.508,p=0.004)。(4)肺泡壁中CD4+IL-17+细胞数与CD8+T淋巴细胞之间相关系数为(r=0.664,P<0.01),气管壁中CD4+IL-17+细胞数与CD8+T淋巴细胞之间相关系数为(r=0.491, P<0.05),肺小动脉壁CD4+IL-17+细胞数与CD8+T淋巴细胞之间相关系数为(r=0.518,P<0.05)。(5)肺组织匀浆中IL-21mRNA与RORγtmRNA含量呈显著正相关(r=0.757,p=0.000),R0RγtmRNA与IL-17mRNA含量呈显著正相关(r=0.802,p=0.000),IL-21mRNA与IL-17mRNA含量呈显著正相关(r=0.746,p=0.000)。(6)肺组织匀浆中IL-21mRNA、1L-17mRNA与FEV1均呈显著负相关(r分别为-0.694,-0.725,均p=0.000)。
     结论肺功能正常吸烟者和COPD患者肺泡壁中IL-17、IL-23R、CCR6表达显著增高并与Th17细胞数呈显著正相关,在肺泡壁、气道、肺动脉中Th17细胞数与CD8+淋巴细胞均有显著正相关,Th17细胞相关因子IL-21、1L-17在肺组织匀浆中RNA转录水平与RORγtmRNA之间均呈显著正相关,与气流受限密切相关。结果提示肺功能正常吸烟者和COPD患者中Th17通过CCR6及IL-23途径趋化浸润到肺实质并增殖活化,分泌工L-17、IL-21等细胞因子,调节中性粒细胞及CD8+T淋巴细胞共同发挥致炎及放大炎症的作用。
PARTⅠ
     Interleukin-17 Expression and Significance in Normal Lung Function Smokers and Chronic Obstructive Pulmonary Disease Patients
     Objective To study the pulmonary inflammatory mechanism of interleukin 17 (IL-17) in the normal lung function smokers and chronic obstructive pulmonary disease (COPD) patients.
     Methods The peripheral lung cancer patients which need surgical treatment were divided into normal lung function non-somking group (NS group, 10 cases), normal lung function and smoking group (S group,13 cases), smoking with stable COPD group (COPD group,10 cases). Select the fresh normal lung tissue from the surgical specimens whice is 5cm over from the lung cancer resection, then detected the lung tissue IL-17 levels with Enzyme-linked immunosorbent assay (ELISA), the average alveolar area, the total integration of small airway pathologyacinar, and the pulmonary muscular artery (MA) wall thickness by HE and Victoria blue-van Gieson's stain, the IL-17+cells and CD4+, CD8+lymphocytes in the alveolar walls, small airways and lung muscular artery (MA) by immunohistochemistry. Analyze the relationships between IL-17 level, pathological morphology of lung parenchyma, small airway, pulmonary artery reconstruction and pulmonary function.
     Results The IL-17 levels in lung tissue of NS group, S group and COPD group were 6.1 (3.7~12.4),9.7 (3.5~69.7) and 22.7 (7.0~114.4) pg/mg respectively. The COPD group was significantly higher than the NS group (P =0.000) and the S group (P=0.036), the S group was significantly higher than the NS group (P=0.042). The average alveolar area were (50708±14125), (106517±13851) and (152344±43783)μm2,the total integration of small airway pathology were(49±10), (101±34) and (163±36), the MA wall thickness were (119±11),(139±25) and (172±28)μm. The S group and the COPD group were significantly higher than the NS group (P<0.05, P<0.01), and the COPD group was significantly higher than the S group (P<0.05, P<0.01).IL-17 was mainly expressed in the lung infiltration of inflammatory cells, IL-17 of the S group and COPD group in the alveolar walls, small airway wall and the MA wall were significantly higher than the NS group, and the COPD group was significantly higher than NS group (P<0.05). IL-17+cells were positively correlated with the average alveolar area in the lung parenchyma (r=0.561, P<0.01), the pulmonary artery wall thickness in the MA(r=0.682, P<0.01), and the pathological score in the small airways (r=0.425, P<0.05). IL-17+cells of the lung parenchyma, small airways and the MA, were positively correlated with CD4+and CD8+ lymphocytes in the lung(P<0.05, P<0.01). The levels of IL-17 in lung homogenate tissue showed a negative correlation with the FEV1 percentage of predicted value (r=-0.471, P=0.006).
