黄、渤海海雾遥感辐射特性及卫星监测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海雾发生使海面能见度下降,给船只航行、人类生产和生活带来隐患。海洋上常规地面监测站点稀少,难以实现大范围的同步观测,幸运的是,卫星遥感为海雾研究提供了大面积、实时动态监测的重要技术。
     本研究利用14轨AVHRR/NOAA17已知黄、渤海海雾的先验数据和辐射传输模式模拟数据,对海雾及其他目标物(水体、中、高云系等)的遥感辐射特性进行分析,发掘海雾的主要辐射特性;在此基础上,提出了一个富有物理意义的海雾监测算法,全面探索了五个海雾微物理辐射特性的监测反演技术;分析2006年1月至5月长时间NOAA17数据的监测结果验证了海雾监测算法的精度,并指出了算法的不足,最后对我国自主气象卫星FY-1D进行了算法典型应用。得到了以下主要结论:
     1.海雾在可见光、近红外波段上满足关系:Ch1>Ch3a>Ch2,甚至出现Ch3a>Ch1>Ch2的辐射特性。这一辐射特性主要由雾滴尺度与三波段的相对大小引起。该辐射特性的发现为海雾监测和小粒径的云滴判别提供了重要科学依据。
     2.近红外通道Ch3a在中、高云上的不同表现:高云,Ch2>>Ch3a;中低云,Ch2>Ch3a,说明Ch3a反射率特性可用于云位相的判定。
     3.验证了可见光通道Ch1的反射率变化随云雾层光学厚度的变化较大,近红外通道Ch3a的反射率是云雾滴粒子大小的函数,为联合通道Ch1和Ch3a反射率信息,监测反演海雾的微物理特性提供了基础。
     4.基于辐射特性的分析,设计了一个富有物理意义的黄、渤海海雾监测算法:云地分离、位相判别、粒径判断、图像特征分析、高度分析和修补漏点。通过先验数据和连续5个月数据的监测结果分析,验证了该算法对黄、渤海海雾具有大范围、近实时的监测能力;对其他卫星FY-1D数据的典型应用试验,表明该算法具有普适性。
     5.分析海雾有效粒径、雾层光学厚度、雾中能见度和液水含量之间的关系,在假定雾滴谱分布模型的前提下,建立了单位体积内雾滴数与能见度、液水含量间的关系,通过事先建立的查询表与实际观测的可见光、近红外反射率信息监测反演了五个海雾微物理特性。
     6.通过长时间序列的数据验证表明,该算法对沙尘影响海域,高云遮挡下的海雾区,以及部分低云边缘区会产生错判、漏判现象,为今后算法的改进提供了努力方向。
     本论文的主要创新点:
     1.对实际卫星观测数据和辐射模拟数据分析不同目标物的遥感辐射特性,发现海雾在可见光、近红外波段的反射率满足关系:Ch1>Ch3a>Ch2,甚至Ch3a>Ch1>Ch2,为海雾监测,小粒径云滴的判别提供了重要科学依据。
     2.根据不同目标物的辐射特性,提出了一个富有物理意义、具有普适性的黄、渤海海雾监测算法。经长时间序列卫星数据的监测应用,验证了该算法具有监测海雾事件的能力,并在FY-1D卫星数据上得到了成功典型应用。
     3.首次在国内对海雾微物理特性进行了探索性监测反演,为填补海雾微物理性质数据的空缺提供了技术支持。
The horizontal visibility at the surface of the ocean decreases to less than 1km,when the sea fog occurs. It takes some difficulty to the ship safety, and some troubleto human production, living and wealth. Due to the measurement station is rare, thetraditional in situ measurement is difficult and unfeasible to observe the fogphenomenon in real-time or in large range. Luckily, satellite measurements providethe way and mean to detect the sea fog in near real-time and in large range.
     In this paper, fourteen AVHRR/NOAA17 satellite datum, which act as aforehandresearch events, and simulates by radiance transfer model (Streamer) are used to theresearch on radiance properties of sea fog and others. By comparing the differentobject observation and simulate radiance, it shows the major radiance characteristic ofsea fog. On the base of those, a sea fog detection algorithm, which is meaning inphysics, is proposed. And the retrieval of five microphysical parameters of sea fog isdiscussed fully. Using the AVHRR/NOAA17, the detection algorithm is run throughfive months (Jan to May, 2006). By comparing and analyzing, the precision of fogdetection is validated and the limitation is pointed. Lastly, the representativeapplication is successfully done on Chinese polar-orbit meteorology satellite FY-1D.Some significant results are revealed as follows:
     1. The reflectivity of sea fog at visible and near-infrared channels satisfies:Ch1>Ch3a>Ch2, or maybe Ch3a>Ch1>ch2. This radiance characteristic is mainlyconducted by the relative size of sea fog and three channels. This result providesimportance scientific argument for the sea fog detection and the judge of small sizecloud particles.
