杏与粮棉间作系统内的光分布特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用加拿大Regent Instruments公司生产的WinSCANOPY冠层分析仪和英国Delta公司生产的SunScan冠层分析系统,在对杏与粮棉间作系统内的光分布特征、光分布时空窗变化和影响光分布因素观测的基础上,系统分析了光分布的日变化和时节变化规律,间作系统间作物光响应曲线和间作系统时空窗大小的关系及间作走向、树高、冠幅、树形等对光分布的影响。揭示了杏与粮棉在间作系统中光的竞争关系。得到以下主要研究结果:
     受杏树行遮阴的影响,杏与粮棉间作系统光合有效辐射(PAR)具有明显的时空变化特征。间作系统中间最高,从中间向两边逐渐递减;间作系统东侧比西侧先到达光合有效辐射最高值。5-8月,光合有效辐射时节变化呈由低到高再降低的趋势。在间作系统透光性上,不同株行距叶面积指数(LAI)均表现为随杏物候期(花期到果实成熟期)的推移呈上升的趋势,到果实成熟期后略有下降。天空开度(DIFN)随物候期逐渐减小,到果实成熟期后略有上升。自然开心形、Y字形和疏散分层形三种树形从展叶期到收获期的叶面积指数变化趋势为逐渐增大到果实成熟期后逐渐减小,天空开度逐渐减小到果实成熟期后逐渐增大。
     随着光合有效辐射的增强,冬小麦光合速率逐渐增大,到1000-1200μmol·m-2·s-1时达到光饱和点,棉花在1400μmol·m-2·s-1左右,高于冬小麦。随着杏树株行距的减小,树高的增加和冠幅的扩张,杏与粮棉间作系统间作物“光合有效辐射时空窗”逐渐减小直至消失。株行距1.5m×4m,树高5.1m、冠幅3.0m和株行距2m×4m,树高5.4m、冠幅3.4m的间作系统内没有出现棉花光合有效辐射时空窗。说明这两种株行距的光照条件不能充分发挥间作物的光合碳同化能力,无法满足棉花对光的需求。
     通过对影响杏与粮棉间作系统内光分布因素的分析,各指标的变化决定杏与粮棉间作系统内光分布情况。随着树高的增加,冠幅的扩大,透光率减小,杏树遮阴严重;株行距越大,透光性越好;由于太阳自西向东移动造成东西走向间作的受光远小于南北向。自然开心形、Y字形和疏散分层形三种树形在株行距、树高相同的情况下,平均冠幅越大,枝开张角度越大。其中枝开张角度疏散分层形最小,Y字形其次,自然开心形最大。透光性由大到小依次是自然开心形、Y字形和疏散分层形。
In this experiment, in order to analyze the apricot-wheat & apricot-cotton Intercropping Systems light environment, space-time windows change and the factors that effect light environment, WinSCANOPY For Canopy Analysis made in Regent Instruments company(CANADA), SunScan For Canopy Analysis made in Delta company(UK) were adopted to analyse the rules in daily and seasonal variation of light environment, relationships between intercropping system crop light response curve and intercropping system space-time window size and the influence of intercropping trend, the height of the tree, crown width, the shape of the tree. It had revealed the competition relation of light in apricot-wheat & apricot-cotton Intercropping Systems. Get the following main research results:
     The influence of shade almond trees line by intercropping system, apricot and cotton photosynthetic available radiation(PAR) has obvious the spatial and temporal variation characteristics. Among the highest, from intercropping systems to both sides gradually diminishing among; East west intercropping system than photosynthetic available radiation to reach peak. From May to August, the PAR seasonal changes in a lower from low to high trend. Transmittance in the intercropping system, different spacing of leaf area index (LAI) are expressed as with the apricot phenology (flowering to fruit maturity) goes upward trend, to fruit maturity, decreased slightly. Sky opening (DIFN) decreased with phenology, to fruit maturity, increased slightly. Natural fun-shaped, Y-shaped, and the evacuation of three hierarchical tree-shaped leaf stage to harvest from the development of the leaf area index of the trend of change gradually increases to fruit maturity, decreases, decreases the sky opening to fruit ripening Period increased.
     Along with the increase of the PAR winter wheat photosynthetic rate increase gradually, to 1000-1200μmol·m-2·s-1 reached light saturation point, and cotton in 1400μmol·m-2·s-1, higher than winter wheat. With the decrease of the apricot planting spacing, tree height increase and crown width expansion, apricot-wheat & apricot-cotton intercrops of intercropping systems "PAR space-time Windows" reduce gradually until vanishing. Planting spacing 1.5mx4m, tree height 5.1 m, crown width 3.0 m, and planting spacing2mx4m, tree high 5.4 m, crown widths 3.4 m doesn't appear PAR space-time Windows in cotton. Shows that lighting conditions of their cannot give full play to the photosynthetic carbon assimilation capacity to meet the light demand of cotton.
