波浪对环流输运影响和涌浪传播耗散特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
波浪往往被认为是时空尺度较小的现象。但是,由于波浪在时空上的持续性和普遍性,又会对较大尺度现象造成影响。本文研究了波浪的大尺度效应即波浪科氏-斯托克斯力(CSF)在上层海洋输送中的影响,尤其关注大洋涌浪在平均方向和波浪诱导的Stokes输运中的作用。从对波动中尺度较大的涌浪传播特征和耗散机制的研究中总结规律,并分析了海浪WW3模式在大洋涌浪模拟方面的性能。
     涌浪对波浪诱导的Stokes输运有重要影响,特别对局地波浪的平均方向有所制约。全球Ekman输运主要呈带状分布,赤道海区两侧的信风带上Ekman输运的量值较大,可以的达到3m~2s以上;Ekman输运N-S分量Ty,E与整体量值分布一致,而W-E分量Tx,E受经向风作用呈带状倾斜。全球Stokes输运也主要为带状分布,尤其是两半球西风带的波浪输运量很大。而经向上的输运Ty,S,总的来看也基本呈现带状,但在大洋东侧却明显更强,体现了涌浪的作用。全球Stokes输运占Ekman输运的量值最大可达50%,太平洋和大西洋27.5N,30N和32.5N纬线的积分Ekman输运和Stokes输运有夏秋季强(向北)、冬春季弱(向南)的季节变化趋势,波浪输运不同海区不同季节有正贡献或负贡献。波浪Stokes经向输运沿27.5N,30N和32.5N的纬线积分值与Sverdrup关系估计的西边界流流量呈相似的季节变化,夏秋和冬春季相反;波浪导致的经向输运量值约为整体大洋输运的5到10%,在10月至4月为正贡献,5月至9月为负贡献。与SODA估计的黑潮流量相比,波浪作用可以达到5%。通过浪致表面应力来阐述波浪作用,发现波浪抽吸速度在中高纬海区较强,量值可达5cm/day,是波浪作用产生的源区。而风应力抽吸在副热带最强。各个大洋东西侧的波浪抽吸有局地的特征。
     波浪中尺度较大的涌浪在西风带产生的源区可以近似为圆形和点源,长波以风暴生成区为中心以近似扇形散开,沿大圆传播。涌浪各分量以群速传播能量,周期越长的分量传播越快;涌浪平均周期可以较好的保留涌浪传播的信息。在横向上可以基本保持同样的扩散速度,但距离点源越远相关性越低。在海盆靠近陆地的区域由于地形变化,波浪发生折绕射较强,破坏了波峰线的连续性。在局地风较强的区域,涌浪依然会发生与局地风和波浪的相互作用。涌浪在传播过程中会发生能量的衰减,空间耗散率约为-4~5×10~(-7)m~(-1)。在离点源距离较近的6000km以内,风暴强度差异引起能量较离散;6000-12000km之间,涌浪的能量差异减小;当距点源距离大于12000km,能量又有所增加。不同周期的分量耗散率范围没有明显的差别,初始波陡越大,耗散率越大。涌浪能量耗散主要由于其与海气边界层湍应力相互作用和与混合层湍流作用引起耗散。波陡和反波龄是衡量耗散强度的主要参数。反波龄随波陡增加而增大,随周期增大,反波龄降低至-1~1,随着离点源距离增加反波龄增大。波陡δ=0.01处为一较明显的分界线,当δ <0.01时,反波龄在-1~1,正负相当,风速和波速方向同向和反向同样明显,且风速总小于波速;当δ>0.01,普遍倾向于反波龄γ>0,即风向与波向同向较多,且在周期较短的分量上依然有γ>1,风速大于或接近波速,涌浪依然受局地风的影响。
     WW3的ACC350配置包含了有关涌浪耗散的物理现象的源函数项,模式对太平洋整体有效波高模拟较好,但约8米以上的波高模拟的有偏大趋势。4月的误差相对较大,12月误差最小;模式在中低纬带误差偏大较为明显。模式可以较好的进行大洋风浪的模拟,精确度较高。对涌浪的模拟波高偏大,整体来讲周期和波向的模拟比波高的精度高;模式对周期模拟的误差主要来自对涌浪周期的模拟误差,整体稍偏大。ACC350配置模式采用的基于涌浪耗散的物理模型可以部分改进BAJ模型涌浪波高模拟误差,尤其是在大洋中部较明显。模式的模拟能力需要依赖大量数据和对物理模型的认识进一步改进。
The persistency and extensiveness of small scale ocean waves makes themimportant to large scale ocean phenomena. In this dissertation, the wave-inducedCoriolis-Stokes effect in upper ocean water transport is analyzed, placing emphasis onocean swells. The large ocean swell transport and dissipation characteristics are alsodiscussed, together with model performance assessment of the newly publishedWavewatchIII v3.14on ocean swells.