     Conclusions The IL-17 was increased in the lung tissues of normal lung function smokers and COPD patients, and was closely related to CD4+and CD8+lymphocytes in the lung, lung parenchyma destruction, pulmonary inflammation, pulmonary artery reconstruction and airflow limitation. All of these suggested that IL-17 playing an important pro-inflammatory role in COPD.
     PARTⅡ
     The Activation, Distribution and Contribution of Th17 cell in Normal Lung Function Smokers and Chronic Obstructive Pulmonary Disease Patients
     Objective To observe the normal lung function smokers and COPD patients lung tissue whether they are supporting the existence of activated Th 17 cells, and the activation relationship with IL-17,then explore the lung parenchyma IL-17 whether it derived from Thl7 cells, and analyzed CD4+IL-17+cells expression and distribution in the lung, the correlation with the pulmonary pathology and lung function changes, explored the role that Th17 cell play on the COPD Pulmonary inflammation.
     Methods Test cases selected and grouped as the first chapter. Measured lung homogenates RORγt (retinoic acid receptor-related orphanγt) mRNA expression levels by Quantitative PCR, detected lung tissue ROR gamma t protein expression levels by Western blot, detected Th17 cells expression in the alveolar walls, small airway wall, pulmonary arterioles by double immunofluorescence. The relevance of ROR gammat RNA expression in the lung tissues was analyzed between IL-17 protein levels and FEV1 percentage of predicted value. The correlationship of Th17 cells in lung tissue was Analyzed with emphysema, small airway pathology total score, pulmonary artery wall thickness, IL-17+cells and CD4+T lymphocytes.
     Results (1)The results of Quantitative PCR showed that, the mRNA expression level of lung tissue ROR gammat in the NS group was (2.685±0.886), the S group was (8.564±1.419), the COPD group was (10.158±1.574), compared with each group, the three groups had significant difference (P<0.01 or P<0.05), and the COPD was the most significant. (2) The result of Western blot showed that the ROR gammat protein expression levels in the lung tissue of the NS group was (0.369±0.094), the S group was (0.614±0.241), the COPD group was (90.886±0.184), compared with each other the three groups had significant differences (P<0.01 or P<0.05), and the COPD group was the most significant. (3)The result of Immunofluorescence double labeling showed that the expression of CD4+IL-17+cells in the alveolar wall, the S group was (25±7) cells/cm,the COPD group was (27±4) cells/cm compared with NS group (14±5) cells/cm, the COPD group had a significantly increased (all P<0.01), but the COPD group and the S group showed no significant difference (P> 0.05).In small airway wall the expression of COPD group (220 [81,422])cells/ mm2 was stronger than the expression of S group (121 [22,170]) cells/mm2 and NS group (54 [16,258]) cells/mm2 (P<0.05), the tendency which the expression of CD4+IL-17+cells was more in S group than that in NS group exist but without significant difference (P>0.05). (4) The ROR gammat RNA in the Lung tissues had a significant negative correlation with FEV1 percentage of the predicted value (r=-0.643, p= 0.000), the ROR gammat protein content and the FEV1 percentage of the predicted value was significant negatively correlated (r =-0.539, p= 0.002),but the lung tissue IL-17 protein and the ROR gammat RNA content was significant positively correlated (r=0.678,p=0.000). (5) The CD4+IL-17+cells in the alveolar wall was significant positively correlated with the mean alveolar area (r= 0.738, p= 0.000), in the airway wall the Th17 cells and airway total pathology score was significantly correlated (r= 0.476, p= 0.034), but the Th17 cells of MA wall showed no significant correlation with vascular wall thickness (r=0.355, p=0.125).(6) In alveolar wall, the CD4+IL-17+cells and the IL-17+lymphocyte cells show positive correlation (r= 0.584, P<0.01), and the CD4+lymphocyte cells (r= 0.646, P<0.01) In small airway wall, the CD4+IL-17+cells and the IL-17+lymphocyte cells show positive correlation (r= 0.510, P<0.05), and the CD4+lymphocyte cells (r= 0.518, P<0.05). In the pulmonary artery wall, the CD4+IL-17+cells and the IL-17+lymphocyte cells show positive correlation (r= 0.517,P<0.05).but no significant correlation with the CD4+lymphocyte cells (r= 0.200, p= 0.399)
     Conclusions The Th17 cell-specific transcription factor ROR gammat mRNA and protein levels in lung tissue of normal smokers has begun to increase,and the COPD patients was more pronounced and closely related with IL-17 protein.Th17 cells and IL-17+cells, CD4+T lymphocytes were closely related to lung tissue destruction, airway and pulmonary inflammation and remodeling, airflow limitation. The results suggest that Th17 in the lung tissue of smokers and COPD patients was in the proliferation and activation state, which secreted the IL-17 participate and promote the lung inflammation.