     2. The difference of mid- and high cloud at the near-infrared channel is that highcloud, Ch2>>Ch3a; mid cloud, Ch2>ch3a. It shows that the reflectivity at channel 3aof NOAA17 is used to judge the cloud phase.
     3. The reflectivity at Ch1, which varies with the cloud optical thickness, and thereflectivity at Ch3a, which is the function of the size of cloud/fog particles, isapproved. Therefore, combining the reflectivity of Ch1 and Ch3a, the retrieval ofmicrophysical parameters of sea fog is possible and feasible. 4. Based on those radiance properties, an algorithm, which is used for sea fogdetection over the Yellow Sea and Bohai, is proposed. The algorithm is meaning inphysics by six steps: (1) separating of cloud and clear region; (2)judging the cloud phase; (3) differentiating of the size of particle; (4)analyzing the picture characteristic;(5)distinguishing the cloud height; and (6)repairing the lost pixels. By analyzing thedetections of the 14 aforehand events and five months continuous satellites, it showsthe algorithm has the ability of sea fog detection in large range and near-real time.The application tests for FY-1D satellites is successful. The wide applicability of thealgorithm is presented
     5. The relationship between the efficient radius, the fog optical thickness,visibility, fog water content is analyzed and deduced. Assuming the fog sizedistribution, the relation between the number of fog drop in unit volume and visibility,fog water content is created. Then, on the base of fog detection, linking the satellitereflection of Ch1 and Ch3a, the five fog microphysical parameters is derived by LUT.
     6. The detection of sea fog over the Yellow Sea and Bohai for a long time isanalyzed. The fog detection is weak for: (1) the ocean region affected by Asia dust; (2)the fog region sheltered by high cloud; (3) the edge of some low cloud. It gives thedirection of improving on fog detection in the future.Some innovations is listed as follow:
     1. After analyzing the radiance characteristic of the different object by satellitemeasurements and model simulations, the reflectivity of sea fog at visible andnear-infrared channels satisfies: Ch1>Ch3a>Ch2, or maybe Ch3a>Ch1>ch2 is found.Those provides the important science base for the detection of sea fog and the judgeof small size cloud particles.
     2. Based on those radiance properties, an algorithm, which is meaning in physicsand wide-application for others, is proposed to detect sea fog events over the YellowSea and Bohai. After applying for satellite measurements in a long time, it shows thatthe algorithm has the capability for detecting sea fog event. And it have get successfulapplication test for FY-1D.
     3. The fog microphysical parameter is first studied exploringly in home. Itgives important technology for filling up microphysical parameter which is difficultto measure over ocean.
引文
[1] Houghton J T, Y Ding, D J Griggs, et al. Climate Change 2001: The Scientic Basis. (Cambridge, UK.), Cambridge University Press, 2001.
    [2] Hunt G E. Radiative properties of terrestrial clouds at visible and infrared thermal window wavelengths. Q. J. R. meteorol Soc, 1973, 99: 346-369.
    [3] Eyre J R, Brownscombe J L, Allam R J. Detection of fog at night using advanced very high resolution radiometer (AVHRR) imagery. Meteo. Magazine., 1984, 113: 266-271.
    [4] Turner, J., Allam, R. J., Maine, D. R. A case study of the detection of fog at night using channels 3 and 4 on the advanced very high resolution radiometer (AVHRR). Meteo. Magazine., 1986, 115: 285-290.
    [5] Allam R. The detection of fog from satellites, in Proceedings of a Workshop on Satellite and Radar Imagery Interpretation, 1987, 495-505.
    [6] d'Entremont R R. Low-and midlevel cloud analysis using nighttime multispectral imagery. J. Clim. Appl. Meteor, 1986, 25: 1853-1869.
    [7] Bendix J, M Bachmann. A method for detection of fog using AVHRR imagery of N0AA satellites suitable for operational purposes (in German). Meteor. Rundsch., 1991, 43:169-178.
