用于空间大气遥感的临边成像光谱仪研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气的探测和研究是地球和空间科学界共同关注的热点课题,用于空间大气遥感的临边成像光谱仪是一种新型空间光学遥感仪器。本文根据空间平台上对地球临边大气探测的应用要求,设计出一种结构紧凑的临边成像光谱仪光学系统,它由前置光学系统和光谱成像系统两部分组成,工作波段540-780nm(利用光栅的一级光谱)和270-390nm(利用光栅的二级光谱),通过转轮切换紫外/可见滤光片实现紫外/可见两个波段分别探测。根据前置光学系统覆盖的波段宽(270-780nm)且涵盖紫外波段的要求,分别设计出采用离轴抛物面镜的反射式和宽波段消色差折射式前置光学系统。光谱成像系统的设计选择平面光栅作为色散元件,在深入研究Czerny-Turner光谱成像系统像差校正的基础上,从宽波段像差同时校正和像散校正两方面对传统的Czerny-Turner结构进行了改进。采用改进的Czerny-Turner结构作为光谱成像系统的结构型式,设计出临边成像光谱仪的光谱成像系统。分别将反射式和折射式前置光学系统与改进的Czerny-Turner光谱成像系统匹配,设计出临边成像光谱仪全系统,两方案均满足设计指标要求。折射式前置光学系统可以避免非球面的使用,便于加工和装调。反射式前置光学系统可以减少光学元件的数量,能量利用率高,但加工有一定的难度。
     为方便加工和装调,本文研制的临边成像光谱仪原理样机采用宽波段消色差折射式前置光学系统与改进的Czerny-Turner光谱成像系统匹配组成的光学结构。研究了临边成像光谱仪原理样机光学系统的光谱辐射传输特性,对原理样机的信噪比进行了分析和估算,结果满足应用要求。编制了数据采集和处理软件,设计了机械结构,研制出临边成像光谱仪原理样机并进行了性能评价、波长定标和辐射定标,空间分辨率为0.44mrad,光谱分辨率为1.3nm(在632.8nm处)。波长定标精度优于0.12nm。利用积分球定标方法,标定了原理样机的光谱辐亮度响应度,消除了漫反射板的双向反射率分布函数(BRDF)的测量不确定度对定标精度的影响,定标合成不确定度为2.4%,从而实现了空间遥感临边成像光谱仪高精度辐射定标。以上性能评价结果和定标结果均满足指标要求。临边成像光谱仪原理样机的成功研制,填补了国内空白,为下一步工程样机的研制和最终实现临边成像光谱探测新技术在我国空间大气遥感领域的应用奠定了技术基础。
Atmospheric sounding and research are the hot subjects which the earth and space scientific communities pay attention together. Limb imaging spectrometer for space-based atmospheric remote sensing is a new type space optics remote sensing instrument. In this paper, according to the application requirement to sound earth limb atmosphere on spatial platform, a compact optical system of limb imaging spectrometer is designed. It is composed of fore optical system and spectral imaging system. The spectral range is from 540nm to 780nm (using 1st order of the grating) and from 270nm to 390nm (using 2nd order of the grating). The limb imaging spectrometer records images of atmospheric limb from 540nm to 780nm when the visible filter is in place and from 270nm to 390nm when the UV filter is in place. The fore optical system not only covers a wide band (from 270nm to 780), but also includes UV band. The reflective and refractive fore optical systems are designed. The plane grating is choosed as the dispersion element of spectral imaging system. The traditional Czerny-Turner configuration is modified in broad band aberration correction simultaneity and astigmatism correction based on the study on the aberration correction in Czerny-Turner spectral imaging system. The spectral imaging system is designed using the modified Czerny-Turner configuration. Optical systems of limb imaging spectrometer are designed with reflective and refractive fore optical systems matched with the modified Czerny-Turner spectral imaging system. Both schemes can satisfy the design requirement. The refractive fore optical system can avoid of using aspheric surface, therefore it is advantagesous for fabrication and alignment. The reflective fore optical system can reduce the amount of optical elements, so the energy usage ratio is high, but its fabrication is difficult.
