基于FVCOM的浪、流、泥沙模型耦合及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对近岸的一些基本海洋现象如潮汐、环流、风暴潮、海浪以及由此衍生的泥沙输运和海底地形变化的研究对海洋工程,环境保护等诸方面都有重要的意义。很多研究表明,这些现象不是孤立存在的,而是存在着较强的非线性作用,因此将它们作为一个整体来进行研究变得非常有必要。模型研究是当今物理海洋研究的一个非常重要的手段,目前耦合模型的情况是二维的多,三维的少;单向耦合的多,双向耦合的少;结构网格的多,无结构网格的少。由于近岸复杂的岸线和地形,选取一套能够很好的拟合岸线的非结构网格的模型来进行耦合研究就显得相当重要了。
     本文基于有限体积方法三角网格的水动力模型FVCOM、海浪模型FVCOM-SWAVE、泥沙模型FVCOM-SED,充分总结了当今先进的耦合技术,引进了三维辐射应力,与浪、流、泥沙皆有关的底边界模型,海表面应力模型,地形反馈等机制,建立了一套浪-流-泥沙耦合系统。首先总结了浪流耦合的研究历史和现状,包括理论研究和模型研究。然后通过两个理想实验对模型进行验证,包括
     个有角度海岸入射波和一个矩形海湾,第一个实验目的主要在于考察辐射应力对水动力模型的影响,第二个实验主要是考察相互作用模型,验证其中的主要耦合机制,并浅谈浪流泥沙共同作用下的海湾动力系统。在确保基本机制和程序编程无误之后,通过长江口杭州湾海域一次风暴潮过程,考察了浪、流、泥沙之间的相互作用并对模型的结果进行了解释,说明浪对流,流对浪,浪对泥沙悬浮以及浪沙对风暴潮水位的影响。由于风暴潮下的观察资料缺乏,继这次实验,结合渤海石油平台的风浪流同步观测资料,模拟了冬季一次大风过程,一是考察浪流之间的相互作用,二是通过实测资料来对模型进行检验。
     矩形海湾的试验中,得出主要结论是在地形变化显著的海区,考虑地形反馈以后流场有了显著的改变。在长江口-杭州湾的模拟中,指出在某些区域波浪对泥沙浓度影响比单纯考虑流高达一个量级,辐射应力对风暴潮水位起促进作用,浪流相互作用的底边界层的引入也起了促进作用,风暴潮计算应该同时考虑浪、流、泥沙之间的相互作用。在渤海的实验中,通过对BZ26平台的对比,水位模拟耦合以后与观测更接近,波浪由于该点流较弱,浪流相互作用不明显,但仍能看出模拟的波高随潮流的周期性变化。两个实际海区的实验都说明了潮位的变化只是在浅水区对波浪的影响较大,深水影响不大。流场对波浪模拟的影响在于多普勒效应以及流场时空的变化对绝对频率的影响,一般说来,波流同向的时候,波高受到抑制,波流反向的时候,波高增大。水深场的变化直接影响波参量如波速、摩擦力等的计算从而影响了波浪的传播与耗散。
Study of the near-shore ocean phenomena such as tides, circulation, storm surges, waves, sediment transport and morphology has an important significance on marine engineering and environmental protection. Many studies have shown that these phenomena are not isolated while there are strong non-linear interactions between them, so studying them as a whole is quite necessary. Model has become an important tool to study physical oceanography. Most coupled models are two-dimensional or one-way or using structured grid. Due to the complex coastline and topography in near-shore, coupling between a set of unstructured grid models that can better resolve the coastline becomes important.