    [8] Lee T E, F J Turk, K Richardson. Stratus and fog products using GOES-8-9 3. 9-um data. Weather and Forecasting, 1997,12:664-677.
    [9] Reudenbach C, J Bendix. Experiments with a straightforward model for the spatial forecast of fog/low stratus clearance based on multisource data, Meteorological Applications. 1998, 5:205-216.
    [10] Putsay M, J Kerenyi, I Szenyan, et al. Nighttime fog and low cloud detection in NOAA-16 AVHRR images and validation with ground observed SYNOP data and radar measurements, in Proceedings of the 2001 EUMETSAT Meteorological Satellite Conference, EUM P33, 2001: 365-373, EUMETSAT, Antalya, Turkey.
    [11] Bendix J. A satellite-based climatology of fog and low-level stratus in Germany and adjacent areas. Atmospheric Research, 2002, 64:3-18.
    [12] Underwood S J, G P Ellrod, A L Kuhnert. A multiplecase analysis of nocturnal radiation-fog development in the Central Valley of California utilizing the GOES nighttime fog product, Journal of Applied Meteorology,2004,43 : 297-311.
    [13] Myoung-Hwan AHN, EUN-Ha SOHN, Byong-Jun Hwang. A new algorithm for sea fog/stratus detection using GMS-5 IR data. Adv. Atmo. Sci., 2003 20(6): 899-913.
    [14] Ellrod G P. Advances in the detection in GOES scenes over the land. Remote Sens. Environ., 1995, 10: 606-619.
    [15] Thomas F L, Turk F J, Richardson K. Stratus and fog products using GOES-8,-9 3.9um data. Weather and Forecasting,1997, 12(3):664-677.
    [16] Turk J, Vivekanadan J, Lee T, et al. Derivation and applications of near-infrared cloud reflectances from GOES-8 and GOES-9. J. Appl. Meteorogy, 1998, 37: 819-831.
    [17] Bendix J., T. Boris, and C. Jan, Ground fog detection from space based in MODIS daytime data-a feasibility study. Wea. Forecasting, 2005, 20: 989-1005.
    [18] Wanner H, S Kunz. Klimatologie der Nebel- und Kaltluftkorper im Schweizerischen Alpenvorland mit Hilfe von Wettersatellitenbildern. Archives for Meteorology, Geophysics, and Bioclimatology, 1983, B33: 31-56.
    [19] Greenwald T J, S A Christopher. The GOES I-M imagers: New tools for studying microphysical properties of boundary layer stratiform clouds. Bulletin of the American Meteorological Society, 2000, 81: 2607-2620.
    [20] Karlsson K G. Development of an operational cloud classication model. International Journal of Remote Sensing, 1989, 10: 687-693.
    [21] Guls I, J Bendix. Fog detection and fog mapping using low cost Meteosat-WEFAX transmission. Meteorological Applications, 1996, 3: 179-187.
    [22] 居为民,孙涵,张忠义等.卫星遥感资料在沪宁高速公路大雾监测中的初步应用.遥感信息,1997,3:25-27.
    [23] 刘健.许健民,方宗义.利用NOAA-卫星的AVHRR资料试分析云和雾顶部粒子的尺度特征.应用气象学报,1999,10(1):28-33.
    [24] 李亚春,孙涵,李湘阁等.用GMS-5气象卫星资料遥感监测白天海雾的研究.南京气象学院学报,2001,24(3):343-349.
    [25] 周红妹,谈建国,葛伟强等.NOAA卫星云雾自动检测和修复方法.自然灾害学报,2003,12(3):41-47.
    [26] 陈伟,周红妹,袁志康等.基于气象卫星分形纹理的云雾分离研究.自然灾害学报,2003:12(2):133-139.
    [27] 李亚春,孙涵,徐萌等.计盒维数法在云雾遥感监测中的应用研究,科技通报,2003:19(1):29-31.
    [28] 孙涵,孙照渤,李亚春.雾的气象卫星遥感光谱特征.南京气象学院学报,2004,27(3):289-301.
    [29] 纪瑞鹏,代付,班显秀.NOAA/AVHRR图像资料在大雾灾害监测中的应用.防灾减灾工程学报,2004,24(2):149-152.
    [30] 鲍献文,王鑫,孙立潭等.卫星遥感全天候监测海雾技术与应用.高技术通讯,2005,15(1):101-106.
