紫外—真空紫外探测器定标技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,人们对紫外—真空紫外波段光谱范围的价值有了重新认识,在这一领域中的应用研究陆续展开。空间紫外遥感更是成为人类了解自然界的一条重要途径。许多现象都可以在紫外波段观测到,如多数恒星所辐射的光谱峰值都在紫外一真空紫外谱段,通过研究辐射光谱可以知道恒星的组成和发生着的物理、化学变化;通过对大气散射光、辉光和极光的探测,可以了解太阳和地球大气相互作用的机理,反演出大气中各种微量气体和气溶胶的含量,实现大气环境的实时监测。
     随着定量化遥感的不断深入,对紫外-真空紫外波段的光谱辐射测量的精度不断提高,需要有高精度的光谱辐射标准来标定各类传感器、评估其测量精度及长期稳定性。从理论上讲,实现绝对光谱辐射定标的途径有两个:一是基于辐射光源的标准光源定标法,二是基于辐射探测器的标准探测器定标法。
     长春光机所作为紫外-真空紫外遥感研究的主要单位,引进了标准探测器、标准光源、标准漫反板、紫外积分球等辐射定标装置。长期以来利用标准光源开展了空间遥感仪器辐照度响应度及辐亮度响应度定标,以及标准光源定标积分球辐亮度等工作。标准光源定标方法简单,易于实现全波段连续的标准传递,但在定标过程中也存在一些不确定因素(光源稳定性、光学元件传输特性、光源尺寸修正因子等)。标准探测器定标方法环节相对较少,引入定标不确定度也相对较少,有利于提高定标精度,但由于可选择的定标通道有限,无法覆盖所要定标的整个波段。
     为进一步验证以往采用的标准光源定标方法定标结果的准确性,本文开展了标准探测器定标深入研究及两种方法比对工作。在完成定标方法及定标原理研究的基础上,构建紫外探测器光谱响应度定标装置及真空紫外探测器量子效率测量装置。两套装置的定标不确定度分别为1.7%及2.3%。并以NIST(美国国家标准技术研究院)紫外标准探测器为核心元件,构建了一套高精度紫外辐射计。该辐射计结构紧凑、性能稳定,并利用NIST标准探测器的响应度标准推导出了高精度紫外辐射计自身的响应度标准,自身不确定度仅为1.3%。利用高精度辐射计分别对待测光源辐照度、积分球开口处辐亮度、空间遥感仪器的辐照度及辐亮度响应度进行定标,并通过所实现的四个光谱通道将标准探测器定标方法与标准光源定标方法进行比对,及不确定度分析,表明两种定标方法结果在误差范围内一致,互相验证了两种高精度定标方法的正确性。
Recently, people have realized the value of UV-VUV wavelength, the application researching in this field has developed. Space UV remote sensing has been an important way of understanding the nature. A lot of phenomenon can be observed at UV wavelength, for example, the spectrum peak value of radiation by lots of star is in the UV-VUV wavelength, the constitution of the star and the physical, chemical changing on it can be known though the researching on the radiation spectrum. By detecting the atmosphere scattered light, glow and polar light, the interacting mechanics of the solar and the earth can be known, and the real-time monitoring to the air environment can be realized by conversing the content of all kinds of microcontent air and gasoloid
     With the continuous developing of the quantitative remote sensing researching and the accuracy of radiation intensity and spectral resolution testing, it requires a high accuracy spectral responsivity standard to calibrate all kinds of sensor, and evaluate their testing accuracy,long-term stability and date comparative. Basing on the theory, there are two way to realize the absolute spectral radiation testing:the fist way basing on the radiation light source, the second way basing on the radiation detector.
     Changchun Institute of Optics, Fine mechanics and Physics, Chinese Academy of Sciences is an important radiation calibration department. The standard detector, standard light, standard diffuser and the integrating sphere have been introduced.The standard light had been used to calibrate the irradiance and radiance responsivity of the space remote sensing instrument and the radiance of the integrating sphere and so on. The calibration method of standard light is so simple, and easy to realize the continuous standard transmission at the whole wavelength. But some uncertain factor also have been leading-in(the stability of the light, the characteristic of the optics element transmission, the modified factor of the light size). The segment of the calibration method of standard detector is less than the standard light method, and the uncertain factor is also fewer, it has advantage in improving the calibration precision. But the calibration channel of method is so finite, so it can not cover the whole wavelength which needs to be calibrating.