     Based on the finite volume method, triangular grid hydrodynamic model FVCOM, wave model FVCOM-SWAVE, sediment model FVCOM-SED, with the application of three-dimensional radiation stress, the waves-currents-sediment related bottom boundary model, sea surface stress model and morphology, a wave-current-sediment coupling system is set. First history and current study of wave current interaction are summarized, including the theoretical and model study. Then two ideal experiments are carried out to verify the model, including an incident wave with an angle on plane beach, and a tidal inlet. The first experiment is designed primarily to study the influence of radiation stress on the hydrodynamic model; the second experiment is to investigate the interactions in the coupled model, to verify the main coupling mechanism and discuss the wave-current-sediment inlet systems. After these two experiments, some basic coupling mechanisms and programming is fully tested. A storm surge case in the Yangtze River-Hangzhou Bay during is modeled to study wave, current, sediment interaction. As there were no observed data under storm surge for us to make the comparison, following this experiment, a simulation is made during a strong winter wind period in the Bohai Sea where there were observations on oil platforms. Thus we can test the model through observation.
     The inlet case mainly told us the flow field should be dramatically changed where there is a significant change in topography. In the Yangtze River-Hangzhou Bay simulation, we concluded that introducing waves can make sediment concentration one order larger in deeper water. Radiation stress can promote the water level in storm surge; the bottom boundary layer increased the water level also. In the Bohai Sea simulation, the water level are better after coupling; flows at the platform are quite weak and the interaction is small, but the modeled wave height varies with the tidal frequency due to the tides. Both the two applications show tide level change can influence wave only in shallow water. The current influence wave by Doppler shift and the its variability in time and space; generally speaking, wave height decreases when wave current are in the same direction and increases when their directions are opposite. The variation of water depth directly influences the calculation of wave speed and bottom friction which can change wave's propogation and disspition.
引文
[1]Ardhuin, F., Rascle, N., Belibassakis, K.A.,2008. Explicit wave-averaged primitive equations using a generalized Lagrangian mean. Ocean Modelling 20,35-60.
    [2]Arthur, R.S.,1962. A note on the dynamics of rip currents. Journal of Geophysical Research 67,2777-2779.
    [3]Booij, N., Haagsma, I.J.G., Holthuijsen, L.H., Kieftenburg,A.T.M.M., Ris, R.C., van der Westhuysen, A.J., Zijlema, M.,2004. SWAN Cycle III version 40.51 User Manual. Delft University of Technology.
    [4]Booij, N., Ris, R.C., Holthuijsen, L.H.,1999. A third-generation wave model for coastal regions,Part I, Model description and validation. Journal of Geophysical Research 104 (C4), 7649-7666.
    [5]Bowen, A.J.,1969. The generation of longshore currents on a plane beach. Journal of Marine Research 27,206-215.
    [6]Bretherthon, F.P., Garrett, C.J.R.,1968. Wave trains in inhomogeneous moving media. Proc. R. Soc. London, A 302,529-554.
    [7]Chen, C. H. Liu, R. C. Beardsley,2003. An unstructured, finite-volume, three-dimensional, primitive equation ocean model:application to coastal ocean and estuaries. Journal of Atmospheric and OceanicTechnology,20,159-186.
    [8]Chen, C., Beardsley, R.C., Cowles, G.,2006b. An unstructured grid, finite-volume coastal ocean model FVCOM user manual. SMAST/UMASSD,2006.
    [9]Choi, B.H., Eum, H.M., Woo, S.B.,2003. Modeling of coupled tide-wave-surge process in the Yellow Sea. Ocean Eng.30,739-759.
    [10]Cookman, J.L., Flemings, P.B.,2001. STORMSED1.0:hydrodynamics and sediment transport in a 2-D, steady-state, wind-and wave-driven coastal circulation model. Computers and Geosciences 27,647-674.
    [11]Craig, P.D., Banner, M.L.,1994. Modeling wave-enhanced turbulence in the ocean surface layer. J. Phys. Oceanogr.24,2546-2559.
    [12]Craik, A.D.D., Leibovich, S.,1976. A rational model for Langmuir circulation. J. Fluid Mech. 73,401-426.
