宽视场大面阵CCD相机图像采集与处理系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航空航天相机在对地侦察、目标测绘等方面对图像信息量的需求越来越大,大面阵CCD相机已经逐步应用到航天和航空摄影测量中,由于目前大面阵CCD制作工艺的限制,多片大面阵拼接的方法成为目前先进航空航天相机的主要发展方向。同时在很多应用中,用户对图像质量的要求也越来越高。针对航空航天相机的这些发展方向,本文以行间转移型面阵CCDKAI-16000作为研究对象,深入研究了大面阵CCD高速信号处理、CCD响应非均匀性校正、CCD自动调光、CCD相机图像恢复等问题。
     详细分析了行间转移面阵CCDKAI-16000的内部结构和工作原理,设计了满足大面阵行间转移CCD的驱动电路。在此基础上提出了一种高速图像采集方案,包括CCD视频信号处理、图像缓存、图像传输和显示等。该方案支持最大像素时钟可以达到27MHz,最大帧频可达每秒3帧的双面阵CCD拼接成像系统。
     深入分析了行间转移面阵CCDKAI-16000响应非均匀性产生的原因,并建立了一种响应非均匀性检测系统。利用该系统分别对双面阵片间的非均匀性和每个像元之间的非均匀性进行了检测,在CCD响应度为线性的基础上,提出了两点校正算法并对非均匀性进行了校正。通过校正,片间响应灵敏度的标准偏差降低到校正前的1/13,所有像元之间的响应非均匀性降低到校正前的1/10,双路面阵CCD的非均匀性得到了明显的改善。
     在航空航天相机拍摄过程中,常常遇到由于曝光时间不足或曝光时间过长而导致图像质量下降的问题。因此需要对拍摄中的相机进行调光。本文提出了基于行间转移面阵CCD结构的TDI调光方法,实现了宽视场大面阵CCD相机自动调光。实验证明:在调光模式下,CCD相机动态范围比无调光模式增大20倍。
     针对反射镜拼接过程中渐晕现象,分析渐晕产生机理,提出了反射镜拼接结构中视场中心渐晕光场分布数学模型,利用辐射定标数据,采用函数逼近法消除渐晕现象,改善图像质量。利用干涉仪测量光学系统点扩散函数,采用自适应维纳滤波方法,消除光学系统自身降质给图像带来的退化,对外场成像图片进行恢复结果表明,图像PSNR由26.5dB上升到31.6dB。图像清晰图明显提升。
When the aerospace camera works for the ground reconnaissance, the target mappingand the other aspect, with the demand for the image information content is more and more great.The large area CCD camera has been gradually applied to the photogrammetry in the aerospace and aviation. Due to the fabrication process restrictions of the large area CCD, multi-chip CCD joint method is the main development direction of the currently advanced aerospace camera. At the same time in many applications, users’demand for the image quality also increasing. At the point of the aerospace camera which is using for the direction of these developments, this paper took the interline CCD KAI-16000 as the study object,in-depth study of the large array CCD high-speed signal processing, the non-uniformity correction of the CCD response, the CCD auto-dimming, and the recovery of the CCD camera image.
     In the paper, we had the detailed analysis of the interline transfer area CCD KAI-16000's internal structure and working principle.On this foundation we put forward a kind of with high speed image collection scheme including CCD video signal handling and image to postpone store, image transmission and show etc. This scheme supported that the biggest pixel clock of area CCD can reach 27MHz, and the fastest frame frequency can reach 3 frame per second.
     The reasons, which cause the response non-uniformity of full frame area KAI-16000, were analyzed completely. And a kind of respond non-uniformity detecting system was established. Non-uniformity between the two area CCD and non-uniformity between all pixels had been carried out detection and correction using this system. Two-point correction arithmetic had been put forward for Non-uniformity correction on CCD response degree for linear foundation. After correcting, the standard deviation of response sensitivity reduction arrived original 1/13, and the response non-uniformity of all pixels reduction arrived original 1/10. Non-uniformity of area KAI-16000 had gotten obvious improvement.
     When the aerospace camera works, we often face to the problem that the image quality has been declined by the too short or too long exposure time. Therefore need to take the camera dimming. Between the lines proposed in this paper we put forward the TDI dimming method which is based on the structure of the interline transfer area CCD,and then we achieve the wide field of large area CCD camera automatically dimming. Experiments proved that: in the dimming mode, the dynamic range of the CCD camera was 20 times larger than the non-dimming mode.
