基于HDE的MWIR/LWIR双波段成像光谱系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代社会对轻小型、高性能设备的需求,衍射光学元件(DOE)日益受到光学设计者的重视和青睐。作为一种特殊类型的衍射元件,谐衍射光学元件(HDE)的单色像差性质与普通衍射光学元件类似,色散性质却介于折射透镜和普通衍射元件之间,这种特殊光学性能决定了其独有的应用价值,例如可实现多个谐振波段的同时分光和成像,为多波段共光路以及轻小型化折衍混合光学系统设计奠定了基础。基于HDE的成像光谱技术正是利用HDE的特殊色散性质来同时完成色散和成像的一种新兴多波段成像光谱技术。该类型成像光谱仪具有光谱分辨率较高、结构紧凑、重量轻、坚固耐用、性价比高,便于实现小型化和轻量化等优点。本文以衍射光学及红外光学理论为基础,对基于HDE的MWIR/LWIR双波段成像光谱系统进行了系统深入的理论研究和原理样机的研制;并利用原理样机进行了相关实验,获得了实验目标的光谱图像;实验结果和理论分析相吻合,证实了HDE在成像光谱系统中的工程可行性。
     本文第一章概述了DOE的应用与发展概况,MWIR/LWIR双波段系统的应用和发展前景以及典型成像光谱仪的基本原理和基本仪器类型;并通过光谱层析技术和窄带滤波技术的结合,实现了一种新的成像光谱技术,即利用HDE多波段轴向色散的凝视型成像光谱技术,从而确定了论文的总体研究方向和基本方案。第二章介绍了DOE的成像分光特性,指出了HDE作为一种特殊的DOE所具有的独特色散特性。第三章详细介绍了基于HDE的凝视型成像光谱技术的理论知识,完成了基于HDE的分光系统光谱分辨率和线分辨率的公式推导,给出了具体表达式。第四章深入研究了基于HDE的MWIR/LWIR双波段成像光谱系统的像差理论和系统设计,分析了HDE的加工误差对系统设计的影响;然后设计了在λ=10 m处分辨率为24nm的高分辨率系统和在λ=8.5 m处分辨率为72nm的中分辨率系统;并将中分辨率系统作为原理样机的光学系统。第五章详细讲述了基于HDE的MWIR/LWIR双波段成像光谱系统的定标理论,并确定了定标方案。第六章介绍了原理样机的工作原理,进行了原理样机的相关实验测试,获得了较好的试验结果,验证了基于HDE的双波段光谱系统的工程可行性。最后是全文总结和进一步工作展望。
     总之,利用HDE轴向色散的凝视成像光谱技术在理论上和技术上都是可行的,它还可设计为工作在紫外、可见、近红外及热红外波段的设备,用于空间监视、遥感、医学成像、环境监测等方面。
To meet the requirements of the lighter, smaller and high-performance optical equipments in the modern society, the diffractive optical elements (DOEs) have been paid much more attention. The harmonic diffractive optical elements (HDEs) are one kind of special DOEs. Their aberrations characteristics are similar to the normal DOEs, but their dispersion characteristics are between the refractive lens and the normal DOEs. This unique characteristic of HDEs has many special applications. For example, used as a lens, HDEs can achieve spectroscopy and imaging simultaneously in multiple harmonic wave-bands, which makes it possible to achieve the multi-band common-path and design the small-oriented diffractive-refractive optical systems. To make use of the special feature of HDE to simultaneously complete the dispersion and imaging, the HDE-based imaging spectroscopy is among the emerging multi-band imaging spectrometer technologies, which has many advantages such as spectral high resolution, compact structure, light weight, durable, cost-effective, easy to achieve the advantages of small size and light weight. Based on the diffractive optics and infrared optics, this dissertation is to study the performance of MWIR/LWIR Dual-band Stare Hyper spectral Imaging System Based on HDE. The prototype of MWIR/LWIR Dual-band Stare Hyper spectral Imaging System Based on HDE is designed and constructed; the corresponding experiments are carried out; and the spectral images of the experimental goals are got through this prototype. The results obtained with this prototype are identical with those theoretical predictions, which corroborates the effectiveness and feasibility of the HDEs in the spectral imaging system.