    [31] 马慧云,李德仁,刘良明等.基于MODIS卫星数据的平流雾检测研究.武汉大学学报(信息科学版),2005,30(2):143-145.
    [32] 邓军,白洁,刘健文等.基于MODIS多通道资料的白天雾监测.气象科技,2006,34(2):188-193.
    [33] 陈林,牛生杰,仲凌志.MODIS监测雾的方法及分析.南京气象学院学报,2006,29(4):448-454.
    [34] 马慧云,李德仁,刘良明等.基于AVHRR、MODIS和MVRIS数据的辐射雾变化检测与分析.武汉大学学报(信息科学版),2007,32(4):297-300.
    [35] Eldridge, R. G., The Relationship Between Visibility and Liquid Water Content in Fog. Journal of the atmospheric sciences, 1971, 28: 1173-1186.
    [36] Ippolito, L. J., Propagation Effects Handbook for Satellite System Design. NASA Reference Publication, 1989.
    [37] Bendix, J., Determination of fog horizontal visibility by means of NOAA-AVHRR. Proc. of IGARSS'95 (Firenze), 1995: 1847-1849.
    [38] Stephens G L. Radiation profiles in extended water clouds: Ⅰ Theory. J. Atmosph. Science, 1978, 35: 2111-2123.
    [39] Stephens G L. Radiation profiles in extended water clouds: Ⅱ Parameterization schemes. J. Atmosph. Science, 1978, 35: 2123-2132.
    [40] Stephens G L. Radiation profiles in extended water clouds: Ⅲ Observation. J. Atmosph. Science, 1978, 35: 2132-2141.
    [41] 孙景群,能见度与相对湿度的关系,气象学报,1985,43(2):230-234.
    [42] 王鑫,黄海海雾形成的气候特征及能见度分析。青岛:中国海洋大学硕士论文,2004.
    [43] 吴晓京,陈云浩,李三妹.应用MODIS数据对新疆北部大雾地面能见度和微物理参数的反演.遥感学报,2005,9(6):688-696.
    [44] 钱峻屏,黄菲,崔祖强,等.基于MODIS的海上能见度遥感光谱特征分析与统计反演.海洋科学进展,2004,22(增刊):58-64.
    [45] 钱峻屏,黄菲,王国复,等.基于MODIS资料反演海上能见度的经验模型.中国海洋大学学报(自然科学版),2006,36(3):355-360.
    [46] 王彬华,海雾.北京:海洋出版社,1983.
    [47] 中国气象局,地面气象观测规范.2003.北京:气象出版社.
    [48] Taylor G I. The formation of fog and mist, Quarterly Journal of the. Royal Meteorological Society, 1917, 43: 241-268.
    [49] Roach W T. Back to basics: Fog Part 1-Denitions and basic physics, Weather, 1994, 49: 411-415.
    [50] Roach W T. Back to basics: Fog Part 2-The formation and dissipation of land fog, Weather, 1995, 50: 7-11.
    [51] GlickmanT S. Glossary of Meteorology. (Boston, USA), American Meteorological Society (AMS), 2000.
    [52] 林晔,王庆安,顾松山等,大气探测学教程.1995,北京,气象出版社.
    [53] WMO, International Meteorological Vocabulary, vol. 182, 1992, World Meteorological Organization (WMO), Geneva, Switzerland, 2nd edn.
    [54] 许绍祖等,大气物理学基础.(第一版),北京:气象出版社,1993
    [55] 邹进上,刘长盛,刘长保.大气物理基础.(第一版),北京:气象出版社,1993.
    [56] 孙安健,黄朝迎,张福春.海雾概论.北京:气象出版社,1985.
    [57] 许健民,方宗义等,气象卫星—系统、资料及其在环境中的应用.北京:气象出版社,1994
    [58] Kneizys F X, E P Shettle, L W Abreu, et al. Users guide to LOWTRAN7, Environmental Research Papers1010, AFGL-TR-88-0177, Air Force Geophysics Laboratory, Hanscom AFB, Massachusetts, USA. 1988.
    [59] Snell H E, G P Anderson, J Wang, et al. Validation of FASE (FASCODE for the environment) and MODTRAN3: Updates and comparisons with clear-sky measurements, in SPIE Conference 2578 Proceedings, 1995: 194-204.
    [60] Vermote E, D Tanre, J L Deuze, et al. Second Simulation of the Satellite Signal in the Solar Spectrum (65), 65 user guide version 2, Tech. rep. 1997.