     At the point of the vignetting phenomenon in the reflection joint,we analysed the vignetting generation mechanism and proposed the model of the vignetting distribution in the middle of the optical field.Using the data from the radialization calibration and the function approximation method to eliminate vignetting phenomenon. We got the optical point spread function by using the Interferometer measurement system.Using the adaptive Wiener filter to eliminate the image quality degradation which is caused by the optical system itself problem.The results of the restoration outfield image indicated that:the PSNR had increased from 26.5dB to 31.6 dB.The definition of the image had promoted obviously.
引文
[1]王庆有.图像传感器应用技术[M].北京:电子工业出版社,2003.
    [2]蔡文贵. CCD技术及应用[M].北京:电子工业出版社,1994.
    [3]林家明,杨隆荣. CCD摄像机技术的发展趋势及应用前景[J].光学技术,1999,(6):43~47.
    [4]杨秉新.国外航天侦察相机和测绘相机发展概况[J].航天返回与遥感,1998,19(2):16~24.
    [5]韩卫华,钱光弟.CCD图像传感器新技术与发展方向[J].声屏世界,2007,2:70~71.
    [6]程开富.CCD图像传感器在军用武器装备中的应用[J].集成电路通讯,2003,25(1):40~42.
    [7]赵育良,许兆林,李开端.航空CCD光电侦查系统的发展现状及展望[J].光电子技术,2001,25(4):290~293
    [8] Eric R. Fossum. Assessment of image sensor technology for future NASA missions[C]. Proc.SPIE,1994,2172:38~53.
    [9]郝云彩.轻型CCD相机[J].航天返回与遥感,1997,18(1):38~44.
    [10]郝云彩,杨秉新.长焦距TDI CCD遥感器光学系统的特点和发展趋势[J].航天返回与遥感,1999,20(1):13~19.
    [11] J. C. Mullikin et al. Methods for CCD Camera Characterization[C]. Proc.SPIE,1994,1468:73~83.
    [12]王慧.面阵CCD航测相机成像模型与处理技术[D]: [硕士论文].2006,4:3~9.
    [13]王树文.关于数字航摄相机DMC若干问题的探讨及研究[J].影响技术.2007(5):52~55
    [14]王庆有. CCD器件原理与应用[M].天津:天津大学出版社,1994.
    [15]邹谋炎反卷积和信号复原第1版北京国防工业出版社2001年3月:184
    [16] Lee H.C Review of image-blur models in a photographic system using the principles of optics. Opt.Eng.,1990,29(4)
    [17] Pavlovic G,Tekalp A M,Restoration in the presence of multiplicative noise with application to scanned photographic images.Proc.IEEE Int.Conf.on ASSP.1990
    [18]杨朝霞,逯峰,田芊.小波构造变正则参数变分模型在带噪图像恢复中的应用[J].计算机辅助设计与图形学学报,2004,16(12):1645-1650.
    [19] Data Sheet,CCD KAI-16000 Interline transfer area CCD Image Sensor. America:KODAK Imaging,1998.
    [20]盛翠霞,张涛,纪晶.高分辨率CCD芯片FTF4052M的驱动系统设计.光学精密工程,2007,15(4):564~569.
    [21]刘光昌,陈欣. CCD驱动电路设计的新方法[J].半导体光电,1997,18(4):232~235.
    [22]许秀贞,李自田,薛利军.CCD噪声分析及处理技术[J].红外与激光工程,2004,33(4):343~347.
    [23]李刚,周彦平. CCD图像传感器件的输出噪声及其处理电路研究[J].检测与制作,2007,4:25~27
    [24]李云飞,李敏杰,司国良,郭永飞. TDI_CCD图像传感器的噪声分析与处理[J].光学精密工程,2007,8(15):
    [25] Kenneth P.Klaasen. Inflight performance characteristics,calibration,and utilization of the Galileo solid state imaging camera[J]. Opt.Eng,1997, 36(11):3001~3027.
    [26] Peter E.Doherty,Douglas W.Donaghue. High speed,precision,slow scan CCD cameras[C]. Proc. SPIE,1993,1901:46~63.