    [13]Davies, A.M., Lawrence, J.,1994. Examining the influence of wind and wind wave turbulence on tidal currents, using a three-dimensional hydrodynamic model including wave-current interaction. Journal of Physical Oceanography 24,2441-2460.
    [14]Davies, A.M., Lawrence, J.,1995. Modeling the effect of wave-current interaction on the three-dimensional wind driven circulation of the eastern Irish Sea. J. Phys. Oceanogr.25, 29-45.
    [15]De Vriend, H.J., Stive, M.J.F.,1987. Quasi-3D modeling of nearshore currents. Coastal Engineering 11,565-601.
    [16]Donelan, Mark, A., Dobson, F.W., Smith, S.D., et al.,1993. On the dependence of sea surface roughness on wave development. Journal of Physical Oceanography 23,2143-2149.
    [17]Drennan, W.M., Donelan, M.A., Terray, E.A., Katsaros, K.B.,1996. Oceanic turbulence dissipation measurements in SWADE. J. Phys. Oceanogr.28,1624-1641.
    [18]Drennan, W.M., Graber, G.C., Hauser, D., Quentin, C.,2003. On the wave age dependence of wind stress over pure wind seas. J. Geophys. Res.108 (C3),8062, doi: 10.1029/2000JC000715.
    [19]Durski, S.M., Glenn, S.M., Haidvogel, D.B.,2004. Vertical mixing schemes in the coastal ocean:comparison of the level 2.5 Mellor-Yamada scheme with an enhanced version of the K profile parameterization. Journal of Geophysical Research 109, C01015.
    [20]Ebersole, B. A. and Dalrymple, R. A. (1980). Numerical modeling of nearshore circulation. In Proc.17th Coastal Engineering Conference, Sydney, Australia,2710-2725. ASCE.
    [21]Erik, A.T.,2002. Modelling of turbulent flow with suspended cohesive sediment. In: Winterwerp, J.C., Kranenburg, C. (Eds.), Fine Sediment Dynamics in the Marine Environment. Elsevier Science B.V., Amsterdam, pp.155-186.
    [22]Flather, R.A.,1976. A tidal model of the northwest European continental shelf. Mem. Soc. R. Sci. Liege 10 (Ser.6),141-164.
    [23]Grant, W.D., Madsen, O.S.,1979. Combined wave and current interaction with a rough bottom. Journal of Geophysical Research 84 (C4),1797-1808.
    [24]Grant, W.D., Madsen, O.S.,1982. Movable bed roughness in unsteady oscillatory flow. Journal Geophysical Research 87(C1),469-481.
    [25]Groeneweg, J., Klopman, G.,1998. Changes in the mean velocity profiles in the combined wave-current motion described in GLM formulation. J. Fluid Mech.370,271-296.
    [26]Haas, K., Svendsen,1.,2002. Laboratory measurements of the vertical structure of rip currents. Journal of Geophysical Research 107 (C5),3047. doi:10.1029/2001JC000911.
    [27]Haas, K., Svendsen, I., Haller, M., Zhao, Q.,2003. Quasi 3D modeling of rip current systems. Journal of Geophysical Research 108 (C7),3217. doi:10.1029/2002JC001355.
    [28]Haidvogel, D.B., Arango, H.G., Budgell, W.P., Cornuelle, B.D., Curchitser, E., Di Lorenzo, E., Fennel, K., Geyer, W.R., Hermann, A.J., Lanerolle, L., Levin, J., McWilliams, J.C., Miller, A.J., Moore, A.M., Powell, T.M., Shchepetkin, A.F., Sherwood, C.R., Signell, R.P., Warner, J. C., Wilkin, J., (2008)."Regional Ocean Forecasting in Terrain-following Coordinates:Model Formulation and Skill Assessment." Journal of Computational Physics.
    [29]Haller, M.C., Dalrymple, R.A., Svendsen, I.A.,2002. Experimental study of nearshore dynamics on a barred beach with rip channels. Journal of Geophysical Research 107 (C6), 3061. doi:10.1029/2001FC000955.