     For the convenience of fabrication and alignment, the limb imaging spectrometer prototype uses the refractive fore optical system matched with the modified Czerny-Turner spectral imaging system. The spectroradiometric transfer characteristic of optical system is researched, and the SNR of the prototype is analyzed and estimated. The data acquisition and processing software is programmed, and the mechanism is designed. The limb imaging spectrometer prototype is developed, and performance evaluation, wavelength calibration and radiometric calibration are performed. The spatial resolution is 0.44mard, spectral resolution is 1.3nm (at 632.8nm), and wavelength calibration precision is 0.12nm. Using an integrating sphere, the spectral radiance responsivities of the prototype is calibrated. The effect of the uncertainties in measurements of bidirectional reflectance distribution function (BRDF) of the diffuser is eliminated and the composite uncertainty is 2.4%, so high precision radiometric calibration of limb imaging spectrometer for space-based remote sensing is achieved. The performance evaluation and calibration results satisfy requirements. The successful development of the prototype fills up domestic blank, and provides technical foundations for development of engineering prototype and application of limb imaging spectral technique in space-based atmospheric remote sensing in our country in future.
引文
[1]邱金桓,王普才,夏祥鳌,等.近年来大气遥感研究进展[J].大气科学,2008,32(4):841-853.
    [2]吕达仁,王英鉴.中国中层大气研究的近期进展[J].地球物理学报,37(增刊1):74-84.
    [3]邱金桓,陈洪滨,王普才,等.大气遥感研究展望[J].大气科学,2005,29(1):131-136.
    [4]吕达仁,王普才,邱金桓,等.大气遥感与卫星气象学研究的进展与回顾[J].大气科学,2003,27(4):552-556.
    [5]王革丽,吕达仁,杨培才.人类活动对大气臭氧层的影响[J].地球科学进展,2009,24(3):331-337.
    [6]郭品文,朱乾根,刘宣飞.北半球春季大气臭氧年际变化特征及其对大气温度和环流场的影响[J].高原气象,2001,20(3):245-251.
    [7] Chen Shenbo. A new technique for atmospheric chemistry observations[J].SPIE, 2006, 6031(60310R):1-7.
    [8] Park H,Krueger A, Hilaenrath E, et al. Radiometric calibration of sencond generation Total Ozone Mapping Spectrometer(TOMS)[J]. SPIE, 1996, 2820:162-173.
    [9] Haring, R E, Williams F L, Hartmann U G et al. Spectral band calibration of the Total Ozone Mapping Spectrometer(TOMS) using a tunable laser technique[J]. SPIE, 2004, 4135:421-431.
    [10] Park H, Habib S, Cunningham F G, et al. Joint Russian-USA Meteor-3M(2)/TOMS-5 Mission[J]. SPIE, 1998, 3498:458-464.
    [11] Hearth D F, Krueger A J, Roeder H A, et al. The solar backscatter ultraviolet and Total Ozone Mapping Spectrometer(SBUV/TOMS) for NIMBUS G[J]. Optical Engineering, 1975, 14(4):323-331.
    [12] Cebula R P, Park H, Heath D F. Characterization of the Nimbus-7 SBUV radiometer for the long-term monitoring of the stratospheric ozone[J]. Journal of Atmospheric and Oceanic Technology, 1988, 5:215-227.
    [13] Weiss H, Cebula R P, Laamann K, et al. Evaluation of NOAA-11 Solar Backscatter Ultraviolet Radiometer, Mod 2 (SBUV/2): in flight calibration[J]. SPIE, 1991, 1493:80-90.
    [14] Hahne A, Lefebvre A, Callies J. Global Ozone Monitoring Experiment (GOME) on board of ERS 2[J]. SPIE, 1992, 1715: 594-607.
    [15] Mariani A, Corpaccioli E, Fibbi M, et al. GOME: a spectrometer for ozone monitoring from space[J]. SPIE, 1994, 2209: 57-67.
    [16] Kamperman T M, Goede A P H, Gunsing C J T, et al. GOME instrument simulation[J]. SPIE, 1992, 1715: 562-572.
    [17] Vries J, Voors R, Dirksen R, et al. In-orbit performance of the Ozone MonitoringInstrument[J]. SPIE, 2005, 5978(59780T): 1-12.
    [18] Ahmad S P, Levelt P F, Bhartia P K, et al. Atmospheric products from the Ozone Monitoring Instrument(OMI)[J]. SPIE, 2003, 5151: 619-630.