     PART III
     The Pulmonary Inflammation Mechanism of Th17 Cells and Related Factors Involved in Normal Lung Function Smokers and COPD Patients
     Objective To investigate the expression and significance of upstream factor IL-23R and CCR6 which was activated by the Thl7 cells, and related factors IL-21 and IL-17 in lung tissue, and explored Thl7 activation and the possible mechanism of inflammatory amplification.
     Methods Test cases selected and grouped as the first chapter. Detected the expression of alveolar wall IL-17, IL-23R and CCR6 by immunohistochemical, analyzed each other relationship among IL-17, IL-23R and CCR6, and their correlation between Th17 cells. Detected the IL-21 mRNA, 1L-17mRNA content in the lung tissue by quantitative PCR, and analyzed the relationship between the two, as well as the correlation between RORγtmRNA and FEV1. Analyzed the correlation between Thl7 cells and CD8+T cells in alveolar wall, small airway wall and pneumono-arteriola wall.
     Results (1) IL-23R+cells in alveolar wall of the NS group, S group and COPD groups were (46±7), (60±15) and (65±12) cells/cm respectively, the S group and the COPD group compared with the NS group, there were significant differences (P<0.05 or P<0.01), COPD group tended to increase when compared with S group, but had no significant difference (P> 0.05). In the alveolar wall, the CCR6+cells of the NS group, S group and COPD group were (42±6), (56±8) and (62±8) cells/cm respectively, and there were significant differences when the S group and the COPD group compared with the NS group (P<0.05 or P<0.01), the COPD group were in the trend of increasing than the S group, but had no significant difference (P>0.05). (2) Quantitative PCR results showed that, IL-21mRNA in NS group, S group, COPD group were respectively (4.784±2.282), (46.312±15.463) and (84.804±21.884) in lung homogenates, compared with each other in the three groups,there were significant difference (all P<0.01), and the expression of COPD group increased most obvious.The IL-17mRNA in NS Group, S Group and COPD group were respectively (3.121±1.262), (26.434±7.529), (44.929±15.303), compared with each among the three groups there were significantly different (all P<0.01), and the expression of COPD group increased most obvious. (3)In the alveolar wall, CD4+IL-17+cells had a significant positive correlation with IL-17+cells, IL-23R+cells and CCR6+cells (r=0.584,0.422, 0.670, P<0.01 or P<0.05). IL-17+cells had no correlation with IL-23R+cells (r =0.302, p=0.105). IL-23R+cells and CCR6+cells had a significant positive correlation (r= 0.572, p= 0.001),and IL-17+cells and CCR6+cells had a significant positive correlation too (r=0.508, p=0.004). (4) In the alveolar wall, the correlation coefficient between CD4+IL-17+cells and CD8+T lymphocytes was (r=0.664, P<0.01); in the airway wall, the correlation coefficient between CD4+IL-17+cells and CD8+T lymphocytes was (r= 0.491, P<0.05); in the pulmonary artery wall, the correlation coefficient between CD4+ IL-17+cells and CD8+T lymphocytes was (r= 0.518, P<0.05). (5)In the lung homogenate, IL-21mRNA and RORγt mRNA content had a significant positive correlation (r=0.757,p=0.000), RORγt mRNA and IL-17mRNA content had a significant positive correlation (r=0.802,p=0.000), IL-21mRNA and IL-17mRNA content had a significant positive correlation (r= 0.746, p= 0.000). (6) In the lung tissue, IL-21mRNA, IL-17mRNA and FEV1 showed a significant negative correlation (r=-0.694,-0.725, respectively, all p=0.000).