    [30]Harris, C.K., Wiberg, P.L.,1997. Approaches to quantifying long-term continental shelf sediment transport with an example from the Northern California STRESS mid-shelf site. Continental Shelf Research 17 (11),1389-1418.
    [31]Harris, C.K., Wiberg, P.L.,2001. A two-dimensional, time-dependent model of suspended sediment transport and bed reworking for continental shelves. Computers and Geosciences 27 (6),675-690.
    [32]Hasselmann, S., Hasselmann, K.,1985. Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part I:A new method for efficient computations of the exact nonlinear transfer integral. J.Phys. Oceanogr.15,1369-1377.
    [33]Holthuijsen, L.H., Booij, N., Ris, R.C., Haagsma, IJ.G., Kieftenburg, A.T.M.M., Kriezi, E.E., Zijlema, M., van der Westhuysen, A.J.,2004. SWAN Cycle III version 40.31 USER MANUAL. Delft University of Technology Faculty of Civil Engineering and Geoscience Environmental Fluid Mechanics Section.
    [34]Holthuijsen, L.H., Tolman, H.L.,1991. Effects of the Gulf Stream in ocean waves. J. Geophys. Res. C 96,12755-12771.
    [35]Jacobs, G.A., Hur, H.B., Riedlinger, S.K.,2000. Yellow and East China Seas response to winds and currents. J. Geophys. Res.105 (C9),21947-21968.
    [36]James C. Mcwiilliams, Juan M. Restrepo and Emily M. Lane,2004. An asymptotic theory for the interaction of waves and currents in coastal waters. Journal of Fluid Mechanics,511, pp 135-178
    [37]Janssen, P.A.E.M.,1989. Wave induced stress and the drag of air flow over sea waves. J. Phys. Oceanogr.19,745-754.
    [38]Janssen, P.A.E.M.,1991. Quasi-linear theory of wind-wave generation applied to wave forecasting. J. Phys. Oceanogr.21,1631-1642.
    [39]Janssen, P.A.E.M.,1992. Experimental evidence of the effect of surface waves on the airflow. J. Phys. Oceanogr.22,1600-1604.
    [40]Jianhua Qi, Changsheng Chen, Robert C. Beardsley, Will Perrie, Geoffrey W. Cowles, Zhigang Lai.,2009. An unstructured-grid finite-volume surface wave model (FVCOM-SWAVE):Implementation, validations and applications. Ocean Modelling, In Press.
    [41]Kantha, L.H., Clayson, C.A.,1994. An improved mixed layer model for geophysical applications. Journal of Geophysical Research 99 (C12),25,235-25,266.
    [42]Kirby, J.T., Dalrymple, R.A.,1983. A parabolic equation for the combine refraction diffraction of stokes waves by mildly varying topography. Journal of Fluid Mechanics 136, 453-466.
    [43]Kirby, James T., Robert A. Dalrymple.,1994. REF/DIF1 Version 2.5. Center for Applied Coastal Research. CACR Report No.94-22.
    [44]Krone, R.B.,1962. Flume studies of the transport of sediment in estuarial shoaling processes. Final Report, Hydraulic Engineering Laboratory and Sanitary Engineering Research Laboratory. University of California, Berkeley, CA.
    [45]Lane, E.M., J.M. Restrepo, and J.C. McWilliams,2007. Wave-Current Interaction:A Comparison of Radiation-Stress and Vortex-Force Representations.J. Phys. Oceanogr.,37, 1122-1141.
    [46]Larson, J., Jacob, R., Ong, E.,2005. The model coupling toolkit:a new fortran90 toolkit for building multiphysics parallel coupled models. International Journal of High Performance Computing Applications 8 (19),277-292.
    [47]LeMehaute, B., Hanes, D.M.,1990. Air-sea interaction. In:Donelan, M.A. The Sea. John Wiley and Sons, pp.239-292.