     The effect of apricot and cotton in intercropping system, the analysis of the factors that light distribution of each index changes with cotton decision in intercropping system apricot distribution of light. Along with increase of the tree height, expansion of canopy widths, decreases of transmittance, and apricot shading is serious; the larger planting spacing, the stronger PAR; As the sun moves from west to east east-west direction of caused by light intercropping is far less than that of north and south; In planting spacing and tree height under the condition of the same, three tree forms the greater canopy width, the larger spreading angle. The biggest of all is the open centre model, then the Y shape, and the smallest is the evacuation layered form, transmittance in descending order the max is open centre model, the second is Y shape, the minimum is evacuation layered form.
引文
[1]李文华,赖世登.中国农林复合经营[M].北京:科学出版社,1994:14.
    [2]Singh R P, Saharan N, Ong C K. Above and below ground interaction in alley-cropping in semi-arid India [J]. Agroforestry Systems,1989,9:259-274.
    [3]袁玉欣,裴保华,王九龄.国外农林间作研究进展[J].世界林业研究,1998,11(5):26-31.
    [4]Kang B T, Gichuru M, Hulugalle N R, et al. Soil constraints for sustainable upland crop production in humid and sub-humid West Africa[A]. Tropical Agriculture Research Center, Tsukuba, Japan,1991:101-112.
    [5]Sibbald A R, Griffiths J H, Elston D A. The effects of the presence of widely spaced conifers on under-story herbage production in the U. K. [J]. Forest Ecology and Management,1991,45 (1-4):71-77.
    [6]于希志,廖新宇,张加延.新疆杏的资源特点与开发利用前景-新疆杏资源考察报告[J].落叶果树,1998(S1):60-62.
    [7]叶梅.大力发展杏产业[J].新疆农业科技,2003(1):63-64.
    [8]姚源松.新疆棉花高产优质高效理论与实践[M].新疆科学技术出版社,2004:8-11.
    [9]熊文愈,姜志林,黄宝龙,等.中国农林复合经营研究与实践[M].南京:江苏科学技术出版社,1994:40-46.
    [10]周允华,张晓杰,居会良.农果复合系统光热资源的有效利用Ⅰ.树冠透光率的测量和估算[J].中国农业气象,1996,17(6):1-4.
    [11]刘建栋,傅抱璞,卢其尧,等.人工林内太阳总辐射动态模拟的研究[J].中国农业气象,1996,17(5):28-30.
    [12]刘建栋,傅抱璞,卢其尧,等.林农复合生态系统晴天光谱特征分析[J].中国农业气象,1997,18(3):8-10.
    [13]赵英,张斌,王明珠.农林复合系统中物种间水肥光竞争机理分析与评价[J].生态学报,2006,26(6):1792-1801.
    [14]李芳东,傅大立,王保平,等.桐麦间作系统辐射光谱成分变化规律的研究[J].生态学报,2000,20(1):110-117.
    [15]黄宝龙,黄文丁.林农复合经营复合生态体系的研究[J].生态学杂志,1991,10(3):27-32.
    [16]刘晓鹰.杉木、柳杉与黄连间作的初步研究[J].生态学杂志,1991,10(4):30-34.
    [17]王汉杰.池杉、稻麦间作田中光照条件初步分析[J].南京林学院学报,1984(1):147-156.
    [18]宋露露.农桐间作对秋作物光合同化CO2导度的影响[J].泡桐与农用林业,1990(2):68-74.
    [19]宋露露.桐麦间作对小麦光合同化的影响[J].泡桐与农用林业,1990(2):62-67.
    [20]赵天榜,吴增琪.枣农间作群体结构的光照及效益研究[J].河南农学院学报,1982(2):38-55.
    [21]李连国,崔学民,李小燕,等.果粮间作生态系统光能分布规律的研究[J].内蒙古农牧学院学报,1998,19(3):49-52.
    [22]周允华,周智泉,张晓杰,等.农果复合系统光热资源有效利用Ⅱ.行栽果树条件下农田光照图像[J].中国农业气象,1997,18(1):1-4.
    [23]卢琦,方立红,赵体顺,等.农桐间作光合有效辐射传输模拟研究[J].河南农业大学学报1998,32(3):243-248.
    [24]刘乃壮.林农间作的光照分布特点与农业意义[J].生态农业研究,1993,1(3):35-40.
    [25]吴力立.农业间作系统树冠遮荫面积的探讨[A].见:熊文愈.中国农林复合经营研究与实践[C].南京:江苏科学技术出版社,1994:40-46.
    [26]王汉杰.混农林业生态系统内部的光能分布[J].生态学杂志,1991,10(1):27-32.