     Ocean swells are important to wave-induced Stokes transport, especially in theMean Wave Direction calculation. The global Ekman transports are band-likedistributed with maximums at Trade wind areas. The W-E components of the Ekmantransport tilt with longitudinal wind. The Stokes transports are also in band withmaximums at westerlies. The W-E components are large in the eastern parts of theoceans where swell are more dominant. The Stokes transport contributes to the Ekmantransport in50%at large; both of the integrated transports across three latitudesat27.5N,30Nand32.5Nare stronger in summer and autumn and weaker inwinter and spring. The Stokes transports are similar in seasonal variations withSverdrup transports along the three latitudes and occupy5to10%in magnitude, withcontributions from October to April and cancellations from May to September.Compared with SODA Kuroshio transport, a5%contribution of the Stokes transportis also found. By introducing the wave-driven surface stress into the modified Ekmanequation, the wave-driven pumping effect is discussed. The wave-driven pumpingvelocities are large in middle and high latitudes with magnitude of about5cm/day.
     The large scale part of ocean waves are often called swells. The source areas inthe westerlies where most swells arose are approximately round and can be regardedas ‘points’4km away from the original areas. Swells disperse and travel along greatcircles in group velocities, and longer ones move faster. The energy signals are wellcarried by Mean Wave Period in propagation after large storms. Swells keep similardispersing velocities in transverse direction but the correlations to the sourcesdecrease with distance. The continuity of wave crest is often broken by land and islands. At local areas with large winds, the swells also interact with winds and windwaves. The dissipation rate of swell energy in space is approximately-4~5×10~(-7)m~(-1).The swell energy is disperse within6000km from the source and tends to contractbetween6000km and12000km but increases a little away from12000km. Dissipationincreases with wave steepness. Swell-turbulent stress interaction in marineatmosphere boundary layer (MABL) and swell-turbulence interaction in ocean mixedlayer (OML) are the main sources of dissipation, and the wave steepness and theinverse wave age are the main index in assessing the dissipation rate. Observedinverse wave age increases with wave steepness and distance to source whiledecreases with wave period. The wave steepness δ=0.01is a dividing line forinverse wave age: whenδ <0.01the inverse wave age is between-1and1withalmost the same positive and negative values, indicating the existence of bothfollowing and against wind waves; but whenδ>0.01, inverse wave age tends to bepositive, indicating that following waves are dominant and short swells remain to beinfluenced by local winds.
     Dissipation parameterizations related to ocean swells are included in WW3model ACC350package; comprehensive model assessments show that it can reflectthe wave height very well within8m. Biases are largest in April and smallest inDecember. The wave model errors mainly come from the errors in swell componentsmodeling, especially in wave period. ACC350package is better in performance thanthe default WAM4BAJ package, but still shows room to get progress relying on moreobservations and research on physical processes.
引文
[1] Abdalla, S., Bidlot, J. R. Wind gustiness and air density effects and other key changes towave model in CY25R1[R]. Reading, U.K.: Research Department, ECMWF,2002.
    [2] Alves, J.-H. G. M. Numerical modeling of ocean swell contributions to the globalwind-wave climate[J]. Ocean Modelling,2006,11(1–2):98-122.
    [3] Ardhuin, F., Jenkins, A. D. On the Interaction of Surface Waves and Upper OceanTurbulence[J]. Journal of Physical Oceanography,2006,36(3):551-557.
    [4] Ardhuin, F., Chapron, B., Collard, F. Observation of swell dissipation across oceans[J].Geophysical Research Letters,2009,36(6).
    [5] Ardhuin, F., Rogers, E., Babanin, A. V., Filipot, J.-F., Magne, R., Roland, A., van derWesthuysen, A., Queffeulou, P., Lefevre, J.-M., Aouf, L., Collard, F. SemiempiricalDissipation Source Functions for Ocean Waves. Part I: Definition, Calibration, andValidation[J]. Journal of Physical Oceanography,2010,40(9):1917-1941.