    [61] Saunders R W, S English, P Rayer, et al. RTTOV-7: A satellite radiance simulator for the new millennium, in Technical Proceedings of theITSC-XII, Lorne, Victoria, Australia, 2002.
    [62] Key J, A J Schweiger, Tools for atmospheric radiative transfer:Streamer and FluxNet. Computers and Geosciences, 1998, 24: 443-451.
    [63] 陈渭民.卫星气象学.北京,气象出版社,2003.
    [64] 盛裴轩,毛节泰,李建国等.大气物理学.北京,北京大学出版社,2003
    [65] 廖国男.大气辐射导论.第一版,北京,气象出版社,1985
    [66] 尹宏.大气辐射学基础.第一版,北京,气象出版社,1993
    [67] 陈述彭,童庆禧,郭华东.遥感信息机理研究.北京:科学出版社,1998.
    [68] 赵英时等.遥感应用分析原理和方法.北京:科学出版社,2003.
    [69] Desbois, M., Seze, G., Szejwach, G. Automatic classification of clouds on meteosat imagery, Application to high-level clouds, Journal of Climatology and Applied Meteorology, 1982, 21(3): 401-412
    [70] Peak J E ,Tag P M. Segmentation of satellite imagery using hierarchical thresholding and neural networks. Journal of A pplied Meteorology, 1994, 33: 605-616.
    [71] Hutchison K D, Hardy K R. Theshold functions for automated cloud analyses of global meteorolgical satellite imagery. Int. J. Remote Sens., 1995, 16: 3665-3680.
    [72] Rossow W B, Garder L C. Validation of ISCCP cloud detections. Journal of Climate, 1993, 6: 2370-2393.
    [73] Mokhov I I, M E Schlesinger. Analysis of global cloudiness, 1: Comparison of meteor, Nimbus-7 and international satellite cloud climatology project (ISCCP) satellite data. J. Geophys. Res.,1993, 98: 12849-12868.
    [74] Stowe L L, Davis P A, McClain P E. Scientific Basis and Initial Evaluation of the CLAVR-1 Global Clear/Cloud Classification Algorithm for Advanced Very High Resolution Radiometer, Journal of Atmos. and oceanic Technology, 1999, 16: 656-681.
    [75] Vemury S, L L Stowe, V R Anne. AVHRR pixel level clear-sky classification using dynamic thresholds(CLAVR-3), Journal of Atmospheric and oceanic Technology, 2001, 18: 169-186.
    [76] Stowe L L, P A Davis, E P McClain. Evaluating the CLAVR (Clouds form AVHRR) phase Ⅰ cloud cover experimental product. Adv. Space Res., 1993, 16: 21-24.
    [77] Alan V Di, Vitorio, William J E. An automated dynamic threshold cloud-masking algorithm for datime AVHRR Images over land. IEEE Transactionson Geoscience and Remote Sensing, 2002, 40(8): 1682-1693.
    [78] 刘希,许健民,杜秉玉.用双通道动态阂值对GMS-5图像进行自动云检测.应用气象学报,2005,16(4):434-444.
    [79] 刘希.双通道动态阈值法和6S模式GRS和FY2B图像进行自动云检测.南京气象学院,硕士学位论文,2004.
    [80] Houze R A. Cloud Dynamics, vol. 53 of International Geophysics Series, San Diego, Academic Press, 1993.
    [81] Wouter H k, Pier S, Robert B A K, Cloud Thermodynamic-phase determination from near-infrared spectra of reflected sunlight. J. Atmos. Sci., 2002, 59: 83-96.
    [82] J R Key, J M litrieri. Cloud particle phase determination with the AVHRR. 2000, Vol39: 1797-1804.
    [83] Strabala K I, S A Ackerman, W P Menzel. Cloud properties inferred from 8-12um data, Journal of Applied Meteorology, 1994, 33: 212-229.
    [84] Arking A, J D Childs. Retrieval of cloud cover parameters from multispectral satellite images. J. Climate Appl. Meteor., 1985,24: 322-333.
    [85] Giraud V, J C Buriez, Y Fouquart. Large-scale analysis of cirrus clouds from AVHRRdata: Assessment of both a microphysical indexand the cloud-top temperature. J. Appl. Meteor.,1997, 36, 664-675.
