风暴潮—天文潮—波浪耦合模型及其在杭州湾的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风暴潮灾害是严重威胁沿岸人民生命财产的自然灾害。研究风暴潮及其致灾因素的动力学特征是沿岸防灾减灾工作的必然要求。由于风暴潮过程影响因素的复杂性,相关研究还远不能满足实践的需要。为此,需要综合考虑风暴潮、天文潮和波浪之间的相互作用,构建合适的耦合数学模型,采用数值计算的方法研究各种物理因子的动力学特征,并对其与风暴潮之间的相互作用规律和机理进行分析。
     本文针对风暴潮过程物理因素众多,相互作用关系复杂的特点,首先研究了台风特征、天文潮、以及波浪与风暴潮之间的特征关系和影响规律。在此基础上,本文基于模块化思想,建立了在台风作用下,综合考虑风暴潮、天文潮和波浪三者相互作用的耦合数值模型。将模型应用到杭州湾地区,分别模拟了典型的实际台风过程以及设计最不利台风过程下的台风浪和风暴潮变化过程。
     台风作用是影响风暴潮的主要因素。论文以均匀斜坡地形模拟大陆架,模拟台风垂直岸线登陆,得到了不同台风特征参数对风暴增水的影响规律;并分析对比了风应力与低气压作用在台风增水中所占的比重。天文潮与风暴增水之间的非线性作用也是风暴潮模拟中不容忽视的因素,论文分别在理想地形和实际地形中计算了典型台风过程下相应的风暴潮位,分析得到了非线性作用下的风暴增水分布规律,并进一步研究了台风在不同天文潮相位登陆时的风暴增水特征。台风浪既是台风过程中致灾的重要方面,同时也与风暴潮之间存在复杂的相互作用。论文计算了典型的实际台风过程中杭州湾内台风浪的演变情况,分析了波浪与风暴潮的相互影响作用特征及其分布规律。
     论文将耦合模型应用到杭州湾地区,计算了典型台风过程下的风暴潮过程。对比分析表明,耦合模型能够很好地模拟台风过程中的风暴潮和台风浪。在上述研究成果的基础上,结合历年台风资料设计了对杭州湾最不利的台风过程,模拟该情况下杭州湾内的风暴潮过程,指出了杭州湾内可能的最危险区域,对实际的防灾工作具有重要的参考价值。
The coast of China is offen attacked by strong storm surges, which usually caused series disasters. To improve the technologies for prevention and mitigation of disasters induced by storm surge is thus a big challenge to the Chinese coastal engineers. This paper developed a coupled numerical model considering the interactions between storm surge, astronomic tide and wind wave. By using this model, the dynamic characteristics of storm surge, tide and wave are studied, and the interaction effects among those hydrodynamic factors are discussed. The model is applied to Hangzhou Bay, which is a typical strong tide river mouth and usually suffers from the typhoon.
     The newly developed model includes a wind field module, a water level prediction module and a wave module. The three modules are coupled, considering the interaction of typhoon, wave and astronomic tide. Comparing the computed result and the measured data during the storm surge caused by typical real typhoons in Hangzhou Bay, it shows that the developed model works well on simulating the storm surge and typhoon wave.
     The effect of each hydrodynamic factor on strom surge is analysed. As typhoon is the primary cause of strom surge, the effects of the typhoon characters on storm surge are studied. This paper simulated the storm surge induced by a typhoon moving along the route perpendicular to the shoreline. The paper compared the effects of wind stress and low air press on the storm surge. The nonlinear interaction between astronomic tide and storm surge also plays an important role in storm surge simulation. The paper computed the water levels of storm surge in ideal and real landform of Hangzhou Bay separately, analysed the influence of nonlinear interaction between astronomic tide and strom surge on storm surge. Moreover, the wind wave caused by typhoon is also a disaster important factor in disaster prediction, and wave radiation stress would affect water level. The paper simulated the typhoon wave process in Hangzhou Bay with typical typhoons. The wave distribution is discussed. Meanwhile, the interaction between typhoon wave and storm surge is analysed.