     In chapter one, the development history and applications of DOEs, the applications and prospects of MWIR/LWIR Dual-band systems are reviewed. The basic principles and the corresponding equipment types of the typical imaging spectrometer are summarized. The HDE-based staring hyper spectral imaging technology is a spectro-tomographic technique which integrates over a narrowband of the image cube which is a new concept of imaging spectrometer. So the general research direction and the basic research scheme are determined. In chapter two, the dispersion and imaging characteristics are introduced. It is pointed out the HDE is a special kind of DOE with unique dispersion characteristics. Chapter three describs in detail the theoretical knowledge of the HDE-based staring hyper spectral imaging technology, complets the derivation of the spectral resolution and line resolution, then gives their concrete expression. Two different kinds of the MWIR/LWIR dual-band imaging spectrometer system based on HDE are designed in Chapter four. The aberration theory and design process are described, and then the influence to the imaging quality of the system due to the fabrication errors of HDEs is analyzed. One high-resolution systems with a resolution of 24nm at wavelengthλ= 10 m and one medium-resolution system with a resolution of 72nm design at the wavelengthλ=8.5 m are designed. Finally the medium resolution system is chosen for the optical system of the prototype. Chapter five describs in detail the calibration theory of the MWIR/LWIR dual-band imaging spectrometer system based on the HDE and gives the calibration method. In Chapter six, the work principles of the prototype are presented, the experimental tests are described. The results obtained have good agreements with the theoretical predictions, which verifys the prototype's usability. Finally, the work is summarized and suggestions for future work are presented in Chapter Seven.
     In conclusion, the HDE-based hyper spectral imaging technology is feasible in theory and engineering. Operating at ultraviolet, visible, near infrared or thermal infrared wavelengths, binary optic imaging spectrometer is a practical image spectrometer for surveillance, remote sensing, medical imaging, law enforcement and environmental monitoring.
引文
[1] B . R . Brown and A . W . Lohman . Complex Spatial Filtering with binary masks[J]. Applied Optics,1966(5):967-968.
    [2] L . B . Lesem , et al . The kinoform : A new wavefront reconstruction device [J].IBM.J.Res.Develop,1969:150-155.
    [3] Veldkamp W B,McHugh T J.Binary optics[J].Scientific American,1992,266(5):92-97.
    [4] Lcgcr J,Holz M,Swanson G,et al.Coherent laser beam addition:An application of binary optics technology[J].Lincoln Lab.J.1988,1(2):225-246.
    [5] J.R.Birch,B.Tech,Ph.D.MlnstP and R.N.CLARKE, B.Sc.Dielectric and Optical measurements from 30 to 1000GHz[J].The Radio and Electric Engineer,1982,52(11/12): 565-584
    [6] M.A.Tarason,G.V.Prokopenko.Quasioptical Josephson Directors for Millimeter-wave Spectrum Analysis[J].SPIE,1994,2211:220-228
    [7] J.A.Galliano,R.H.Platt.The development of An Advanced Microwave Precipitation Radiometer for Future Airbone Measurements[J].SPIE,1986,1101:205-210.
    [8] Gabriel.M.Rebeiz,Wade G.Regehr. Integrated Circuit on thin membrane[J]. SPIE, 1987, 791:68-73.
    [9] Thomas J.Mchugh.Recent advance in binary optics[J].SPIE,1989,1052:85-91
    [10] P.B.Whibberley and J.R.Birch,The temperature variation of the near-mm wavelength optical constants of fluorosint[J].Infrared Phys.1989,29(6):995-996
    [11] J.R.Birch.The far infrared optical constants of polyethylene[J].Infrared Phys,1990,30(2):195-197
    [12]崔庆丰.《折衍射混合光学系统的研究》.中国科学院长春光机与物理研究所博士学位论文[J], 1994,4:3-19
    [13]金国藩等.二元光学[M].北京:国防工业出版社,1995:1-16
    [14] Veldkamp W B.Binary optics:McGraw-Hill Yearbook of science and Technology[J].NewYork,McGraw-Holland,1990,112-145