     For proving the accuracy of the date of the standard light calibration method, this paper makes deep researching on the standard detector calibration and the working of the two method comparing. On the basic of finishing the studying of the calibration method and principle, the device of UV detector spectrum responsivity calibration and VUV detector quantum efficiency testing had been established. The uncertainty of the two devices is 1.7% and 2.3%. The High Accuracy UV Radiometer(HAUR) whose core element using NIST standard detector has been established. It has stable performance, compact construction. And the responsivity standard had been deduced by using the standard of he NIST standard detector. The uncertainty of the HAUR is 1.3%.The HAUR had been used to calibrate the he irradiance of the unknown light, the radiance of the integrating sphere and the irradiance and radiance responsivity of space remote sensing instrument, the calibration date and uncertainty analyzing of the standard light method and the standard detector method had been compared at the four spectrum channel. The comparison shows that the calibration date of the two methods is uniformity in the range of the uncertainty. So the accurate of two methods had been proved.
引文
[1]D. F. Heath, A. J. Krueger, H. A. Roeder and B. D. Henderson. The Solar Backscatter Ultraviolet and Total Ozone Mapping Spectrometer (SBUV/TOMS) for NIMBUSG [J]. Optical Engineering,1975,14(4):323-331.
    [2]T.J.Quinn. Primary methods of measurement an primary standards [J].Metrologia.1997,20: 34-63.
    [3]T.R.Gentile, J.M.Houston, J.E.Hardis, C.L.Cromer, A.C.Parr. National Institute of Standards and Technology high-accuracy cryogenic radiometer [J]. Appl.Opt,1996,35(7):1056-1068.
    [4]K.D.Stock, H.Hofer. Prensent State of the PTB Primary Standard for Radiant Power Based on Cryogenic Radiometry [J]. Metrologia,1993,30:291-296.
    [5]J.E.Martin, N.P.Fox, P.J.Key. Cryogenic Radiometer for Absolute Radiometric Measurement [J]. Metrologia,1985,21:147-155.
    [6]R.Kohler, R.Goebel, R.Pellp. Experimental procedures for the comparison of cryogenic radiometer at highest accuracy [J]. Metrologia,1996,33:549-554.
    [7]S.P.Morozova, B.E.Lisiansky, P.A.Morozov, V.I.Saorisky. New low-cost absolute cryogenic radiometer for space blackbody models calibration [J]. SPIE,24(7):499-503.
    [8]R.U.Datla,K. Stock. Characterization of an absolute cryogenic radiometer as a standard detector for radiant-power measurements [J]. Appl.Opt,1992,1(34):7219-7225.
    [9]R.Goebel,S.Yilmaz and R.Pello. Polarization dependence of trap detector[J].Metrologia, 1998,35:455-460.
    [10]E.F.Zalewski. The NBS Photodetector Spectral Response Calibration Transfer Program, Natl [M]. Bur. Stand. (U.S.), Spec. Publ.1988
    [11]J. Schwinger, Electron radiation in high energy accelerators [J]. Phys. Rev.,1946,70:798.
    [12]Timo Varpula, Heikki Seppa, Juha-matti Saari. Optical Power Calibrator Based on a Stabilized Green He-Ne Laser and Cryogenic Absolute Radiometer[R]. IEEE Transactions on Instumentation and Measurement,1989,38(2):558-564.
    [13]R.U.Datla, K.Stock. Characterization of an absolute cryogenic radiometer as a standard detector for radiant-power measurements [J]. Appl.Opt,1992,1(34):7219-7225.
    [14]R.GJohnston, R.P.Madden. On the Use of Thermoliles for Absolute Radiometry in the Far Ultraviolet [J]. Appl.Opt.1965,4(35):234-238.
    [15]李双,吴浩宇.近红外高精度光辐射标准探测器的实验研究[J],光学技术,2004,30(4):498-501.
    [16]Liang S, Sheng H, Liu Y, et al. ZnO Schottky ultraviolet photodetectors[J]. Journal of Crystal Growth,2001,225(2):110-113.
    [17]曹光宇,张志伟,张存林.光电检测技术[M].北京:清华大学出版社,2005:54-57.
    [18]王锐.高精度紫外探测器辐射定标系统[J].光学精密工程,2009,17(3):470-474.