    [48]Leuttich, R.A., Westerink, J.J., Scheffner, N.W.,1992. ADCIRC:an advanced three-dimensional circulation model for shelves, coasts, and estuaries. Report 1:Theory and Methodology of ADCIRC-2DDI and ADCIRC-3DI. Technical Report DRP-92-6, Coastal Engineering Research Center, US Army Engineer Waterways Experiment Station, Vicksburg, MS,1992.
    [49]Li, M., Zhong, L., Boicourt, B.,2005. Simulation of Chesapeake Bay Estuary:sensitivity to turbulence mixing parameterizations and comparison with hydrographic observations. Journal of Geophysical Research 110, C12004.
    [50]Longuet-Higgins, M. S., and R. W. St.ewart,1964. Radiation stresses in water waves; a physical discussion,with applications, Deep-Sea Res.,11,529-562.
    [51]Longuet-Higgins, M. S., and R. W. Stewart,1961. The changes in amplitude of short gravity waves on steady non-uniform currents. J. Fluid Mech.,10,529-549.
    [52]Longuet-Higgins, M. S., and R. W. Stewart,1962. Radiation stress and mass transport in gravity waves, J. Fluid Mech.,13,481-504.
    [53]Longuet-Higgins, M.S.,1970a. Longshore currents generated by obliquely incident sea waves,1. Journal of Geophysical Research 75 (33),6778-6789.
    [54]Longuet-Higgins, M.S.,1970b. Longshore currents generated by obliquely incident sea waves,2. Journal of Geophysical Research 75 (33),6790-6801.
    [55]Longuet-Higgins, M.S., Stewart, R.W.,1960. Changes in the form of short gravity waves on long waves and tidal currents. J. Fluid Mech.8,565-583.
    [56]Longuet-Higgins, M.S., Stewart, R.W.,1962. Radiation stress and mass transport in gravity waves with applications to'surf-beats'. Journal of Fluid Mechanics 8,565-583.
    [57]Longuet-Higgins, M.S., Stewart, R.W.,1964. Radiation stress in water waves, a physical discussion with application. Deep Sea Research 11,529-563.
    [58]Lou, J., Peter, V.R.,1996. Wavecurrent bottom shear stresses and sediment resuspension in Cleveland Bay, Australia. Coastal Engineering 29,169-186.
    [59]Luff, R., Moll, A.,2004. Seasonal dynamics of the North Sea sediments using a three-dimensional coupled sediment-water model system. Continental Shelf Research 24, 1099-1127.
    [60]Madsen, O.S.,1994. Spectral wave-current bottom boundary layer flows. Coastal Engineering 1994. In:Proceedings of the 24th International Conference, Coastal Engineering Research Council/ASCE,1994, pp.384-398.
    [61]Malarkey, J., Davies, A.G.,2003. A non-iterative procedure for the Wiberg and Harris (1994) oscillatory sand ripple predictor. Journal of Coastal Research 19 (3),738-739.
    [62]Mastenbrock, C., Burgers, G., Janssen, P.A.E.M.,1993. The dynamical coupling of a wave model and a storm surge model through the atmospheric boundary layer. Journal of Physical Oceanography 23,1856-1866.
    [63]McWilliam, J.C., Sullivan, P.P., Moeng, C.-H.,1997. Langmuir turbulence in the ocean. J. Fluid Mech.334,1-30.
    [64]McWilliams, J.C., Restrepo, J.M., Lane, E.M.,2004. An asymptotic theory for the interaction of waves and currents in coastal waters. Journal of Fluid Mechanics551,135-178.
    [65]Mehta, A.J., Parchure, T.M., Dixit, J.G., Ariathurai, R.,1982a. In:Kennedy, V.S. (Ed.), Resuspension Potential of Deposited Cohesive Sediment Beds, Estuarine Comparisons. Academic Press, New York, pp.591-609.