    [15] Michael,W.Farn.Effect of vlsi fabrication errors on kinoform efficiency[J].SPIE,1990,1211:125-136
    [16] J.A.Cox.Diffraction efficiency of binary optical elements[J].SPIE,1990,1211:116-124
    [17] R.E Sischer.Actively controlled 5:1 afocal zoom attachment for common module FLIR[J].SPIE,1990,1690:137-152
    [18] Thomas Stone and Nicholas George.Hybrid diffractive-refractive lenses and achromats [J].Appl.Opt,1988,27(14):2960-2971
    [19] Russell M.Hudyma and Thomas U.Kampe.Hybrid Refractive /diffractive Elements in lenses for Staring Focal Plane Arrays[J].SPIE,1992,1690:80-91
    [20] A P.Wood.Design of infrared hybrid refractive-diffractive lenses[J].Appl.Opt,1992,31(13):2253-2258
    [21] Carmina Londono and Peter P.Clark.Modeling diffraction efficiency effects when designing hybrid diffractive lens systems[J].Appl.Opt,1992,31(13): 2248-2252
    [22] Robert D.Sigler.Infrared catadioptric zoom relay telescope[J].1992,U.S.patent 5,114,238
    [23] Dale A.Buralli and G.Michael Morris.Effects of diffraction efficiency on the modulation transfer function of diffractive lenses[J].Appl.Opt.1992,31(22):4389-4396
    [24] Veldkamp W B, McHugh T J.Binary optics[J].Scientific American.1992,266(5):92-97
    [25] Morrison R L,Walker S L,Cloonan T J.Beam array generation and holographic interconnections in a free-space optical switching network[J].Appl.Opt,1993,32:2512-2518
    [26] Dean Faklis and G.Michael Morris.Spectral properties of multiorder diffractive lenses[J].Appl.Opt.1995,34(14):2462-2468
    [27] Donald W.Sweeney and Gary E.Sommargren.Harmonic diffractive lenses[J].Appl.Opt,1995,34(14):2469-2475
    [28] Walter Daschner. Fabrication of diffractive optical elements using a single optical exposure with a gray level mask[J].J.Vac.Sci.Technol.1995,B13(6),2729-2731
    [29] Donald C.O Shea and Willie S.Rockward.Gray-scale masks for diffractive-optics fabrication:Ⅱ.Spatially filtered halftone screens[J].Appl.Opt,1995,34,7518-7526
    [30] Thomas J.Suleski and Donald C.O’Shea.Gray-scale masks for diffractive-optics fabrication:Commercial slide imagers[J].Appl.Opt,1995,34:7507-7517
    [31] A.F.Goet.Imaging Spectrometry for Remote Sensing:Vision to Reality in 15 Years[J].SPIE,1995,2480:2-10
    [32] Walter Daschner. Fabrication of diffractive optical elements using a single optical exposure with a gray level mask[J].J.Vac.Sci.Technol,1995,B13(6):2729-2731
    [33] B.E.Bernack and A.C.Miller. Hybrid optics for the visible produced by bulk casting of sol-gel glass using diamond-turned molds[J].SPIE,1995,2536:463-474
    [34] R.L.Roncone and D.W.Sweehey.Cancellation of material dispersion in harmonic diffractive lenses[J].SPIE,1995,2404:81-87
    [35] Youngshik Yoon . Design and tolerancing of achromatic and ansstigmatic diffractive-refractive lens systems compared with equivalent conventional lens systems[J]. Appl. Opt, 2000,39(16):2551-2558
    [36] Josip Vukusic,J?rgen Bengtsson, Marco Ghisoni,et al.Fabrication and characterization of diffractive optical elements in InP for monolithic integration with surface-emitting components[J].Appl.Opt, 2000,39(3):398-401
    [37] Jun-ichi Kudo . Diffractive lens in 8- to 10- m forward-looking infrared system [J].Opt.Eng,2002,41(8):1787-1791
    [38] Michele Hinnrichs,Mard Massie.New Approach to Imaging Spectroscopy Using Diffractive Optics[J]. SPIE,1997,3118:194-205
    [39] Denise Lyons.Image Spectrometry with a Diffractive Optic[J].SPIE,1995,2480:123-131
    [40] Jeff Dozier.HIRIS-The High Resolution Imaging Spectrometer[J].SPIE,1988,924:23-30
    [41] Gregg Vane . First results from the Airborne Visible/infrared Imaging Spectrometer[J]. SPIE,1987,834:166-174
    [42]焦明印.衍射光学元件在红外成像系统中的应用[J].应用光学,2000,21(6):17-20.
    [43]张新.含二元光学元件的光学系统成像特性和设计方法[J].光学精密工程,1994,2(4):1-7.
    [44]姚永龙等.Damman光栅的优化设计-综合分析法.光子学报,1992(21):213-216.
    [45]孙强,卢振武,王肇圻,谐衍射/折射双波段系统设计[J].光学学报,2004, 24(6): 756-759.
    [46]樊仲维.光学系统中的二元光学元件[J].光学精密工程,1995,3(2):1-10.