    [86] Inoue T. On the temperature and effective emissivity determination of semi-transparent clouds by bi-spectral measurements in the 10 micron window region. J. meteor. Sco. Japan. 1985, 63(1): 88-89.
    [87] Luo G, P A Davis, L L Stowe et al. A pixel-scale algorithm of cloud type, layer, and amount for AVHRR data. Part Ⅰ: nighttime. J. Atmos. Oceanic. Technol., 1995, 12: 1013-1037.
    [88] McClain E P, W G Pichel, C C Walton, Comparative performance of AVHRR-based multichannel sea surface temperatures. Int. J. Remote Sens., 1989, 10: 763-769.
    [89] Prabhankara C, R S Frase, G Dalu, et al. Thin cirrus clouds: Seasonal distribution over oceans deduced from Nimbus-4 IRIS. J. Appl. Meteor.,1988, 27: 379-399.
    [90] Saunders R W, K T Kriebel. An improved method for detecting clear skyand cloudy radiances from AVHRR data. Int. J. Remote Sens., 1988, 9: 123-150.
    [91] Yamanouchi T,S Kawaguci. Cloud distribution in the antarctic from AVHRR data of NOAA satellite and radiation measurements at the ground surface. United Kingdom, Proc. IAMAP 89 Scientific assemby, Yol2 Reading, University of Reading, 1989.
    [92] 梅森B.J.,云物理学.北京,科学出版社.中科院大气物理研究所(译) 1978.
    [93] 张济忠.分形.北京:清华大学出版社,1995.
    [94] 秦其明,陆荣建.分形与神经网络方法在卫星数字图像分类中的应用.北京大学学报,2000,36(6):858-864.
    [95] Mandelbrot B B. Fractal Geometry of Nature. San Francisco: Freeman, 1982.
    [96] Pentland A P, Fractal based description of nature scenes. IEEE Trans. Pattern Anal. Machine Intell, 1984, vol PAMI-6: 661-674.
    [97] Orford J, Whalley W. The use of fractal dimension to characterize irregular-shaped particle. Sedimentology 1983, 30: 665-668.
    [98] Gangepain J, Roques-Carmes C. Franctal approach to two dimensional and three dimensional surface roughness. Wear, 1986. 109: 119-126.
    [99] SarkarN, B B Chaudhuri. An efficient approach to estimate fractal dimension in texture image. 1992, 25: 1035-1041.
    [100] A A Kokhanovsky, V V Rozanov. Cloud bottom altitude determination from a satellite. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2005, VOL. 2, NO. 3,: 280-283
    [101] F T Ulaby, R'L Moore, A K Fung. Microwave remote sending, Vol. 1, Addision-Westley Publoshing company, 1981
    [102] F T乌拉比,R L穆尔,冯健超,微波遥感(中译本)第一卷.科学出版.1988:p207
    [103] Taylor J P. Sensitivity of remotely sensed effective radius of clous droplets to changes in LOWTRAN version. J. Atmos. Sci., 1992, 49: 2564-2569.
    [104] Nakajima T, M D King. Determination of the optical Thickness and effective perticle radius of clouds from reflected solar radiation measurements. Part Ⅰ: Theroy. J. Atmos. Sci., 1990, 47(15): 1878-1893.
    [105] Nakajima T, M D King. Determination of the optical Thickness and effective particle radius of clouds from reflected solar radiation measurements. Part Ⅱ: Marine stratocumulus observations. J. Atmos. Sci., 1991, 48: 728-750.
    [106] Kawamoto K, Nakajima T, Nakajima T Y. A global determination of cloud microphysics with AVHR remote sesning. J. Climate, 2001, 14: 2054-2068.
    [107] M Kuji, T Hayasaka, Nobuyuki K, et al. The retrieval of effective patical radius and liqud water path of low-level Marine Clouds from NOAA AVHRR data. Journal of A pplied Meteorology, 2000, 39: 999-1016.
    [108] Han Q, W B Rossow, A A Lacis, Near-global survey of effective droplet radii in liquid water clouds using ISCCP data. J. Climate, 1994, 27: 465-497.
    [109] Nakajima T Y, T Nakajima. Wide-area determination of cloud microphysical properties from NOAA/AVHRR measurements for FIRE and ASTEX regions. J. Atmos. Sci., 1995, 52: 4043-4059.
    [110] http://dear.cma.gov.cn/is_nsmc/
    [111] http://www.chinaam.com.cn/gan/Article_Class2.asp?ClassID=3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700