    [6] Babanin, A. V., Haus, B. K. On the Existence of Water Turbulence Induced by NonbreakingSurface Waves[J]. Journal of Physical Oceanography,2009,39(10):2675-2679.
    [7] Babanin, A. V. Swell attenuation due to wave-induced turbulence [J]. Proceedings of the31st International Conference on Ocean, Offshore and Artic Engineering(OMAE2012),2012.
    [8] Bi, F., Wu, K., Zhang, Y. The effect of Stokes drift on Ekman transport in the open sea[J].Acta Oceanologica Sinica,2012,31(6):12-18.
    [9] Bidlot, J. R., Abdalla, S., Janssen, P. A. E. M. A revised formulation for ocean wavedissipation in CY25R1[R]. Reading, U.K.: Research Department, ECMWF,2005.
    [10] Carton, J. A., Giese, B. S. A Reanalysis of Ocean Climate Using Simple Ocean DataAssimilation (SODA)[J]. Monthly Weather Review,2008,136(8):2999-3017.
    [11] Chen, G., Chapron, B., Ezraty, R., Vandemark, D. A Global View of Swell and Wind SeaClimate in the Ocean by Satellite Altimeter and Scatterometer[J]. Journal of Atmosphericand Oceanic Technology,2002,19(11):1849-1859.
    [12] Collard, F., Ardhuin, F., Chapron, B. Monitoring and analysis of ocean swell fields fromspace: New methods for routine observations[J]. Journal of Geophysical Research,2009,114(C7).
    [13] Delpey, M. T., Ardhuin, F., Collard, F., Chapron, B. Space-time structure of long oceanswell fields[J]. Journal of Geophysical Research: Oceans,2010,115(C12): C12037.
    [14] Deng, Z. a., Wu, K., Zhao, D., Yu, T. Effects of wind waves of the Pacific westerly on theeastern Pacific wave transport[J].海洋学报(英文版),2009,28(1):83-88.
    [15] Dore, B. D. Some effects of the air-water interface on gravity waves[J]. Geophysical&Astrophysical Fluid Dynamics,1978,10(1):215-230.
    [16] Earle, M. D., Steele, K. E., Wang, D. W. C. Use of advanced directional wave spectraanalysis methods[J]. Ocean Engineering,1999,26(12):1421-1434.
    [17] Grachev, A. A., Fairall, C. W. Upward Momentum Transfer in the Marine BoundaryLayer[J]. Journal of Physical Oceanography,2001,31(7):1698-1711.
    [18] Grant, A. L. M., Belcher, S. E. Characteristics of Langmuir Turbulence in the Ocean MixedLayer[J]. Journal of Physical Oceanography,2009,39(8):1871-1887.
    [19] Grant, W. D., Madsen, O. S. Combined wave and current interaction with a rough bottom[J].Journal of Geophysical Research: Oceans,1979,84(C4):1797-1808.
    [20] Hanley, K. E., Belcher, S. E. Wave-Driven Wind Jets in the Marine Atmospheric BoundaryLayer[J]. Journal of the Atmospheric Sciences,2008,65(8):2646-2660.
    [21] Hanley, K. E., Belcher, S. E., Sullivan, P. P. A Global Climatology of Wind–WaveInteraction[J]. Journal of Physical Oceanography,2010,40(6):1263-1282.
    [22] Hanson, J. L., Phillips, O. M. Automated Analysis of Ocean Surface Directional WaveSpectra[J]. Journal of Atmospheric and Oceanic Technology,2001,18(2):277-293.
    [23] Hanson, J. L., Jensen, R. E. Wave system diagnostics for numerical wave models[C].8thInternational Workshop on Wave Hindcasting and Forecasting, Hawaii. JCOMM Tech.Rep.,2004.
    [24] Hanson, J. L., Tracy, B. A., Tolman, H. L., Scott, R. D. Pacific Hindcast Performance ofThree Numerical Wave Models[J]. Journal of Atmospheric and Oceanic Technology,2009,26(8):1614-1633.
    [25] Harris, D. L. The Wave-Driven Wind[J]. Journal of the Atmospheric Sciences,1966,23(6):688-693.
    [26] Hasselmann, K. Wave-driven inertial osillations[J]. Geophysical Fluid Dynamics,1970,1:463-502.
    [27] Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-C., Tung,C. C., Liu, H. H. The empirical mode decomposition and the Hilbert spectrum fornonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society ofLondon Series A: Mathematical, Physical and Engineering Sciences,1998,454(1971):903-995.