     Conclusions In the alveolar wall of normal lung function smokers and COPD patients, the expression of IL17, IL-23R and CCR6 were significantly increased, and showed a significant positively relationship with Th17 cells. In the alveolar wall, airway and pulmonary artery, there was alse a significant positive correlation between Th17 cells and CD8+lymphocytes.The RNA transcription of Th17 cell-related factor IL-21, IL-17 in lung homogenates showed a significant positive correlation between RORγtmRNA, and was closely related with airflow limitation. The results suggest that in the normal lung function smokers and COPD patients, Th17 chemotactically invaded the lung parenchyma to proliferated and activated through CCR6 and IL-23,secreted IL-17 and IL-21 cytokines, regulating neutrophils and CD8+T lymphocytes, cause and enlarge the inflammation.
引文
[1]Chorostowska-Wynimko J. The role of inflammation in the pathogenesis of chronic obstructive pulmonary disease. Pol Merkur Lekarski 2004,17(99):203-207
    [2]Anthonisen NR, Connett JE, Murray RP. Smoking and lung function of Lung Health Study participants after 11 years. Am J Respir Crit Care Med 2002,166(5):675-679
    [3]Barnes PJ, Shapiro SD, Pauwels RA. Chronic obstructive pulmonary disease:molecular and cellular mechanisms. Eur Respir J 2003,22(4):672-688
    [4]Cosio MG, Majo J, Cosio MG. Inflammation of the airways and lung parenchyma in COPD:role of T.cells. Chest 2002,121(5 Suppl):160S-165S
    [5]O'Shaughnessy TC, Ansari TW, Barnes NC, et al. Inflammation in bronchial biopsies of subjects with chronic bronchitis:inverse relationship of CD8+T lymphocytes with FEV1. Am J Respir Crit Care Med 1997,155(3):852-857
    [6]Hogg JC, Chu F, Utokaparch S, et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 2004,350(26):2645-2653
    [7]Barnes PJ. Small airways in COPD.N Engl J Med 2004,350(26):2635-2637
    [8]Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 2005,6(11):1133-1141
    [9]Ouyang W, Kolls JK, Zheng Y. The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 2008,28(4):454-467
    [10]Zhou L, Ivanov, Ⅱ, Spolski R, et al. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 2007,8(9):967-974
    [11]Bullens DM, Truyen E, Coteur L, et al. IL-17 mRNA in sputum of asthmatic patients:linking T cell driven inflammation and granulocytic influx? Respir Res 2006,7:135
    [12]Harrison OJ, Foley J, Bolognese BJ, et al. Airway infiltration of CD4+ CCR6+Th17 type cells associated with chronic cigarette smoke induced airspace enlargement. Immunol Lett 2008,121(1):13-21
    [13]Di Stefano A, Caramori G, Gnemmi I, et al. T helper type 17-related cytokine expression is increased in the bronchial mucosa of stable chronic obstructive pulmonary disease patients. Clin Exp Immunol 2009,157(2):316-324
    [14]Kawaguchi M, Adachi M, Oda N, et al. IL-17 cytokine family. J Allergy Clin Immunol 2004,114(6):1265-1273; quiz 1274
    [15]Korn T, Bettelli E, Gao W, et al. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 2007,448(7152):484-487
    [16]Elsaesser H, Sauer K, Brooks DG. IL-21 is required to control chronic viral infection. Science 2009,324(5934):1569-1572
    [17]Saetta M, Mariani M, Panina-Bordignon P, et al. Increased expression of the chemokine receptor CXCR3 and its ligand CXCL10 in peripheral airways of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2002,165(10):1404-1409
    [18]Maeno T, Houghton AM, Quintero PA, et al. CD8+T Cells are required for inflammation and destruction in cigarette smoke-induced emphysema in mice. J Immunol 2007,178(12):8090-8096
    [19]Motz GT, Eppert BL, Sun G, et al. Persistence of lung CD8 T cell oligoclonal expansions upon smoking cessation in a mouse model of cigarette smoke-induced emphysema. J Immunol 2008,181(11):8036-8043
    [1]Cosio MG, Saetta M, Agusti A. Immunologic aspects of chronic obstructive pulmonary disease. N Engl J Med 2009,360(23):2445-2454
    [2]O'Shaughnessy TC, Ansari TW, Barnes NC, et al. Inflammation in bronchial biopsies of subjects with chronic bronchitis:inverse relationship of CD8+T lymphocytes with FEV1. Am J Respir Crit Care Med 1997,155(3):852-857