    [47] B.T.科洛勃罗多夫.红外热成像[M].北京:航天工业总公司第三研究院三部、八三五八所联合翻译出版.2000.1-11
    [48]王永仲.现代军用光学技术[J].北京:科学出版社.2003,173~206.
    [49]苏君红.迎接红外技术新的挑战[J].红外技术,1999,21(4):3-6
    [50] Kimball P R,Fraser J C,Johnson J.Dual Band Optical System for IR Multicolor Signal Processing[J].Proceedings of SPIE,1991,1540:687-698.
    [51] Bender Matt,Beasley D.Design of a large pupil relief broadband collimator for use in a MMW/IR HWIL facility[J].Proceedings of SPIE,2000,4027:191-200.
    [52] Beach,David.Scalable MWIR and LWIR optical system designs employing a large spherical primary mirror and small refractive aberration correctors[J], Proceedings of SPIE, 2001, 4441:154-162.
    [53] Salas Luis,Gutierrez Leonel,Tapia Mauricio,et al.A dual infrared camera for near and mid infrared observations, Proceedings of SPIE, 2002, 4841: 594-599.
    [54] Schreer O,López Sáenza M,Peppermüller Ch,et al.Helicopter-Borne Dual-Band Dual-FPA System[J], Proceedings of SPIE, 2003, 5074, 637-647.
    [55] Brian Catanzaro,Mark Dombrowski,Jeff Hendrixson,et al.Design of Dual Band SWIR/MWIR and MWIR/LWIR Imagers[J],Proceedings of SPIE,2004,5406:829-835.
    [56] Michele Hinnrichs,George M.Morris.IMAGE MULTISPECTRAL SENSING[P].United States Patent,No.5479258.
    [57] New Approach toImaging Spectroscopy Using Diffractive Optics[J].SPIE,2000,3118:194-205.
    [58] Michele Hinnrichs,James Jensen,et al.Hand Held hyperspectral imager for standoff detection of chemical and biological aerosols[J].SPIE,2004,5268:67-77.
    [59] Michele Hinnrichs , Neelam Gupta , Arnold Goldberg . Dual band (MWIR/LWIR)Hyperspectral Imager[J].IEEE,2003.
    [60] Dale J.Smith,Neelam Gupta.Data collection with a dual-band infrared hypperspectral image[J].SPIE,2005,5881:588106-1-588106-11.
    [61] Goetz A.F.H.Imaging spectrometry for remote sensing: Vision to reality in 15 years.Pro.SPIE , 1995,2480:2-13.
    [62] Descour M.R.,Mooney J.M.,Perry D.L.Imaging Spectrometry[J].Pro.SPIE,1995,2480:141-152.
    [63]陈述彭,童庆禧,郭华东.遥感信息机理研究[M].北京:科学出版社,1998,139-212.
    [64] Clayton Labaw . Airborne imaging spectrometer : an advanced concept instrument(JPL). SPIE, 1983,480:68-74.
    [65] Wallace M.Porter, Harry T.Enmark, et al.A system overview of the airborne visible/infrared imaging spectrometer(AVIRIS) [J].SPIE,1987,834:22-31.
    [66] S.K.Babey,C.D.Anger.Compact airborne spectrographic imager(CASI) [J].SPIE,1993,1937:142-151.
    [67] Robert O.Green,et al.Airborn visible/infrared imaging spectrometer(AVIRIS) recent improvements to the sensor and data facility [J].SPIE,1993,1937:180-190.
    [68] Lee J.Rickard, et al.HYDICE:an airborne system of hyperspectral imaging[J].SPIE,1993,1937:173-179.
    [69] Bart Browm, et al.Design and first test result of the finish airborn imaging spectrometer for different applications, AISA[J].SPIE, 1993,1937:142-151.
    [70]龚惠兴.德国的遥感[J].遥感技术及应用,1993,第八卷,第1期.
    [71] J.E. Conel. AIS radiometry and the problem of contamination from mixed spectral orders[J].Remote Sensing of Environment,1988,24:179-200.
    [72] Gao Bocai, F.H.Alexande.Retrieval of equivalent water thickness and information related to biochemical components of vegetation canopies from AVIRIS data[J].Remote Sensing of Environment,1995,52:179-200.
    [73] R. Basedow, D.Carmer.HYDICE system, implementation and performance[J].SPIE, 1995,2480:258-261.