    [28] Janssen, P. A. E. M. Quasilinear approximation for the spectrum of wind-generated waterwaves[J]. Journal of Fluid Mechanics,1982,117:493-506.
    [29] Janssen, P. A. E. M. Quasi-linear Theory of Wind-Wave Generation Applied to WaveForecasting[J]. Journal of Physical Oceanography,1991,21(11):1631-1642.
    [30] Kagimoto, T., Yamagata, T. Seasonal Transport Variations of the Kuroshio: An OGCMSimulation[J]. Journal of Physical Oceanography,1997,27(3):403-418.
    [31] Kantha, L. A note on the decay rate of swell[J]. Ocean Modelling,2006,11(1-2):167-173.
    [32] Kantha, L., Wittmann, P., Sclavo, M., Carniel, S. A preliminary estimate of the Stokesdissipation of wave energy in the global ocean[J]. Geophysical Research Letters,2009,36(2): L02605.
    [33] Kudryavtsev, V. N., Makin, V. K. Impact of Swell on the Marine Atmospheric BoundaryLayer[J]. Journal of Physical Oceanography,2004,34(4):934-949.
    [34] Lewis, D. M., Belcher, S. E. Time-dependent, coupled, Ekman boundary layer solutionsincorporating Stokes drift[J]. Dynamics of Atmospheres and Oceans,2004,37(4):313-351.
    [35] Liu, B., Wu, K., Guan, C. Global estimates of wind energy input to subinertial motions inthe Ekman-Stokes layer[J]. Journal of Oceanography,2007,63(3):457-466.
    [36] Livezey, R. E., Chen, W. Y. Statistical Field Significance and its Determination by MonteCarlo Techniques[J]. Monthly Weather Review,1983,111(1):46-59.
    [37] M.K.Ochi.不规则海浪随机分析及概率预报[M].北京:海洋出版社,1985.
    [38] McWilliams, J. C., Restrepo, J. M. The Wave-Driven Ocean Circulation[J]. Journal ofPhysical Oceanography,1999,29(10):2523-2540.
    [39] Mettlach, T., Wang, D., Wittmann, P. Analysis and Prediction of Ocean Swell UsingInstrumented Buoys[J]. Journal of Atmospheric and Oceanic Technology,1994,11(2):506-524.
    [40] Phillips, O. M. On the Response of Short Ocean Wave Components at a Fixed Wavenumberto Ocean Current Variations[J]. Journal of Physical Oceanography,1984,14(9):1425-1433.
    [41] Pollard, R. T. Surface waves with rotation: An exact solution[J]. Journal of GeophysicalResearch,1970,75(30):5895-5898.
    [42] Polton, J. A., Lewis, D. M., Belcher, S. E. The Role of Wave-Induced Coriolis–StokesForcing on the Wind-Driven Mixed Layer[J]. Journal of Physical Oceanography,2005,35(4):444-457.
    [43] Qiao, F., Yuan, Y., Yang, Y., Zheng, Q., Xia, C., Ma, J. Wave-induced mixing in the upperocean: Distribution and application to a global ocean circulation model[J]. GeophysicalResearch Letters,2004,31(11): L11303.
    [44] Qiu, B., Lukas, R. Seasonal and interannual variability of the North Equatorial Current, theMindanao Current, and the Kuroshio along the Pacific western boundary[J]. J GeophysRes,1996,101(C5):12315-12330.
    [45] Snodgrass, F. E., Groves, G. W., Hasselmann, K. F., Miller, G. R., Munk, W. H., Powers, W.H. Propagation of Ocean Swell across the Pacific[J]. Philosophical Transactions of theRoyal Society of London Series A, Mathematical and Physical Sciences,1966.
    [46] Song, J.-B. The effects of random surface waves on the steady Ekman current solutions[J].Deep Sea Research Part I: Oceanographic Research Papers,2009,56(5):659-671.
    [47] Stokes, G. G. On the Theory of Oscillatory Waves[J]. Trans Camb Phil Soc,1847,8:441-455.
    [48] Suo, X.(2011). The comparison between Synthetic Aperture Radar observations andsimulation results of WAVEWATCH III with and without adopting spectral partition.Paper presented at: Synthetic Aperture Radar (APSAR),20113rd InternationalAsia-Pacific Conference on.
    [49] Texeira, M. A. C., Belcher, S. E. On the distortion of turbulence by a progressive surfacewave[J]. Journal of Fluid Mechanics,2002,458:229-267.