    [3]Hogg JC, Chu F, Utokaparch S, et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 2004,350(26):2645-2653
    [4]Barnes PJ. Small airways in COPD. NEngl J Med 2004,350(26):2635-2637
    [5]Weaver CT, Harrington LE, Mangan PR, et al. Th17:an effector CD4 T cell lineage with regulatory T cell ties. Immunity 2006,24(6):677-688
    [6]Cruz A, Khader SA, Torrado E, et al. Cutting edge:IFN-gamma regulates the induction and expansion of IL-17-producing CD4 T cells during mycobacterial infection. J Immunol 2006,177(3):1416-1420
    [7]Stark MA, Huo Y, Burcin TL, et al. Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity 2005,22(3):285-294
    [8]Moseley TA, Haudenschild DR, Rose L, et al. Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev 2003,14(2):155-174
    [9]Di Stefano A, Caramori G, Gnemmi I, et al. T helper type 17-related cytokine expression is increased in the bronchial mucosa of stable chronic obstructive pulmonary disease patients. Clin Exp Immunol 2009,157(2):316-324
    [10]Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis, Management and Prevention of Chronic Obstructive Pulmonary Disease. NHLBI/WHO workshop report Bethesda, National Heart, Lung and Blood Institute,April 2001,NIH Publication No 2701:1-100.Last update 2005. http://www.goldcopd.com (accessibility verified March 2020,2010).
    [11]Cosio M, Ghezzo H, Hogg JC, et al. The relations between structural changes in small airways and pulmonary-function tests. N Engl J Med 1978,298(23):1277-1281
    [12]钟小宁,郭韶梅.慢性支气管炎与肺气肿大鼠肺血管炎症的实验研究.中华结核和呼吸杂志,2006,29(7):435-439
    [13]Peinado VI, Barbera JA, Abate P, et al. Inflammatory reaction in pulmonary muscular arteries of patients with mild chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1999,159(5 Pt 1):1605-1611
    [14]Saetta M, Baraldo S, Corbino L, et al. CD8+ve cells in the lungs of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1999,160(2):711-717
    [15]Barnes PJ. Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol 2008,8(3):183-192
    [16]Harrison OJ, Foley J, Bolognese BJ, et al. Airway infiltration of CD4+ CCR6+Thl7 type cells associated with chronic cigarette smoke induced airspace enlargement. Immunol Lett 2008,121(1):13-21
    [17]Zhou L, Ivanov, Ⅱ, Spolski R, et al. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 2007,8(9):967-974
    [18]Korn T, Bettelli E, Gao W, et al. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 2007,448(7152):484-487
    [19]Elsaesser H, Sauer K, Brooks DG. IL-21 is required to control chronic viral infection. Science 2009,324(5934):1569-1572
    [20]Maeno T, Houghton AM, Quintero PA, et al. CD8+T Cells are required for inflammation and destruction in cigarette smoke-induced emphysema in mice. J Immunol 2007,178(12):8090-8096
    [1]Ferretti S, Bonneau O, Dubois GR, et al. IL-17,produced by lymphocytes and neutrophils, is necessary for lipopolysaccharide-induced airway neutrophilia:IL-15 as a possibletrigger. J Immunol 2003; 170:2106-12.
    [2]Lockhart E, Green AM, Flynn JL. IL-17 production is dominated by gammadelta T cells rather than CD4 T cells during Mycobacteriumtuberculosis infection. J Immunol 2006; 177:4662-9.
    [3]Zhou Q, Desta T, Fenton M,et al.Cytokine profiling of macrophages exposed to Porphyromonas gingivalis, its lipopolysaccharide, or its FimA protein. Infect Immun 2005;73:935-43.
    [4 Moseley TA, Haudenschild DR, Rose L, et al. Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev,2003,14:155-74.
    [5]Ivanov II, McKenzie BS, Zhou L, et al.The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatoryIL-17+ T helper cells. Cell 2006;126:1121-33.)
    [6]Kolls JK, Linden A. Interleukin-17 family members and inflammation. Immunity.2004,21(4):467-76.
    [7]Park H, L i Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by p roducing interleukin 17. Nat Immunol,2005, 6:1133-1141.
    [8]Kim V, Rogers TJ, Criner GJ. New concepts in the pathobiology of chronic obstructive pulmonary disease. Proc Am Thorac Soc.2008 May 1; 5(4): 478-485.