    [66]Mehta, A.J., Partheniades, E., Dixit, J., McAnally, W.H.,1982b. Properties of deposited kaolinite in a long flume. In:Proceedings of the Hydraulics Division Conference on Applying Research to Hydraulic Practice, August. ASCE, Jackson, Mississippi.
    [67]Mellor, G.L.,1987. A description of a three-dimensional coastal ocean circulation model, three dimensional coastal ocean models. In:Blumberg, A.F., Heaps, N. (Ed.), Three-dimensional Coastal Ocean Models, vol.4. Amer. Geophys. Union, pp.1-16.
    [68]Mellor, G.L.,2003. The three-dimensional current and surface wave equations. Journal of Physical Oceanography 33,1978-1989.
    [69]Mellor, G.L.,2005. Some consequences of the three-dimensional currents and surface wave equations. Journal of Physical Oceanography 35,2291-2298.
    [70]Mellor, G.L.,2008. The Depth-Dependent Current and Wave Interaction Equations:A Revision. Journal of Physical Oceanography 38,2587-2596.
    [71]Mellor, G.L., Blumberg, A.,2004. Wave breaking and ocean surface thermal response. J. Phys. Oceanogr.34,693-698.
    [72]Mellor, G.L., Yamada, T.,1982. Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics and Space Physics 20,851-875.
    [73]Moon, I.-J., Ginis, I., Hara, T., Tolman, H., Wright, C.W., Walsh, E.J.,2003a. Numerical simulation of sea-surface directional wave spectra under hurricane wind forcing. J. Phys. Oceanogr.33,1680-1706.
    [74]Moon, I.-J., Oh, I.S.,2003. A study of the effect of waves and tides on storm surge using a coupled ocean wave-circulation model. J. Korean Meteorol. Soc.39 (5),563-574.
    [75]Newberger, P.A., Allen, J.S.,2007. Forcing a three-dimensional, hydrostatic primitive-equation model for application in the surf zone, part 1:Formulation. Journal of Geophysical Research 112, C08018. doi:10.1029/2006JC003472.
    [76]Noda, E.K.,1974. Wave-induced nearshore circulation. Journal of Geophysical Research 79, 4098-4106.
    [77]Owen, M.W.,1971. The effect of turbulence on the settling velocities of silt flocs. In: Proceedings of the 14th Congress of I.A.H.R., vol.4, Paris, August, pp.27-32.
    [78]Pacanowski, R.C., Philander, S.G.H.,1981. Parameterization of vertical mixing in numerical models of tropical oceans. Journal of Physical Oceanography 11,1443-1451.
    [79]Patrick, J.L., Jones, J.E., Proctor, R., Tabor, A., Tett, P., Wild-Allen, K.,1999. COHERENS User Documentation Release 8.4.
    [80]Phillips, O.M.,1969. The Dynamics of the Upper Ocean. Cambridge Press, Cambridge.
    [81]Putrevu, U., Svendsen, I.A.,1993. Vertical structure of the undertow outside the surf zone. Journal of Geophysical Research 98,22707-22716.
    [82]Putrevu, U., Svendsen, I.A.,1999. Three-dimensional dispersion of momentum in wave-induced nearshore currents. European Journal of Mechanics-B/Fluids 18 (3),409-427.
    [83]Qiao F, et al.,2004. Wave induced mixing in the upper ocean:Distribution and application to a global ocean circulation model. Geophys. Res. Lett.,31:L11303
    [84]Shchepetkin, A.F., McWilliams, J.C.,2005. The Regional Ocean Modeling System (ROMS): a split-explicit, free-surface, topography-following coordinates ocean model. Ocean Modelling 9,347-404.
    [85]Shchepetkin, A.F., McWilliams, J.C.,2005.The regional ocean modeling system (ROMS):a split-explicit, free-surface, topography-following-coordinates ocean model. Ocean Modelling
    [86]Sheng, Y.P., Villaret, C.,1989. Modeling the effect of suspended sediment stratification on bottom exchange processes. Journal of Geophysical Research 94 (C10),429-444.