    [19]E.F.Zalewski, J.Geist. Silicon Photodiode Absolute Spectral Response Self-Calibration[J], Appl.Opt.1980,19:1214-1216.
    [20]李同保,万光毅,张淑智,曹运生.光探测器响应度均匀性的自动测量装置[J].光电工程,1993,20(3):34-40.
    [21]王锐.真空紫外探测器定标研究[J].光学学报,2010,30(4):1026-1030.
    [22]P J KEY, R C PRESTON. Magnesium fluoride windowed deuterium lamps as radiance transfer standards between 115 and 370 nm [J]. J. Phys. E:Sci. Instrum.,1980,13:866-870.
    [23]黄煜,王淑荣,张振铎,等.用150W氘灯标定200-300nm光谱辐照度[J].光学精密工程,2007,15(8):1215-1219.
    [24]M Richter, J Hollandt, U Kroth, Source and detector calibration in the UV and VUV at BESSY II [J]. Metrologia,2003,40:s107-s110.
    [25]J.Z.Klose, J.M.Bridges, W.R.Ott, NBS measurement services:Radiometric standards in the vacuum ultraviolet[M], NBS Spec. publ,1987,250-253.
    [26]费业泰.误差理论与精度分析[M],北京:国防工业出版社,2004.47-50.
    [27]Donald.F.Heath, Zongying Wei, et al. Calibration and characterization of remote sensing instruments using ultra stable interference filters[J]. SPIE,1997,3221:300-308.
    [28]吴浩宇,王光远,苟毓龙.硅光电二极管陷阱辐射定标研究[J].应用光学,1998,19(2):1-4.
    [29]D.F. Heath, E. Hilsenrath, and S. Janz, Characterization of a 'hardened' ultra-stable UV linear variable filter and recent results on the radiometric stability of narrow band interference filters subjected to temperature/humidity, thermal/vacuum and ionizing radiation environments [J],.SPIE,1998,3501:410-421.
    [30]唐晋发,顾培夫,刘旭,李海峰.现代光学薄膜技术[M].浙江大学出版社,2007.
    [31]M.Durak,F.Samadov. Realization of a filter radiometer-based irradiance scale with high accuracy in the region from 286nm to 901nm[J].Metrologia,2004,41:401-406.
    [32]车念曾,闫达远.辐射度学与光度学[M].北京理工大学出版社,1990.
    [33]金伟其,胡威捷.辐射度、光度与色度及其测量[M].北京理工大学出版社,2006.
    [34]梁铨廷.物理光学[M].机械工业出版社,2008.
    [35]斯托克编,吴锡真等译.物理手册[M].北京大学出版社,2004.
    [36]G.Bianchini, L.Palchetti, et al. Characterization of tropical atmosphere through wide-band emission spectra acquired with a ballon-borne uncooled FTS spectroradiometer [J]. SPIE, 2007,6745:1-10.
    [37]D.Cabib, A.Gil, et al. High performance soectroradiometer for very accurate radiometric calibrations and testing of blackbody sources and EO test equipment [J]. SPIE,2006, 6207:1-10.
    [38]Donald F,Heath, Zia Ahmad, Multipurpose spectrotadiometer for satellite instrument calibration and zenith sky remote sensing measurements[J],.SPIE,2001,4150(45):115-123.
    [39]Donald F.Heath, Low-cost remote sensing instuments for atmospheric trace species and improvements in radiometric calibration [J].SPIE,1999,3870:404-410.
    [40]唐玉国.同步辐射、壁稳氩弧紫外—真空紫外光谱辐射标准的研究[D],长春光密机械与物理研究所,1995.
    [41]邢进,王淑荣,李福田.紫外-真空紫外辐射标准光源的比对[J].光学精密工程.2004.12(4):373-379
    [42]K.codling and R.P.Madden. Characteristics of the'synchrotron light' from the NBS 180 Mev machine [J]. Appl. Phys,1965,36(2):380-388.
    [43]E.Renotre, A. Novi,D. Labate et al.. Solar diffuser pre-flight calibration set-up [J]. SPIE, 1997,2957:355-371
    [44]D.Einfield, D.stuck and B.Wende. Calibration of radiometric transfer standards in the UV and VUV by electron synchrotron radiation using a normal incidence radiometer [J], Metrologia 1978,14:111-122.