    [1]Lee SH, Goswami S, Grudo A,et al.Goodnight-White S, et al Antielastin autoimmunity in tobacco smoking-induced emphysema. Nat Med, 2007;13(5):567-569.
    [2]Wang Z, Zheng T, Zhu Z, et al. Interferongamma induction of pulmonary emphysema in the adult murine lung. J Exp Med 2000; 192(11):1587-1600.
    [3]Hirota K, Yoshitomi H, Hashimoto M, et al. Preferential recruitment of CCR6-expressing Th17 cells to inflamedjoints via CCL20 in rheumatoid arthritis and its animal model. J Exp Med 2007;204(12):2803-2812.
    [4]Bracke KR, D'hulst AI, Maes T, et al. Cigarette smoke-induced pulmonary inflammation and emphysemaare attenuated in CCR6-deficient mice. J Immunol 2006;177(7):4350-4359.
    [5]Wei L, Laurence A, Elias KM, et al. IL-21 Is Produced by Th17 Cells and Drives IL-17 Production in a STAT3-dependent Manner. The Journal of Biological Chemistry,2007,282:34605-34610.
    [6]Zhou L, Ivanov II, Spolski R, et al. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol,2007,8:967-974.
    [7]Baumgartand DC, Sandborn WJ. Inflammatory bowel disease:clinical aspects and established and evolving therapies. Lancet,2007, 369(9573):1641-1657
    [8]O'Shaughnessy TC, Ansari TW, Barnes NC. Inflammation in bronchial biopsies of subjects with chronic bronchitis:inverse relationship of CD8+ Tlymphocytes with FEV1. Am J Respir Crit Care Med,1997,155 (3):852
    [9]Harrisona OJ, Foley J, Bolognesea BJ. Airway infiltration of CD4+CCR6+ Thl7 type cells associated with chronic cigarette smoke induced airspace enlargement. Immunology Letters,2008,121(1):13-21.
    [10]Langrish CL, McKenzie BS, Wilson NJ, de Waal Malefyt R, Kastelein RA, Cua DJ. IL-12 and IL-23:master regulators of innate and adaptive immunity. Immunol Rev,2004;202:96-105
    [11]Laurence A, O'Shea JJ. T(H)-17 differentiation:of mice and men. Nat Immunol,2007;8:903-905.
    [12]Rogers, A. V., Adelroth, E., Hattotuwa, K., Dewar, A.&Jeffery, P. K. Bronchial mucosal dendritic cells insmokers and ex-smokers with COPD: an electron microscopic study. Thorax,2008,63:108-114.
    [13]Kawaguchi M, Adachi M, Oda N, et al. IL-17 cytokine family. J Allergy Clin Immunol 2004,114(6):1265-1273
    [14]Deenick EK, Tangye SG. Autoimmunity:IL-21:a new player in Th17-cell differentiation.Immunol Cell Biol 2007;85:503-505.
    [15]Korn T, Bettelli E, Gao W, et al. IL-21 initiates an alternative pathway to induce proinflammatory T(H) 17 cells. Nature,2007,448(7152):484-487.
    [16]Kerry A. Casey and Matthew F. Mescher, IL-21 Promotes Differentiation of Naive CD8 T Cells to a Unique Effector Phenotype, J. Immunol. 2007;178:7640-7648
    [17]H Elsaesser, K Sauer, DG Brooks. IL-21 Is Required to Control Chronic Viral Infection. Science,2009,324(5934):1569-1572.
    [18]Majo, J., Ghezzo, H.& Cosio, M. G. Lymphocytepopulation and apoptosis in the lungs of smokers andtheir relation to emphysema. Eur. Respir. J. 17,946-953(2001).
    [19]Maeno T, Houghton AM, Quintero PA, et al. CD8+T cells are required for inflammation and destruction in cigarette smoke-induced emphysema in mice. J Immunol,2007,178(12):8090-8096.