    [27]宋兆民.农田防护林遮光模式的研究[J].中国农业大学学报,1987(2):58-66.
    [28]李树人,赵勇.树冠遮光数学模型的研究[J].河南农业大学学报,1994,28(4):361-366.
    [29]胡海波,张金池,王殿平.徐淮平原农田防护林带(网)对小麦产量的影响[J].南京林业大学学报,1997,21(4):1-5.
    [30]季永华,张纪林,康立新,等.苏北沿海地区不同模式农田林网胁地效应的研究[J].江苏林业科技,1994(2):5-9,15.
    [31]王继永,王文全,武惠肖.林药间作系统光照效应及其对药用植物高生长的影响[J].浙江林学院学报,2003,20(1):17-22.
    [32]刘进余,范文良,李志欣,等.枣豆间作系统光强和土壤水分空间变化及其对大豆生长发育的影响[J].河北农业大学学报,2000,23(4):33-36.
    [33]王恒明,吴凌志,周茂山.栗茶间作对北方茶树生长及绿茶产量品质的影响[J].中国农业气象,2005,26(2):139-141.
    [34]祁德富,马琪.林木遮荫对西宁地区油菜田的光照效应[J].青海农林科技,2006(1):21-22.
    [35]杜修学,卞敏,杨焕金,等.农桐间作光和作物产量关系的研究[J].山东林业科技,1991(1):9-40.
    [36]贾玉彬,裴保华,王德艺,等.杨粮间作的光照效应[J].中国农业气象,1998,19(6):1-7.
    [37]蒋跃林,严平,宛志沪,等.林麦间作的光照状况及对小麦产量的影响[J].安徽农学通报, 1999,5(4):26-28.
    [38]林金星,胡玉熹.大豆叶片结构对CO2浓度升高的反应[J].植物学报,1996,38(1):31-34.
    [39]Hanninen H. Effects of climatic change on trees from cool and temperate regions:an ecophysiological approach to modelling of bud burst phenology[J]. Canadian Journal of Botany, 1995,73:183-199.
    [40]王传海,吴飞倩,李淑娟,等.西安植物园木本植物近十余年物候变化的特征分析[J].中国农业气象,2006,27(4):261-264.
    [41]Jackson J E. Theory of modeling by model hedgerow ordards in relation tolatitude, time of the year and hedgerow configuration and orientation[J]. Journal of Applied Ecology,1980 (9):341-357.
    [42]Palmer J W. The effects of row orientation, tree height, time of year and latitudeon on light interception and distribution in model apple hedgerow canopies[J]. The Journal of Horticultural Science and Biotechnology,1989,64 (2):137-146.
    [43]杨万镒,邱淑艳,户世昌.梨不同种和品种的光合速率的比较研究[J].中国果树,1991(4): 8-10.
    [44]Khemira H, Lombard P B, Sugar D, et al. Hedgerow orientation affects canopy exposure, flowering, and fruiting of'Anjou'pear trees[J]. HortScience:a publication of the American Society for Horticultural Science,1993,28 (10):984-987.
    [45]罗新书,等.关于果树篱式栽培行向的问题[J].园艺,1983(2):15-18.
    [46]Tustin D S, Hirst P M, Warrington I J. Influence of orientation and position of fruiting laterals on canopy light penetration, yield, and fruit quality of'Granny Smith'apple[J]. Journal of the American Society for Horticultural Science,1988,113 (5):693-699.
    [47]Lakso A N. Correlations of fisheye photography to canopy structure, light climate, and biological responses to light in apple trees[J]. Journal of the American Society for Horticultural Science, 1980,105 (1):43-46.
    [48]李丽,张艳茹,常立民. “国光”苹果树两种冠形的光合效率和干物质生产[J].园艺学报,1992,19(3):221-226.
    [49]董树亭,胡昌浩,岳寿松,等.夏玉米群体光合速率特性及其与冠层结构、生态条件的关系[J].植物生态学与地植物学学报,1992,16(4):372-378.
    [50]杨建昌,朱庆森,曹显祖.水稻群体冠层结构与光合特性对水稻产量形成作用的研究[J].中国农业科学,1992,25(4):7-14.
    [51]张大鹏,姜红英,陈星黎,等.葡萄不同栽培方式的叶幕结构微气候、光合作用和水分生理效应[J].园艺学报,1994,21(2):105-110.
    [52]Ferree D C. Influence of orchard management systems on spur quality, light, and fruit within the canopy of'Golden Delicious'apple trees[J]. Journal of the American Society for Horticultural Science,1989,114 (6):869-875.
    [53]Osman M, Emminhgam W H, Sharrow S H, et al. Growth and yield of sorghum or cowpea in an agrisilviculture system in semiarid India[J]. Agroforestry Systems,1998,42:91-105.