    [27] James S.flores. An analytical depletion mode MOSFET model for analysis of CCD output characteristics[C]. Proc.SPIE,1992,1656:466~475.
    [28]周祖成,茅于海.电荷耦合器件在信号处理图像传感中的应用.北京:清华大学出版社,1991,207~209.
    [29]郭伟强,万志,常磊,金龙旭,任建岳.面阵CCD信号采集系统的噪声抑制[J].发光学报.2008(2):204~208.
    [30]张健,张伯珩,边川平,李露遥.CCD信号处理的滤波器设计[J].航天返回与遥感.2006(12):49~52.
    [31]陈智,丘岳红,董佳. CCD图像传感器及其视频信号处理电路的应用[J].科学技术与工程.2006(6):1481~1484.
    [32]杨琪.相关双采样电路的研究和进展[J].半导体光电,1989,10(4):5~10.
    [33] DATASHEET XRD98L59
    [34]佟首峰,阮锦,郝志航.几种相关双采样拓扑电路分析[J].半导体光电,2000,21(5):358~362.
    [35] Perter D. Burns. Image signal Modulation and Noise Characteristics of charge.coupled.device imgers[C]. Proc.SPIE,1989,1071:144~15.
    [36] H.Kim,M.M.Blouke. Effects of transsistor geometry on CCD output sensitivity[C].Proc SPIE,1990,1242:195~203.
    [37] G R Hopkinson,D H Lumb. Noise reduction techniques for CCD image sensors[J]. Phys. E:Sci.Instrum,1982,15(2):25~30.
    [38] William D.Washkurak. High speed , low noise , fine resolution TDI CCD imagers[C].Proc.SPIE, 1990,1242:252~263.
    [39]张星祥,任建岳.TDICCD焦平面的机械交错拼接.光学学报,2006,26(5):740-745.
    [40]陈奋,赵忠明.遥感影像反卷积复原处理.数据采集与处理,2008,23(2):168-175.
    [41]徐定杰,王秉刚,王武义,袁哲俊.测量卫星相机用的CCD拼接误差.计量技术,1999,1:22-24.
    [42]陈国强,赵俊伟.基于MATLAB的直线度误差精确评定.机床与液压,No.2,154.
    [43]周如辉.实时视频处理系统中乒乓缓存控制器的设计[J].电子元器件应用,2006(4):67~69.
    [44]王淑静,史忠科.乒乓缓存及其在DSP视频实时处理系统中的应用[J].工业仪表与自动化装置,2008(1):42~45.
    [45] ALTERA FPGA/CPLD设计王诚,吴继华,范丽珍等著EDA先锋工作室
    [46]刘邦函.线阵CCD摄像器件非均匀性的电路处理[J].半导体光电,1983,(2):38~41.
    [47]王钰,陈钱,殷徳奎等.实时红外图像非均匀性校正技术研究.红外与毫米波学报,1993,12 (3),151~155.
    [48]高云,邬鸣敏,周起勃.凝视红外焦平面CCD非均匀性校正.红外与毫米波学报,1993,12(3),169~175.
    [49] Satoru C.Tanaka. A high resolution low light image infensified[C].Proc.SPIE, 1991,1448:21~26.
    [50]王军,杨会岭.多CCD拼接相机中图像传感器不均匀性校正.半导体光电,2005,26(3):261~263.
    [51]任建伟,万志,李宪圣,任建岳.空间光学遥感器的辐射传递特性与校正方法[J].光学精密工程.2007(8):1186~1190.
    [52]薛君敖,李在清等.光辐射测量和方法[M].北京:计量出版社,1980:158~190.
    [53]庞长富,刘榴娣. CCD摄像机用于测量中存在的问题及解决方法[J].光学技术,1996,(2):5~8.
    [54]林智准.CCD最佳工作状态的研究[J].半导体光电,1985,(4):35~41.
    [55]翁东山,危峻.空间监视相机的自动调光系统设计[J].科学技术与工程.2006(10):3061~3062.
    [56]杨耀文.现代经纬仪的自动调光系统[J].长春光学精密机械学院学报,1996(3):33~36.
    [57]金龙旭,吕增明,熊经武. CCD摄像机全自动调光系统[J].光学精密工程.2002(12):587~591.
    [58]许兆林,张国栋.机载相机自动调光系统的设计与实现[J].自动化与仪器仪表.2008(1):24~28
    [59]关澈,王延杰. CCD相机实时自动调光系统[J].光学精密工程.2008(2):358~365.