    [20]Liang, S.C. Long AJ, Bennett F, et al. An IL-17F/A heterodimer protein is produced by mouse Thl7 cells and induces airway neutrophil recruitment. J Immunol 2007; 179:7791-9
    [1]Chorostowska-Wynimko J. [The role of inflammation in the pathogenesis of chronic obstructive pulmonary disease]. Pol Merkur Lekarski 2004,17(99):203-207
    [2]Pauwels RA, Buist AS, Ma P, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: National Heart, Lung, and Blood Institute and World Health Organization Global Initiative for Chronic Obstructive Lung Disease (GOLD): executive summary. Respir Care 2001,46(8):798-825
    [3]Anthonisen NR, Connett JE, Murray RP. Smoking and lung function of Lung Health Study participants after 11 years. Am J Respir Crit Care Med 2002,166(5):675-679
    [4]Agusti A, MacNee W, Donaldson K, et al. Hypothesis:does COPD have an autoimmune component? Thorax 2003,58(10):832-834
    [5]Cosio MG, Majo J, Cosio MG. Inflammation of the airways and lung parenchyma in COPD:role of T cells. Chest 2002,121(5 Suppl):160S-165S
    [6]O'Shaughnessy TC, Ansari TW, Barnes NC, et al. Inflammation in bronchial biopsies of subjects with chronic bronchitis:inverse relationship of CD8+T lymphocytes with FEV1. Am J Respir Crit Care Med 1997,155(3):852-857
    [7]Grumelli S, Corry DB, Song LZ, et al. An immune basis for lung parenchymal destruction in chronic obstructive pulmonary disease and emphysema. PLoS Med 2004,1(1):e8
    [8]Hogg JC, Chu F, Utokaparch S, et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 2004,350(26):2645-2653
    [9]Barnes PJ. Small airways in COPD. N Engl J Med 2004,350(26):2635-2637
    [10]Ivanov, II, Zhou L, Littman DR. Transcriptional regulation of Thl7 cell differentiation. Semin Immunol 2007,19(6):409-417
    [11]Elias KM, Laurence A, Davidson TS, et al. Retinoic acid inhibits Th17 polarization and enhances FoxP3 expression through a Stat-3/Stat-5 independent signaling pathway. Blood 2008,111(3):1013-1020
    [12]Weaver CT, Harrington LE, Mangan PR, et al. Th17:an effector CD4 T cell lineage with regulatory T cell ties. Immunity 2006,24(6):677-688
    [13]Kim V, Rogers TJ, Criner GJ. New concepts in the pathobiology of chronic obstructive pulmonary disease. Proc Am Thorac Soc 2008,5(4):478-485
    [14]Cua DJ, Sherlock J, Chen Y, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 2003,421(6924):744-748
    [15]Murphy CA, Langrish CL, Chen Y, et al. Divergent pro-and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med 2003,198(12):1951-1957
    [16]Oppmann B, Lesley R, Blom B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 2000,13(5):715-725
    [17]Chen Y, Langrish CL, McKenzie B, et al. Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J Clin Invest 2006,116(5):1317-1326
    [18]Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 2005,201(2):233-240
    [19]Koenders MI, Lubberts E, Oppers-Walgreen B, et al. Blocking of interleukin-17 during reactivation of experimental arthritis prevents joint inflammation and bone erosion by decreasing RANKL and interleukin-1. Am J Pathol 2005,167(1):141-149
    [20]Koenders MI, Lubberts E, Oppers-Walgreen B, et al. Induction of cartilage damage by overexpression of T cell interleukin-17A in experimental arthritis in mice deficient in interleukin-1. Arthritis Rheum 2005,52(3):975-983
    [21]Nakae S, Nambu A, Sudo K, et al. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J Immunol 2003,171(11):6173-6177
    [22]Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 2005,6(11):1123-1132
    [23]Zhou L, Ivanov, II, Spolski R, et al. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 2007,8(9):967-974
    [24]Zhou L, Lopes JE, Chong MM, et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature 2008,453(7192):236-240
    [25]Xu L, Kitani A, Fuss I, et al. Cutting edge:regulatory T cells induce CD4+CD25-Foxp3-T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-beta. J Immunol 2007,178(11):6725-6729
    [26]Wei L, Laurence A, Elias KM, et al. IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner. J Biol Chem 2007,282(48):34605-34610