    [19] Dobber M, Dirksen R, Levelt P, et al. EOS-Aura Ozone Monitoring Instrument in-flight performance and calibration[J]. SPIE, 2006, 6296(62960R): 1-12.
    [20] Vries J D, Oord Gijsbertus H J van den, Hilsenrath E, et al. Ozone Monitoring Instrument(OMI)[J]. SPIE, 2002, 4480: 315-325.
    [21] Bevilacqua R M, Shettle E P, Hornstein J S, et al. The Polar Ozone and Aerosol Measurement Experiment(POAMⅡ)[J]. SPIE, 1994, 2266: 374-382.
    [22] Shettle E P, Bevilacqua R M, Ainsworth T L, et al. Measurements of Antarctic Ozone by POAMⅡ[J]. SPIE, 1995, 2582: 306-312.
    [23] Gordley Larry L, Marshall Benjamin T, Hervig Mark E, et al. High precision broadband extinction measurements using differential Solar Occultation[J]. SPIE, 2002, 4486: 366-372.
    [24] McCormick M P, Zawodny J M, Chu W P,et al. Stratospheric Aerosol and Gas ExperimentⅢ(SAGEⅢ)[J]. SPIE, 1993, 1939: 137-147.
    [25] Chu W P, McCormick M P, Zawodny J M, et al. Calibration for the SAGEⅢ/EOS instrments[J]. SPIE, 1991, 1491: 243-250.
    [26] Ramberg Eric. SAGEⅢ: integration experiences and test results[J]. SPIE, 1999, 3756: 129-136.
    [27] Didier R., Robert L. Stratospheric and upper tropospheric aerosol retrieval from limb scatter signals[J]. SPIE, 2007, 6745(674509):1-12.
    [28] Aruga T, Heath D F. Determination of vertical ozone distribution by using spacecraft measurements using limb scatter technique[J]. Applied Optics, 1982, 21(16): 3047-3054.
    [29] Rusch David W, Mount George H, Barth Charles A, et al. Solar Mesophere Explorer Ulgraviolet Spectrometer: Measurements of Ozone in the 1.0-0.1mbar Region[J]. Journal of gegphysical research, 89(D7):11677-11687.
    [30] Herman B M, Flittner D E, McPeters R D, et al. Monitoring atmospheric ozone from space limb scatter measurements[J].SPIE, 1995, 2582: 88–99.
    [31]薛庆生,王淑荣,鲁凤芹.星载车尔尼-特纳型成像光谱仪像差校正的研究[J].光学学报, 2009, 29(1):35-40.
    [32] Qingsheng Xue, Shurong Wang,Fengqin Lu. Aberration-corrected Czerny–Turner imaging spectrometer with a wide spectral region[J]. APPLIED OPTICS, 2009, 48(1): 11-16.
    [33] Qingsheng Xue, Shurong Wang,Futian Li. Czerny–Turner imaging spectrometer for broadband spectrum simultaneity[J]. Chinese Optics Letters, 2009, 7(9): 861-864.
    [34] Mouroulis Pantazis, Green Robert O, Wilson Daniel W. Optical design of coastal ocean imaging spectrometer[J]. Optics Express, 2008, 16(12):9087-9096.
    [35] Descour M R, Volin C E, Dereniak E L, et al. Demonstration of a high-speed nonscaning imaging spectrometer[J]. Optics Letters, 1997, 22(16):1271-1273.
    [36] Dittman Michael G., Leitch James, Chrisp Michael, et al. Limb Broad-Band ImagingSpectrometer for the NPOESS Ozone Mapping and Profiler Suite (OMPS)[J].SPIE, 2002, 4814:120-130.
    [37] LIewellyn E J, LIloyd N D, and Degenstein D A, et al. The OSIRIS instrument on the Odin spacecraft[J]. Can J Phys, 2004, 82: 411-422.
    [38] Haley C S, Savigny C von, Brohede S, et al. A comparison of methods for retrieving stratospheric ozone profiles from OSIRIS limb-scatter measurements[J]. Advances in Space Research, 2004, 34, 769-774.
    [39] Bovensmann H, Buchwitz M, Frerick J,et al. SCIAMACHY on ENVISAT: In-flight optical performance and first results[J]. SPIE, 2004, 5235:160-173.