    [45]Alkiviadis F. Bais. Absolute spectral measurements of direct solar ultraviolet irradiance with a Brewer spectrophotometer [J]. Applied Optics,1997,36(21):5199-5204.
    [46]王淑荣,李福田.FY-3卫星紫外臭氧垂直探测仪研制报告[R].2005.
    [47]黄煜.臭氧垂直探测仪辐射定标的研究[D].长春光学精密机械与物理研究所,2007.
    [48]王淑荣,宋克非,李福田.星载太阳紫外光谱监视器的地面辐射定标[J].光学学报,2007,27(12):2256-2261.
    [49]刘颖.臭氧垂直分布探测仪紫外光谱辐射传输特性与定标的研究[D].长春光学精密机械与物理研究所,2001.
    [50]杨贤荣.辐射换热角系数手册[M].国防工业出版社,1982.
    [51]李志刚.紫外-真空紫外傅里叶变换光谱技术的研究[D].长春光学精密机械与物理研究所,2000.
    [52]郁道银,谈恒英.工程光学[M].机械工业出版社,1998
    [53]邢进.空间遥感仪器紫外—真空紫外光谱辐射标准及高精度辐射定标的研究[D].长春光学精密机械与物理研究所,2005.
    [54]俞浩.用于紫外—真空紫外空间遥感仪器的若干材料的漫反射特性的研究[D].长春光学精密机械与物理研究所,2004.
    [55]H. Slaper, H. A. J. M. Reinen, M. Blumthaler, et al.. Comparing groud-level spectrally resolved solar UV measurements using various instrument:A technique resolving effects of wavelength shift and slit width [J].GEOPHYSICAL RESEARCH LETTERS,1995,22(20): 2721-2724.
    [56]R.D.Saunders, W.R.Ott, Spectral irradiance standard for the ultraviolet:the deuterium lamp[J]. Applied Optics,1978,17 (4):593-600.
    [57]G. JAROSS, R. CEBULA, M. DELAND, et al.. Backscatter ultraviolet instrument solar
    diffuser degradation [J]. SPIE,1998,3427:432-444.
    [58]P.Yvonne, Barnes, Jack J. Hsia. UV Bidirectional reflectance distribution function measurements for diffusers [J]. SPIE,1992,1764:285-288
    [59]D F Heath, Wei Z. Comparability of spectral radiance calibrations of large aperture earth observing instruments based upon diffuse reflective panels and internally illuminated spherical integrator techniques [J]. SPIE,1994,2209:148-159.
    [60]Donald F. Heath, Large aperture spectral radiance calibration source for ultraviolet remote sensing instruments, J, SPIE,2003,.4891:P335-342.
    [61]Howard.W.Yoon, Charles E.Gibson and Patricia Y.Barnes. Realization of the national institute of standards and technology detector-based spectral irradiance scale [J]. Applied Optics,2002,41(28):P5879-5890.
    [62]H W Yoon, J E Proctor and C E Gibson, FASCAL 2:a new NIST facility for the calibration of the spectral irradiance of sources[J], Metrologia,2003,40:S30-S34.
    [63]James T.Mclean and Bruce W.Guenther. Radiance calibration of spherical integrators [J], SPIE,1989,1109:P114-121.
    [64]David G. Goebel. Generalized integrating-sphere Theory [J]. Applied Optics,1967,6: 125-128.
    [65]Kevin.F.Carr, Integrating sphere calibration sources for remote sensing imaging radiometers[J], SPIE,1989,1109:P99-112.
    [66]苏成志,曹国华,徐洪吉.积分球出射照度与入射光束几何性质关系分析[J],激光与红外,2010,40(2):195-199.
    [67]Ambler Thompson, Edward A. Early, Thomas R. O'Brian. Ultraviolet Spectral Irradiance Scale Comparison:210nm to 300nm [J]. Journal of Research of the National Institute of Standard and Technologh,1998,103:1-13.
    [68]章骏平,吴浩宇,周威,郑小兵.大孔径积分球辐射源光谱辐射特性测试方法研究[J].2001,18(5):424-428.
    [69]H.W.Yoon, J. E. Proctor, C. E. Gibson. FASCAL 2:a new NIST facility for the calibration of the spectral irradiance of sources. Metrologia,2003,40:S30-S34.
    [70]王淑荣,邢进,李福田.利用积分球光源定标空间紫外遥感光谱辐射计[J].光学精密工程,2006,14(2):186-190.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700