    [87]Signell, R.P., Beardsley, R.C., Graber, H.C., Capotondi, A.,1990. Effect of wave-current interaction on wind-driven circulation in narrow, shallow embayments. Journal of Geophysical Research 95,9671-9678.
    [88]Soulsby, R.L.,1995. Bed shear-stresses due to combined waves and currents. In:Stive, M.J.F. (Ed.), Advances in Coastal Morphodynamics:An Overview of the G8-Coastal Morphodynamics Project, Co-Sponsored by the Commission of The European Communities Directorate General XII pp.4.20-4.23.
    [89]Soulsby, R.L., Damgaard, J.S.,2005. Bedload sediment transport in coastal waters. Coastal Engineering 52 (8),673-689.
    [90]Styles, R., Glenn, S.M.,2000. Modeling stratified wave and current bottom boundary layers on the continental shelf. Journal of Geophysical Research 105 (C10),24,119-24,139.
    [91]Styles, R., Glenn, S.M.,2002. Modeling bottom roughness in the presence of wave-generated ripples. Journal of Geophysical Research 107 (C8),24/1-24/15.
    [92]Svendsen, I. A.,2006. Introduction to Nearshore Hydrodynamics. World Scientific,722 pages.
    [93]Svendsen, I. A., Putrevu, U.,1990. Nearshore circulation with 3-D profiles. In Proc.22nd Coastal Engineering Conference, Delft, ASCE,241-254.
    [94]Svendsen, I.A.,1984. Mass flux and undertow in a surf zone. Coastal Engineering.8,347-365.
    [95]Svendsen, I.A.,1984. Wave heights and set-up in a surf zone. Coastal Engineering 8, 303-329.
    [96]Svendsen, I.A., Haas, K., Zhao, Q.,2002. Quasi-3D nearshore circulation model SHORECIRC, User's Manual, Draft Report, Center for Applied Coastal Research, Department of Civil Engineering, University of Delaware, Newark.
    [97]Svendsen, I.A., Lorenz, R.S.,1989. Velocities in combined undertow and longshore currents. Coastal Engineering 13,55-79.
    [98]Svendsen, I.A., Putrevu, U.,1994. Nearshore mixing and dispersion. Proceedings of the Royal Society of London:Part A 445,1-16.
    [99]Terray, E.A., Donelan, M.A., Agarwal, Y.C., Drennan, W.M., Kahma, K.K., Williams Ⅲ, A.J., Hwang, P.A.,Kitaigorodskii, S.A.,1996. Estimate of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr.26,792-807.
    [100]Thornton, E.B., (1970). Variation of longshore current across the surf zone. In:Proc.12th Coastal Engineering Conference, Washington DC, ASCE, pp.291-308.
    [101]Tolman, H.L.,1989. The numerical model WAVEWATCH:a third generation model for the hind casting of wind waves on tides in shelf seas. Communications on Hydraulic and Geotechnical Engineering, Delft University of Technology, ISSN 0169-6548, Rep. No. 89-2.
    [102]Tolman, H.L.,1990. The influence of unsteady, depths and currents of tides on wind-wave propagation in shelf seas. J. Phys. Oceanogr.20,1166-1174.
    [103]Tolman, H.L.,1991. A third generation model for wind waves on slowly varying, unsteady, and inhomogeneous depth and currents. J. Phys. Oceanogr.21,782-797.
    [104]Umlauf, L., Burchard, H.,2003. A generic length-scale equation for geophysical turbulence models. Journal of Marine Research 61,235-265.
    [105]Van Leussen, W.,1994. Estuarine macroflocs and their role in fine-gained sediment transport. Ph.D. Thesis, University of Utrecht, The Netherlands,488pp.
    [106]Visser, P.J.,1984. A mathematical model of uniform longshore currents and comparison with laboratory data. Communication on Hydraulics. Report 84-2 Delft University of Technology.151 pp.