    [40] Mager Rolf, Fricke Wolfgang, Burrows John P,et al. SCIAMACHY A New-Generation of Hyperspectral Remote Sensing Instrument [J]. SPIE, 1999, 3106:84-94.
    [41] Leitch J W, Rodriguez J V, Dittman M, et al. Limb Scatter Ozone Profiling Sensor for the NPOESS Ozone Mapping and Profiler Suite (OMPS)[J].SPIE, 2003, 4891:13-21.
    [42] Remund Q P, Newell D, Rodriguez J V, et al. The Ozone Mapping and Profiler Suite(OMPS): On-Orbit Calibration Design[J].SPIE, 2004, 5652:165-173.
    [43] Petrenko Boris Z, Larsen J C, Akmal Arya. The Thomography Algorithm for Ozone Retrieval from the NPOESS OMPS Limb Measurements[J].SPIE, 2003, 5157:107-115.
    [44]王淑荣,宋克非,李福田.星载太阳紫外光谱监视器的地面辐射定标[J].光学学报,2007,27(12):2256-2261
    [45]禹秉熙.高分辨率成像光谱仪(C-HRIS)研究[J].光机电信息2000, 17(4):1-5.
    [46]冯玉涛,向阳.谱线弯曲对成像光谱仪辐射信号采集的影响[J].光学精密工程2009, 17(1):20-25.
    [47]李幼平,禹秉熙,韩昌元,等.成像光谱仪工程权衡优化设计的光学结构[J].光学精密工程2006, 14(6):974-979.
    [48] Lee J H,Lee C W,Kang K I. A compact imaging spectrometer (COMIS) for the Microsatellite STSAT3[J]. SPIE 2007, 6744:67441C-1-67441C-7.
    [49] Lobb D R. Imaging spectrometers using concentric optics[J]. SPIE, 1997, 3118:339-347.
    [50]徐晓轩,林海波,俞钢.小型线性可变滤光片分光的可见成像光谱仪及其特性研究[J].光谱学与光谱分析, 2002, 22(5):713-717.
    [51]于斌,李宏升,禹秉熙.二元光学超光谱成像仪分光系统设计[J].光学技术, 2003, 29(1):73-75.
    [52] Zoeten Peter de,Maurer Ralf,Birkl Reinhard. Optical design of the Michelson interferometer for passive atmospheric atmospheric sounding[J]. SPIE, 1993, 1934:284-294.
    [53]郑玉权,禹秉熙.成像光谱仪分光技术概览[J].遥感学报, 2006, 6(1):75-79.
    [54]许强,金伟其,董立泉. UV/ VIS /NIR超光谱侦查系统的光学参数设计[J].北京理工大学学报, 2006, 26(10): 897-906.
    [55]王之江,顾培森.实用光学技术手册[M].北京:机械工业出版社, 2007. 183-188.
    [56] Shannon Robert R. The art and science of optical design[M]. New York:Cambridge University, 1997. 164-264.
    [57] Smith Warren J. Modern optical engineering: the design of optical systems[M].New York:McGraw-Hill, 1990. 75-76.
    [58]王之江.光学设计理论基础[M].北京:科学出版社, 1978. 158-200.
    [59] Fisher John,Baumback Mark,Bowles Jeffrey,et al. Comparison of low-cost hyperspectral sensors[J]. SPIE, 1998, 3438: 23-30.
    [60] Huang Xingyue,Yang Huaidong,He Qingsheng,et al. A wavelength calibration process for micro-spectrometers with multichannel detectors[J]. SPIE, 2007, 6829: 68291Q-1-68291Q-11.
    [61] Rainer Riesenberg,Andreas Wuttig,Guenter Nitzsche,et al. Optical MEMS for high-end microspectrometer[J]. SPIE, 2002, 4928: 6-14.
    [62] Bacon CP,Mattley Y,Defrece R,et al. Miniature spectroscopic instrumentation: Application to biology and chemistry[J]. Rev Sci Instr, 2004, 75(1): 1-16.
    [63]周连群,吴一辉,张平,等.基于MEMS技术的微型分光光度计. [J].光学精密工程, 2006, (14)6: 990-996.
    [64]盛骤,谢式千,番承毅.概率论与数理统计[M].北京:高等教育出版社, 2002. 368-370.