    [74] M.Descour, et al.Computed-tomography imaging spectrometer:experimentak calibrationand reconstruction results[J].Applied Optics, 1995(34):4817-4826.
    [75]刘良云,相里斌等.计算层析成像光谱仪的仿真研究[J].光学学报,2000,20(6):805-809.
    [76] Michael R.Descour, et al. Demonstration of a computed-tomography imaging spectrometer using a computer-generated hologram disperser[J]. Applied Optics,1997,36:3694-3698.
    [77] Descour M . R ., Dereniak E . L .. Nonscanning no-moving-parts image spectrometer[J].SPIE,1995,2480:48-64.
    [78] Michele Hinnrichs,Mark A.Massie.Image multispectral sensing: A new and innovative instrument for hyperspectral imaging using dispersive techniques[J].SPIE,1995,2480:93-104.
    [79] Denise Lyons.Image Spectrometry with a Diffractive Optic[J].SPIE,1995,2480:123-131.
    [80] Massie , Michele Hinnrichs . An Infrared Hyper-Imaging Spectrometer for Missile Seekers[J].AIAA/BMDO Interceptor Technology Conference,San Diego,July 1994.
    [81] Denise M.Lyons,Kevin Whitcomb.Characterization of the DOIS prototype:a diffractive optic image spectrometer[J].SPIE,1996,2819:206-217.
    [82] Morris G M. Diffraction theory for an achromatic fourier transform[J].Appl.Opt.1981,20(9):2017-2023.
    [83] Stone T,Gerorge N.Hybrid diffractive-refractive lenses and achromats[J].Appl.Opt,1988,27(14):2962-2969.
    [84] Denise Lyons. Image Spectrometry with a Diffractive Optic[J].SPIE,1995,2480:123-131.
    [85] Dale A.Buralli and G.Michael Morris.Design of diffractive singlets for monochromatic imaging[J].Applied Optics,1991,30:2151-158.
    [86]王之江.光学设计基础[M].北京:科学出版社.1965.21-24.
    [87] W.T.威尔福特.对称光学系统的像差[M].北京:科学出版社.1982.218-221.
    [88]王之江.光学设计理论基础[M].北京:科学出版社.1965.171~173.
    [89]金国藩等.二元光学[M].北京:国防工业出版社,1995:51-76.
    [90] Gregory P.Behrmann,John P.Bowen.Influence of temperature on diffractive lensperformance[J].Appl.Opt.1993,32(14):2483-2489.
    [91] Dean Faklis and G.Michael Morris.Spectral properties of multiorder diffractive lenses[J].. Appl.Opt.1995,34(14):2462-2468.
    [92] Donald W . Sweeney and Gary E . Sommargren . Harmonic diffractive lenses[J]. Appl.Opt,1995,34(14):2469-2475.
    [93] DUBREUILL D, BAUDRAND.Optical design for the 5-28 m NGST infrared imager of MIRI [J] .SPIE ,2003,4850:564-573.
    [94] PAMELA S D, MATTEW R B.Focus determination for the James Webb Telescope Instruments:A Survey of Methods [J].SPIE , 2003, 265:626512(1)- 626512(11) .
    [95]董科研,潘玉龙,王学进,等.谐衍射红外双波段双焦光学系统设计[J].光学精密工程,2008, 16(5):764-770.
    [96]刘英,潘玉龙,王学进,等.谐衍射/折射太赫兹多波段成像系统设计[J].光学精密工程,2008,16(11):2065-2071.
    [97] Wolf E,Born M. Principles of Optics[M].Cambridge:Cambridge University,1981,439-450.
    [98] D.A.Agard.Optical sectioning microscopy[J].Ann.Rev.Biophys.Bioeng.1984,13:191-219.
    [99] T.J.Holmes.Maximum-likelihood image restoration adapted for noncoherent optical imaging[J].Journal of the Optical Society of America A,1998,5(5):666-673.
    [100] McNally J G,et al.Three dimensional imaging by deconvolution microscopy [J].Methods,1999,19:373-385.
    [101] McNally J G, et al. Comparing methods for 3D microscopy[J]. SPIE,1998,3216: 108-116.
    [102]李睿凡,施发刚等.三维反卷积显微成像技术[J].光电子技术与信息,2001,14(2):35-39.
    [103] Preza C,Miller M I,Thomas L J.Regularized linear method for reconstruction of
    [104] Agard D.A.,Hiraoka Y.,et al.Three-dimensional microscopy:image processing for high resolution subcellular imaging[J].SPIE,1989,1161: 24-30.