    [107]Wang, H.,2002.3-Dimensional Numerical Simulation on the Suspended Sediment Transport from the Huanghe to the Sea. Ph.D. Thesis, Ocean university of China, pp.12-14, in Chinese.
    [108]Wang, H., Yang, Z.S., Li, R., Zhang, J., Chang, R.,2001. Numerical modeling of the seabed morphology of the subaqueous Yellow River Delta. International Journal of Sediment Research 16 (4),486-498. Whitham, G.B.,1974. Linear and nonlinear waves. Wiley, New York, pp.636.
    [109]Warner J. C., Natalie Perlin, Eric D. Skyllingstad,2008. Using the Model Coupling Toolkit to couple earth system models. Environmental Modelling & Software, v.23 n.10-11, p.1240-1249,
    [110]Warner, J.C., Sherwood, C.R., Arango, H.G., Signell, R.P.,2005. Performance of four turbulence closure models implemented using a generic length scale method.
    [111]Warner, J.C., Sherwood, C.R., Signell, R.P., Harris, C., Arango, H.G.,2008. Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model. Computers and Geosciences 34,1284-1306.
    [112]Weller, R.A., Price, J.F.,1988. Langmuir circulation within the oceanic mixed layer. Deep-Sea Res.35,711-747.
    [113]Wind, H.G., Vreugdenhil, C.B.,1986. Rip-current generation near structures. Journal of Fluid Mechanics 171,459-476.
    [114]Winterwerp, J.C.,1999. On the dynamics of high-concentrated mud suspension. PhD Thesis, Technical University Delft. Xie, L., Wu, K., et al.,2001. A numerical study of wave-current interaction through surface and bottom stresses:wind-driven circulation in the South Atlantic Bight under uniform winds. Journal of geophysical research 106 (C8),16,841-16,855.
    [115]Wu, C.-S., Liu, P.L.-F.,1985. Finite element modeling of nonlinear coastal currents. J. of Waterway, Port, Coastal and Ocean Eng 111,417-432.
    [116]Xia, H., Xia, Z., Zhu, L.,2004. Vertical variation in radiation stress and wave-induced current. Coastal Eng.51,309-321.
    [117]Xie, L., Pietrafesa, L.J., Wu, K.,2003. A numerical study of wave-current interaction through surface and bottom stresses:coastal ocean response to Hurricane Fran of 1996. J. Geophys. Res.108 (C2),3049, doi:10.1029/2001JC001078.
    [118]Xie, L., Wu, K., Pietrafesa, L., Zhang, C.,2001. A numerical study of wave-current interaction through surface and bottom stresses:Sind-driven circulation in the South Atlantic Bight under uniform winds. J. Geophys. Res.106 (C8),16841-16855.
    [119]Zhang, M.Y., Li, Y.S.,1996. The synchronous coupling of a third-generation wave model and a two-dimensional storm surge model. Ocean Eng.6,533-543.
    [120]Zhang, M.Y., Li, Y.S.,1997. The dynamic coupling of a third-generation wave model and a 3D hydrodynamic model through boundary layers. Continental Shelf Research 17 (10), 1141-1170.
    [121]葛建忠.风暴潮数值预报及可视化:[硕士学位论文].上海:华东师范大学,2007
    [122]乔方利,马建,夏长水.波浪和潮流混合对黄海、东海夏季温度垂直结构的影响研究.自然科学进展,2004,14(12):1434-1441
    [123]尹宝树,王涛,侯一筠.渤海波浪和潮汐风暴潮相互作用对波浪影响的数值研究.海洋与湖沼,2001,32(1):109-116
    [124]朱首贤.浪流模式和物质长期输运分离研究:[博士学位论文].上海:华东师范大学,2005
    [125]宗海波.黄河口海域风浪诱导的泥沙再悬浮数值模拟和全球海面气象参数遥感反演:[博士学位论文].青岛:中国海洋大学,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700