    [65]韩昌元.信息光学基础理论及其应用[M].长春:长春出版社, 1989. 46-49.
    [66]黄富祥,徐永福,王维和,等.臭氧吸收参数数据库精度检验[J].气象学报, 2006, (64)2: 229-235.
    [67]舒朝濂,田爱玲,杭凌侠,等.现代光学制造技术[M].北京:国防工业出版社, 2002. 273-277.
    [68] Fiascher Robert E. Optical System Design[M]. New York:McGraw-Hill,2000,88-90.
    [69]李晓彤,岑兆丰.几何光学像差光学设计[M].杭州:浙江大学工业出版社, 2008. 129-141.
    [70]天津硅酸盐材料试验厂.光学玻璃汇编[M].北京:机械工业出版社, 1973. 12-128.
    [71]萧泽新.工程光学设计[M].北京:电子工业出版社, 2008. 234-235.
    [72] Wilkerson G W,Pitalo S K. A parametric study of IR and UV optical designs for Neutral Particle Beam(NPB) Acquisition, Tracking, and Pointing(ATP) Application[J]. SPIE, 1989, 1157:418-447.
    [73] Smith Warren J. Mordern lens design[M].New York:McGraw-Hill,2005,513-514.
    [74] Laikin Milton.Lens design[M].NewYork: Marcel Dekker Inc, 2001, 221-231.
    [75]胡家升.光学工程导论[M].大连:大连理工大学出版社,2006,290-296.
    [76]吴国安.光谱仪器设计[M].北京:机械工业出版社, 1985. 476-483.
    [77]张以谟.应用光学[M].北京:电子工业出版社,2008,567-574.
    [78]李林.现代光学设计方法[M].北京:北京理工大学出版社,2009,130-150.
    [79]李全臣,蒋月娟.光谱仪器原理[M].北京:北京理工大学出版社,1999,49-50.
    [80] Harvey James E,Daniell Robert E,Eastes Richard W,et al. Scanless ultraviolet remote sensor for limb profile measurements from low earth orbit[J]. Optical Engineering, 2006, 45(10): 106201-1-106201-9.
    [81] Prieto-Blanco X,Montero-Orille Couce B,et al. Analytical design of an Offner imaging spectrometer[J]. OPTICS EXPRESS, 2006, 14(20): 9156-9168.
    [82]林中,范世福.光谱仪器学[M].北京:机械工业出版社,1999,109-125.
    [83]薛庆生,王淑荣,李福田. Ebert-Fastie型双层结构平面全息光栅双单色的光学设计[J].光电工程, 2008, 35(7): 116-120.
    [84] Palmer Christopher,Loewen Erwin. Diffraction grating handbook[M]. New York:Newport Corporation,2004,76-85.
    [85]郁道银,谈恒英.工程光学[M].北京:机械工业出版社,1999,169-170.
    [86] Beutler H G. The theory of concave grating[J]. J Opt Soc Am, 1945, 35: 331-350.
    [87]迟泽英,陈文建.应用光学与光学设计基础[M].南京:东南大学出版社,2008,15-18.
    [88] Jenkins F A ,White H E. Fundamentals of Optics[M]. New York:McGraw-Hill,1950,92-93.
    [89]潘君骅.光学非球面设计、加工与检验[M].苏州:苏州大学出版社,2004,179-188.
    [90]王加朋,王淑荣,徐领娣,等.紫外辐射计的波长定标及定标不确定度分析[J].光电工程, 2008, 35(6): 42-47.
    [91] Wang J P,Wang S R,Li F T. Design of resolution testing facility for ultraviolet imager[J]. Chinese Optics Letters, 2008, 6(7): 510-512.
    [92] Hiromoto N , Takami H , Itabe T. Far infrared anastigmatic Czerny-Turner monochromator for stressed Ge: Ga photoconductor experiments[J]. International Journal of Infrared and Millimeter Waves, 1989, 353-360.
    [93] Schmidt W. A mini-rapid-scan-spectrophotometer[J]. J Biochem Biophys Methods, 2004,58:125-137.
    [94]司福祺,谢品华,Klaus-Peter Heue,等.超光谱成像差分吸收光谱技术研究[J].物理学报2008,57(9):6018-6022.