    [50] TheWISEGroup, Cavaleri, L., Alves, J. H. G. M., Ardhuin, F., Babanin, A., Banner, M.,Belibassakis, K., Benoit, M., Donelan, M., Groeneweg, J., Herbers, T. H. C., Hwang, P.,Janssen, P. A. E. M., Janssen, T., Lavrenov, I. V., Magne, R., Monbaliu, J., Onorato, M.,Polnikov, V., Resio, D., Rogers, W. E., Sheremet, A., McKee Smith, J., Tolman, H. L.,van Vledder, G., Wolf, J., Young, I. Wave modelling–The state of the art[J]. Progress inOceanography,2007,75(4):603-674.
    [51] Tolman, H. L. User manual and system documentation of WAVEWATCH III version3.14[J]. NOAA/NWS/NCEP/MMAB Technical Note276,2009:194pp+Appendices.
    [52] Ursell, F., Deacon, G. E. R. On the Theoretical Form of Ocean Swell. On a RotatingEarth[J]. Geophysical Journal International,1950,6(s1):1-8.
    [53] Vassie, J. M., Woodworth, P. L., Holt, M. W. An Example of North Atlantic Deep-OceanSwell Impacting Ascension and St. Helena Islands in the Central South Atlantic[J].Journal of Atmospheric and Oceanic Technology,2004,21(7):1095-1103.
    [54] WAMDIGroup. The WAM Model—A Third Generation Ocean Wave Prediction Model[J].Journal of Physical Oceanography,1988,18(12):1775-1810.
    [55] Weber, J. E. Steady wind-and wave-induced currents in the open ocean[J]. Journal ofPhysical Oceanography,1983,13(3):524-530.
    [56] Wu, J. Wind-Stress Coefficients Over Sea Surface From Breeze to Hurricane[J]. J GeophysRes,1982,87(C12):9704-9706.
    [57] Wu, K., Liu, B. Stokes drift-induced and direct wind energy inputs into the Ekman layerwithin the Antarctic Circumpolar Current[J]. J Geophys Res,2008,113(C10): C10002.
    [58] Xu, Z., Bowen, A. J. Wave-and Wind-Driven Flow in Water of Finite Depth[J]. Journal ofPhysical Oceanography,1994,24(9):1850-1866.
    [59] Yadav, R. K., Rupa Kumar, K., Rajeevan, M. Role of Indian Ocean sea surface temperaturesin modulating northwest Indian winter precipitation variability[J]. Theoretical andApplied Climatology,2007,87(1-4):73-83.
    [60] Young, I. R. Seasonal variability of the global ocean wind and wave climate[J].International Journal of Climatology,1999,19(9):931-950.
    [61] Zhang, Y., Wu, K., Zhang, X., Bi, F., Song, Z., Liu, S. Improving the estimate of windenergy input into the Ekman layer within the Antarctic Circumpolar Current[J]. ActaOceanologica Sinica,2013,32(3):19-27.
    [62]文圣常.涌浪谱[J].山东海洋学院学报,1960,1:44-64.
    [63]文圣常,余宙文.海浪理论与计算原理[M].北京:科学出版社,1984.
    [64]王智峰. Stokes-drift对上层海洋的影响研究[博士].中国海洋大学,2012.
    [65]侯一筠,卢筠,李明悝,何宜军,尹宝树,苏京志,程明华.有效波高的非线性统计及在南海卫星高度计中的应用[J].海洋与湖沼,2001,(05):541-546.
    [66]孙孚,钱成春,王伟,高山.海浪波生切应力及其对流驱动作用的估计[J].中国科学D辑,2003,33(8):791-798.
    [67]孙孚,魏永亮,吴克俭.地转条件下的浪致辐射应力[J].海洋学报(中文版),2006,28(6):1-4.
    [68]孙群,宋金宝,陈小刚.利用TOPEX卫星高度计资料分析东中国海的风、浪场特征[J].海洋科学,2006,30(4):6.
    [69]张晓爽.波浪对海洋上混合层温度变化的影响研究[博士].中国海洋大学,2012.
    [70]邓增安,吴克俭,于婷.太平洋东边界波浪输运[J].海洋学报(中文版),2007,29(6):1-9.
    [71]邓增安. Coriolis-Stokes力在海洋数值模拟中的影响研究[博士]. Qingdao:中国海洋大学,中国海洋大学,2009:134.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700