    [54]王兴祥,何园球,张桃林,等.低丘红壤花生南酸枣间作系统研究Ⅳ.光能竞争与剪枝作用[J].土壤,2003,35(4):320-324.
    [55]高华,鲁玉妙,赵政阳,等.黄土高原苹果生产中存在的主要问题及解决对策[J].陕西农业科学,2004(6):41-42.
    [56]黄长科,李丙智,张林森.陕西无公害优质苹果生产“四项”关键技术[J].北方园艺2004,(6):42-43.
    [57]宋子炜,郭小平,赵廷宁,等.北京市顺义区公路绿化植物群落的光环境特性[J].生态学报,2008,28(8):3779-3788.
    [58]王谦,陈景玲,孙治强.LAI-2000冠层分析仪在不同植物群体光分布特征研究中的应用[J].中国农业科学,2006,39(5):922-927.
    [59]刘宇锋,萧浪涛,童建华,等.非直线双曲线模型在光合光响应曲线数据分析中的应用[J].中国农学通报,2005,21(8):76-79.
    [60]周玉梅,韩士杰,张军辉,等.不同CO2浓度下长白山3种树木幼苗的光合特性[J].应用生态学报,2002,13(1):41-44.
    [61]Damesin C. Respiration and photosynthesis characteristics of current-year stems of Fagus sylvatica:from the seasonal pattern to an annual balance[J]. New Phytologist,2003,158 (3) 465-475.
    [62]Mao Zijun, Wang Yanjun, Wang Xiuwei, et al. Effect of doubled CO2 on morphology: Inhibition of stomata development in growing birch (Betula platyphylla Suk.) leaves[J]. Russian Journal of Plant Physiology,2005,52:171-175.
    [63]时向东,文志强,刘艳芳,等.不同光强对作物生长影响的研究综述[J].安徽农业科学,2006,34(17):4216-4218.
    [64]Thimijian R W, Heins R D. Photometric, radiometric, and quantum light units of measure:a review of pocedures for interconversion[J]. HortScience,1983,18:818-822.
    [65]杨兴洪,邹琦,赵世杰.遮荫和全光下生长的棉花光合作用和叶绿素荧光特征植物[J].生态学报,2005,29(1):8-15.
    [66]卢琦,阳含熙,慈龙骏,等.农桐间作系统辐射传输对农作物产量和品质的影响[J].生态学报,1997(17)1:6-44.
    [67]袁玉欣.华北平原农区杨粮间作研究[M].北京林业大学,1998:14-19.
    [68]陈凯,周武忠,陈虎根,等.影响梅树自然叶幕光能分布的因素[J].园艺学报,1988,15(1):33-38.
    [69]Heinicke D R. The micro-climate of fruit trees Ⅱ. Foliage and light distribution patterns in apple trees[J]. Proceedings of the American Society for Horticultural Science,1964 (83):1-11.
    [70]袁玉欣,王金凤,闫周惠,等.杨粮间作系统林木遮荫面积和株行距研究[J].河北农业大学学报,2002,25(2):32-37.
    [71]晃海,张大海,徐林,等.杏棉间作系统小气候水平分布特征研究[J].新疆农业大学学报,2007,30(1):35-39.
    [72]许大全.光合作用效率[J].植物生理学通讯,1988,5(1):1-7.
    [73]Willey R W, Reddy M S. A field technique for separating above-and below-ground interactions in intercropping:an experiment with pearl millet/groundnut[J]. Experimental Agriculture,1981,17 (3):257-264.
    [74]裴宝华,袁玉欣,王颖.模拟树木遮光对小麦生育和产量的影响[J].河北农业大学学报,1998,21(1):1-5.
    [75]Weber M S. Optimizing the tree density in apple orchards on dwarf rootstocks[J]. Acta Horticulturae,2001,557:229-234.
    [76]Widmer A, Krebs C. Influence of planting density and tree form on yield and fruit of'Golden delicious'and'Royal gala'apples[J]. Acta Horticulturae,2001,557:235-241.
    [77]Wertheim S J, Wagenmakers P S, Bootsma J H, et al. Orchard systems for apple and pear: conditions for success[J]. Acta Horticulturae,2001,557:209-227.
    [78]魏钦平,王丽琴,杨德勋,等.相对光照度对富士苹果品质的影响[J].中国农业气象,1997,18(5):12-14.
    [79]Caruso T, Giovannini D, Marra F P, et al. Planting density, above-ground dry-matter partitioning and fruit quality in greenhouse grown'Floridaprince'peach (Prunus persica L. Batsch) trees trained to'Free-standing Tatura'[J]. The Journal of Horticultural Science and Biotechnology,1999,74 (5):547-552.
    [80]傅金和,等.桃茶人工复合生态系统小气候特征研究[J].浙江农业大学报,1995,21(3):293-298.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700