    [105] Sezan M . I ., Tekalp A . M . Survey of recent developments in digital imagerestoration[J].Optical Engineering,1990,295:393-404.
    [106]于斌.利用二元光学透镜轴向色散的凝视光谱成像性能研究[J].中国科学院研究生院博士学位论文,2003,57-63.
    [107]吴文建等译.地面目标和北京的热红外特性[M].2004,16-21.
    [108]李晓彤,岑兆丰.几何像差.像差.光学设计[M].2003,142-148.
    [109]张以谟.应用光学[M].机械工业出版社.1982,331-335.
    [110]袁旭沧.光学设计[M].北京理工大学出版社.1988,295-317.
    [111]王之江.光学设计理论基础[M].北京:科学出版社.1965.171~173.
    [112]潘军骅.光学非球面的设计、加工与检验[M].苏州大学出版社.2004,1-10.
    [113]刘均,高明.光学设计[M].西安电子科技大学出版社.2006,77-95.
    [114]萧泽新.工程光学设计[M].电子工业出版社.2003,7-36.
    [115] Walter Daschner. Fabrication of diffractive optical elements using a single optical exposure with a gray level mask[J]. J.Vac.Sci.Technol.1995,B13(6),2729-2731.
    [116] Donald C.O Shea and Willie S.Rockward.Gray-scale masks for diffractive-optics fabrication:Ⅱ. Spatially filtered halftone screens[J].Appl.Opt, 1995,34,7518-7526.
    [117] Thomas J.Suleski and Donald C.O’Shea.Gray-scale masks for diffractive-optics fabrication:Ⅰ.Commercial slide imagers[J].Appl.Opt,1995,34:7507-7517.
    [118] A.F.Goet.Imaging Spectrometry for Remote Sensing:Vision to Reality in 15 Years[J].SPIE,1995,2480:2-10.
    [119] Walter Daschner.Fabrication of diffractive optical elements using a single optical exposure with a gray level mask[J].J.Vac.Sci.Technol,1995,B13(6):2729-2731.
    [120] B.E.Bernack and A.C.Miller.Hybrid optics for the visible produced by bulk casting of sol-gel glass using diamond-turned molds[J]. SPIE, 1995,2536:463-474.
    [121] R.L.Roncone and D.W.Sweehey.Cancellation of material dispersion in harmonic diffractive lenses[J].SPIE,1995,2404:81-87.
    [122]顾名澧.多光谱扫描仪的星上辐射定标系统[J].航天返回与遥感,1998,19(3):21-25.
    [123]童庆喜,张兵,郑兰芬.高光谱遥感的多学科应用[M].北京:国防工业出版社,2006,1-51.
    [124]杨宜禾.岳敏.红外系统[M].北京:国防工业出版社,1985,240-247.
    [125] Chris Kauffman , John Madigan , William Pfister : Static image system MRTD modeling[J].SPIE,1998,3377:83-88.
    [126]杨宜.成像光谱仪光谱定标技术[J].红外,27(8):24-26.
    [127]朱启海,李宪圣等.双通道红外光谱辐射计的研制及定标[J].光学技术,2006,32(5):773-775.
    [128]崔敦杰.成象光谱仪的定标[J].遥感技术与应用,1996,ll(3):56-64.
    [129] Marc D.Mermelstein,Keith A.Snai,Richard G.Priest.Spectral and radiometric calibration of midwave and longwave infrared cameras [J].Opt.Eng.2000,39(2) :347–352.
    [130]孙学金,刘剑等.非制冷红外焦平面阵列的辐射定标模型[J].解放军理工大学学报,2008,9(4):399-403.
    [131]殷世民,相里斌等.辐射源定标红外焦平面阵列非均匀性校正算法研究[J].光子学报,2008,37(5):992-995.
    [132] SHAW A J,NUGENT P W,PUST J N,et a1.Radiometric cloud imaging with an uncooled microbolometer thermal infrared camera[J].Optics Express,2005,13(15):5807-5817.
    [133] AMIR Averbuch,GABI Liron,BEN Zion Bobrovsky.Scene based non-uniformity correction inthermal images using Kalman filter[J].Image and Vision Comouting,2007,25:833-851.
    [134]侯和坤.红外凝视成像系统辐射定标的研究.中国科学院研究生院硕士学位论文,2004,38~44.
    [135]马宏,王金波.误差理论与仪器精度[M].兵器工业出版社,2007,118~121.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700