     Based on the research above, the paper designed a most dangerous typhoon in Hangzhou Bay. By simulating the storm surge under the designed condition, the paper pointed out the most dangerous area in the Hangzhou Bay. It is valueble for prevention and mitigation of the disasters induced by strom surge in the coastland around the Hangzhou Bay.
引文
陈联寿,丁一汇. (1979).西太平洋台风概论.北京,科学出版社: 43~120.
    陈希,沙文钰,周芦燕,等(2003).近岸海浪模式在中国东海台风浪模拟中的应用——数值模拟及物理过程研究.海洋通报,(2):9-16. 陈希,沙文钰,闵锦忠. (2002).台湾岛邻近海域台风浪的模拟研究.海洋预报,(4):1-10.
    丁骏,车助美. (2003).浙江沿海台风风暴潮类型与成因初探.海洋预报. 20(2):5-14.
    端义宏,朱建荣,秦曾灏,等(2005).一个高分辨率的长江口台风风暴潮数值预报模式及其应用.海洋学报(中文版),(3):11-19.
    冯士笮. (1982).风暴潮导论.北京,科学出版社.
    高焕臣. (1980).关于风暴潮与天文潮相互作用问题的讨论.海洋通报,(4): 9-14.
    胡克林. (2003).波—流共同作用下长江口二维悬沙数值模拟.华东师范大学. D
    胡克林,丁平兴,朱首贤,等(2004).长江口附近海域台风浪的数值模拟——以鹿沙台风和森拉克台风为例.海洋学报(中文版),(05):23-33.
    黄华. (2006).长江口及杭州湾风暴潮三维数值模拟.华东师范大学. M
    黄梓辉、关锦伦(2006). Slosh风暴潮预报模式在香港的应用.第二十届粤港澳气象科技研讨会.澳门,香港天文台: 12.
    江毓武,吴培木,许金殿. (1999).台风风暴潮气压项作用探讨.台湾海峡,(04):432-436.
    姜兆敏,王如云,黄金城(2004).风暴潮与天文潮非线性相互作用的理论分析.河海大学学报(自然科学版),(4): 447-450.
    李岩,沙文钰,杨支中,等(2006).一次登陆湛江台风风暴潮数值预报.海洋预报,(1):27-32.
    李艳芸(2005).风暴潮预报模式理论及应用研究,天津大学. M.
    李燕,薄兆海. (2005). Swan模式对黄渤海海域浪高的模拟能力试验,海洋预报,(3):75-82.
    李燕. (2006).第三代浅水波浪数值预报模式及其在黄渤海域的应用.气象科学,(3):3265-3271.
    李玉成,董国海. (1993).不规则波在逆流中的破碎.海洋通报(05): 1-8.
    李玉成,董国海. (1994).缓坡上波浪谱的变形及破碎.海洋学报(中文版)(05).
    林珲,闾国年,宋志尧. (2000).东中国海潮波系统与海岸演变模拟研究.北京,科学出版社.
    林惠娟,张耀存. (2004).影响我国热带气旋活动的气候特征及其与太平洋海温的关系.热带气象学报,(2): 218-226.
    刘凤树. (1992).国内外风暴潮概况及其防御对策.自然灾害学报,(1):85-92.
    罗义勇,孙文心. (1995).北部湾风暴潮的数值模拟──三维流速分解模型的一个应用.青岛海洋大学学报,(1):.
    沙文钰,杨支中,冯芒,李岩. (2004).风暴潮、浪数值预报.北京,海洋出版社.
    盛立芳,吴增茂. (1993).一种新的台风海面风场的拟合方法.热带气象学报,(3): 265-271.
    宋志尧,李瑞杰,薛鸿超. (2003).太湖台风风暴流准三维数值模拟的应用.海洋湖沼通报,(1):7-12.
    孙涛,韩光,陶建华(2002).波生沿岸流数值模拟研究及其实验验证.水利学报,(11): 1-7.