    [60]苏宏武,杨小君等.基于平均和峰值灰度加权的自动调光系统[J].光子学报.2006(1):158~160
    [61]张丽,汤恩生,许静旺.空间相机像移补偿方法研究[J].航天返回与遥感.2007(9):19~23.
    [62]李清军.面阵CCD相机像移补偿技术[J]计算机测量与控制.2008.16(12):1951~1956.
    [63]詹磊,丁亚林,张洪文,刘虎.一种斜视画幅遥感相机异速像移计算与补偿实现[J].激光与红外.2009(4):423~427.
    [64]王德江,匡海鹏,蔡希昌等.TDI-CCD全景航空相机前向像移补偿的数字实现方法[J]光学精密工程,2008,16(12):2465(in Chinese)
    [65]周怀得,刘海英,徐东,等.行间转移面阵CCD的TDI工作方式研究[J].光学精密工程,2008,16:1629-1634.
    [66]万志,任建伟,李宪圣等.探测海洋目标的光学遥感器工作波段选择[J].光学精密工程,2008(10).1863~1868.
    [67]空间相机设计与实验陈世平宇航出版社2003
    [68]郁道银,谈恒英.工程光学.第二版.机械工业出版社,2006.2.
    [69]姚启钧.光学教程.第四版.高等教育出版社.2008.6.
    [70]梁华秋,张永炬.直边衍射光强分布的实验验证[J].大学物理实验,2002(9):9~12
    [71]钱晓凡,胡涛,张晔.基于MATLAB的衍射场模拟计算[J].昆明理工大学学报(理工版),2004(6):132~135.
    [72]祁建霞,董军,苗润才.利用改进型衍射理论对直边衍射效应的解释[J].光子学报,2007(6):91~92.
    [73]光学工程基础,王志坚,刘冬梅,付跃刚著.兵器工业出版社2005年
    [74]何凯,赵红颖,刘晶晶.航空遥感影像渐晕复原方法[J].吉林大学学报(工学版),2007,37(6):1447-1450.
    [75]冯强,霍俊彦,杨海涛.一种新颖的图像抗渐晕技术[J].电子科技,2007,10:67-70.
    [76] Wonpil Yu .Practical anti-vignetting methods for digital cameras[C].IEEE.975~983.
    [77] Yu-Na Kim, Dong-Gyu Sim.Vignetting and Illumination Compensation for Omni-Directional Image Generation on Spherical Coord[C].IEEE.on computer society.2006.
    [78] Kai He, Ping-Fan Tang, Ran Liang. Vignetting Image Correction Based on Gaussian Quadrics Fitting.[C]IEEE. 2009 Fifth International Conference on Natural Computation
    [79]许殿元,丁树柏.遥感图像信息处理,北京:宇航出版社,1990.
    [80]麦伟麟,光学传递函数及其数理基础.国防工业出版社,1978.
    [81]庄松林,钱振邦,光学传递函数,北京:机械工业出版社,1981.
    [82]陈强,戴奇岩,夏德深,基于MTF理论的遥感图像复原[J],图形图像学报.2004(6):123~127.
    [83]王风鹏.用CCD测定光学系统的点扩散函数[J].赣南师范学院学报,2005(6):17~19.
    [84]江月松,邱志伟,李铮.点扩散函数的一维数值计算及其MATLAB实现[J].红外与激光工程:2004(8):405~408.
    [85]汪源源,孙志民,蔡铮.改进的奇异值分解法估计图像点扩散函数[J].光学精密工程2006(6):520~524
    [86] Andrews H C,Hunt B R.Digital image restoration[M].Englewood Cliffs,NJ: Prentice-Hall,1977
    [87] Katsaggelos A K.Digital image restoration[M].Berlin,Germany:Springer Verlag, 1991
    [88] Banham M R,Katsaggelos A K.Digital image restoration[J].IEEE Signal Processing Magazine,1997,14(2):24~41
    [89]汪雪林,韩华,彭思龙.基于小波域局部高斯模型的图像复原[J].软件学报, 2004,15(3):444~449
    [90]章毓晋.图像处理和分析.北京[M]:清华大学出版社,1999
    [91]汪之江,伍树东.成像光学[M].北京:科学出版社,1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700