    [27]Laurence A, Tato CM, Davidson TS, et al. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 2007,26(3):371-381
    [28]Mucida D, Park Y, Kim G, et al. Reciprocal TH17 and regulatory T cell differentiation mediatedby retinoic acid.Science 2007,317(5835):256-260
    [29]Annunziato F, Cosmi L, Santarlasci V, et al. Phenotypic and functional features of human Thl7 cells. J Exp Med 2007,204(8):1849-1861
    [30]Ouyang W, Kolls JK, Zheng Y. The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 2008,28(4):454-467
    [31]Harrison OJ, Foley J, Bolognese BJ, et al. Airway infiltration of CD4+ CCR6+Th17 type cells associated with chronic cigarette smoke induced airspace enlargement. Immunol Lett 2008,121(1):13-21
    [32]Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 2005,6(11):1133-1141
    [33]Liang SC, Long AJ, Bennett F, et al. An IL-17F/A heterodimer protein is produced by mouse Th17 cells and induces airway neutrophil recruitment. J Immunol 2007,179(11):7791-7799
    [34]Bowman EP, Chackerian AA, Cua DJ. Rationale and safety of anti-interleukin-23 and anti-interleukin-17A therapy. Curr Opin Infect Dis 2006,19(3):245-252
    [35]Di Stefano A, Caramori G, Gnemmi I, et al. T helper type 17-related cytokine expression is increased in the bronchial mucosa of stable chronic obstructive pulmonary disease patients. Clin Exp Immunol 2009,157(2):316-324
    [36]Laan M, Cui ZH, Hoshino H, et al. Neutrophil recruitment by human IL-17 via C-X-C chemokine release in the airways. J Immunol 1999,162(4):2347-2352
    [37]Kawaguchi M, Kokubu F, Huang SK, et al. The IL-17F signaling pathway is involved in the induction of IFN-gamma-inducible protein 10 in bronchial epithelial cells. J Allergy Clin Immunol 2007,119(6):1408-1414
    [38]Saetta M, Mariani M, Panina-Bordignon P, et al. Increased expression of the chemokine receptor CXCR3 and its ligand CXCL10 in peripheral airways of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2002,165(10):1404-1409
    [39]Kawaguchi M, Adachi M, Oda N, et al. IL-17 cytokine family. J Allergy Clin Immunol 2004,114(6):1265-1273; quiz 1274
    [40]Korn T, Bettelli E, Gao W, et al. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 2007,448(7152):484-487
    [41]Casey KA, Mescher MF. IL-21 promotes differentiation of naive CD8 T cells to a unique effector phenotype. J Immunol 2007,178(12):7640-7648
    [42]Elsaesser H, Sauer K, Brooks DG IL-21 is required to control chronic viral infection. Science 2009,324(5934):1569-1572
    [43]Majo J, Ghezzo H, Cosio MG. Lymphocyte population and apoptosis in the lungs of smokers and their relation to emphysema. Eur Respir J 2001,17(5):946-953
    [44]Taraseviciene-Stewart L, Douglas IS, Nana-Sinkam PS, et al. Is alveolar destruction and emphysema in chronic obstructive pulmonary disease an immune disease? Proc Am Thorac Soc 2006,3(8):687-690
    [45]Maeno T, Houghton AM, Quintero PA, et al. CD8+T Cells are required for inflammation and destruction in cigarette smoke-induced emphysema in mice. J Immunol 2007,178(12):8090-8096
    [46]Motz GT, Eppert BL, Sun G, et al. Persistence of lung CD8 T cell oligoclonal expansions upon smoking cessation in a mouse model of cigarette smoke-induced emphysema. J Immunol 2008,181(11):8036-8043
    [47]Taraseviciene-Stewart L, Scerbavicius R, Choe KH, et al. An animal model of autoimmune emphysema. Am J Respir Crit Care Med 2005,171(7):734-742
    [48]Sullivan, A. K. et al. Oligoclonal CD4+T cells in thelungs of patients with severe emphysema. Am. J.Respir. Crit. Care Med.2005,172,590-596.
    [49]Smyth LJ, Starkey C, Vestbo J, et al. CD4-regulatory cells in COPD patients. Chest 2007,132(1):156-163
    [50]Isajevs S, Taivans I, Strazda G, et al. Decreased FOXP3 expression in small airways of smokers with COPD. Eur Respir J 2009,33(1):61-67
    [51]Li Y, Yee C. IL-21 mediated Foxp3 suppression leads to enhanced generation of antigen-specific CD8+cytotoxic T lymphocytes. Blood 2008,111(1):229-235
    [52]Barnes PJ. Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol 2008,8(3):183-192

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700