    [95] Guo Xia, Lu Daren,Lu Yao, et al. Satellite measurements of air density and ozone concentration profiles in mesosphere using an ultraviolet limb-scan technique[J]. SPIE, 2005, 5832:359-370.
    [96] Gordley Larry L, Russell III James M. Rapid inversion of limb radiance data using an emisivity growth approximation[J]. Applied Optics, 1981, 20(5):807-813.
    [97] http://www.e2v.com/products-and-services/imaging/space---scientific-imaging/ccd---cmos-imaging-sensors.html, 2007-09-05.
    [98]赵贵军,任建伟,万志,等.用于探测飞行目标的光电成像系统信噪比分析[J].光学技术, 2007, 33(Suppl):162-163.
    [99] Eckardt Andreas,Hofer Stefan Hofer, Neumann Christian,et al. SNR Estimation for Advanced Hyperspectral Space Instrument[J]. SPIE, 2005, 5883 :588303-1-588303-7.
    [100]李士贤,李林.光学设计手册[M].北京:北京理工大学出版社, 1996. 40-54.
    [101] http://www.opts.cn/jiezhixingboli/170417403.htm, 2008-06-06.
    [102]禹秉熙.成像光谱仪的性能分析[J].光机情报,成像光谱仪专辑,1995,1-19.
    [103] Harvey A R , Beale J , Greenaway , et al. Technology options for imaging spectrometry[J]. SPIE, 2000, 4132: 13-24.
    [104]蔡文贵,李永远,许振华. CCD技术及应用[M].北京:电子工业出版社, 1992,12-14.
    [105]刘贤德. CCD及其应用原理[M].武汉:华中理工大学出版社, 1990,162-175.
    [106]王庆有. CCD技术应用[M].天津:天津大学出版社, 1992,43-44.
    [107]王书宏,胡谋法,陈曾平.天文CCD相机的噪声分析与信噪比模型的研究[J].半导体光电, 2007, 28(5): 731-734.
    [108]禹秉熙.高分辨率成像光谱仪(C-HRIS)研究[J].光机电信息, 2000, 17(4): 1-5.
    [109] Cutter M A , Integration & test of the compact high-reolution imaging spectrometer(CHRIS) [J]. SPIE, 1999, 3753: 180-190.
    [110] Blechinger F , Charlton D E , Davancens R. High Resolution Imaging Spectrometer“HRIS”Optics, Focal Plane and Calibration[J]. SPIE, 1993, 1937: 207-224.
    [111] Geary Joseph M. Introduction to Lens Design With Practical ZEMAX Exampls[M]. Richmond:Willman-Bell, Inc, 2002,374-376.
    [112]车念曾,阎达远.辐射度学和光度学[M].北京:北京理工大学出版社, 1990,106-107.
    [113]靳丽红,陈小波,李明中,等.以Hg光源为标准谱对可见至近红外区域光谱定标的研究[J].四川大学学报,1998, 35(4): 546-550.
    [114]韦晓茹,居戬之,朱亚一,等. CCD型光学多通道分析仪波长的标定[J].光学仪器,2008, 30(2): 26-30.
    [115]杨照金,王雷,范纪红著.空间光学仪器设备及其校准检测技术[M],北京:中国计量出版社,2009,69-71.
    [116]李幼平,禹秉熙,王玉鹏,等.成像光谱仪辐射定标影响量的测量链与不确定度[J].光学精密工程,2006.14(5):822-828.
    [117]黄煜.臭氧垂直探测仪辐射定标的研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2007.
    [118]孔庆善.紫外臭氧垂直探测仪漫反射板方向特性的研究[D]:[硕士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2007.
    [119] Heath D F,Wei Z,Fowler W K. Comparability of spectral radiance calibrations of large aperture earth observing instruments based upon diffuse reflective panels and internally illuminated spherical integrator techniques[J]. SPIE, 1994, 2209: 148-159.
    [120] Walker J H,Cromer Chris L,McLean J T. A technique for improving the calibration of large-area sphere sources[J]. SPIE, 1991, 1493: 224-230.
    [121]薛庆生,王淑荣,宋克非,等.高精度光谱辐射计测量超低光谱透过率[J].光学精密工程, 2007, 15(10): 1534-1539.
    [122]邢进,李福田,顾行法.星载遥感辐射计积分球定标新方法的研究[J].遥感学报, 2006, 10(5): 644-650.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700