    孙涛,陶建华(2003).波浪作用下近岸区污染物输移扩散的数学模型及其实验验证.海洋学报(中文版),(3):104-112.
    孙文心,冯士筰,秦曾灏. (1979).超浅海风暴潮的数值模拟(ⅰ)——零阶模型对渤海风潮的初步应用.海洋学报(中文版),(2):193-211.
    孙文心,秦曾灏,冯士筰. (1980).超浅海风暴潮的数值模拟(ⅱ)——渤海风潮的一阶模型.山东海洋学院学报(自然科学版),(2):7-19.
    王金博,钱维宏(2005).半个世纪来热带海洋风暴对中国大陆的影响.地球物理学报,(5): 992-999.
    王喜年,尹庆江,张保明. (1991).中国海台风风暴潮预报模式的研究与应用.水科学进展,(1):1-10.
    王喜年. (1986).第三讲风暴潮数值模式计算中气压场和风场的处理.海洋预报,(04):56-64.
    王喜年. (1987). Slosh模式的进一步应用——西南佛罗里达风暴潮图集.海洋预报(S1).
    王喜年. (2001).风暴潮预报知识讲座第四讲风暴潮预报技术(1).海洋预报(04).
    温秀媛,马小舟,董国海,等. (2009).一种波浪增减水的数值研究方法.中国水运(下半月)(06): 142-144.
    吴培木,许永水,李燕初,等(1981).台湾海峡台风暴潮非线性数值计算.海洋学报(中文版),(1):28-43.
    吴培木,黄美芳,何洪钜,等. (1989).粤西台风风暴潮数值预报方法研究.海洋学报(中文版),(06):693-700.
    吴培木. (1983).中国东南海岸台风暴潮数值预报模式.海洋学报(中文版),(3):273-283.
    吴少华,王喜年,戴明瑞,等(2002a).渤海风暴潮概况及温带风暴潮数值模拟.海洋学报(中文版),(3):28-34.
    吴少华,王喜年,于福江,等(2002b).连云港温带风暴潮及可能最大温带风暴潮的计算.海洋学报(中文版),(5):8-18.
    吴巍,孙文心. (1995).渤海局部海域风暴潮漫滩计算模式──adi干湿网格模式在渤海局部海域风暴潮漫滩计算中的应用.青岛海洋大学学报,(2).
    夏波, (2006).风暴潮过程中的波流耦合数值模式研究.天津大学. M
    徐福敏,张长宽,茅丽华,等(2000).一种浅水波浪数值模型的应用研究.水动力学研究与进展A辑,(4):429-434.
    徐福敏,张长宽,陶建峰. (2004).浅水波浪数值模型swan的原理及应用综述.水科学进展,(4):538-542.
    杨德周,尹宝树,徐艳青,等(2005). Swan浅水波浪模式在渤海的应用研究——phillips线性增长比例系数的改进.水科学进展,(5):710-714.
    尹庆江,吴少华,王喜年. (1997).美国slosh模式在我国的应用——杭州湾台风风暴潮的数值模拟.海洋预报,(01):.
    应仁方. (1987).美国slosh飓风暴潮预报模式.海洋预报,(S1):16-29.
    于福江,王喜年,戴明瑞. (2002a).影响连云港的几次显著温带风暴潮过程分析及其数值模拟.海洋预报,(1):113-122.
    于福江,张占海,林一骅. (2002b).一个稳态kalman滤波风暴潮数值预报模式.海洋学报(中文版),(05):26-35.
    于福江,张占海. (2002c). Kalman滤波风暴潮数值预报四维同化模式研究进展.海洋预报,(1):105-112.
    郑金海,严以新. (1999).波浪辐射应力理论的应用和研究进展.水利水电科技进展,(6): 5-7+63.
    中国气象局. (2006).热带气旋年鉴.北京,气象出版社.
    周旭波,孙文心. (2000).长江口以外海域风暴潮与天文潮的非线性相互作用.青岛海洋大学学报(自然科学版),(2):201-206.
    朱建荣,朱首贤. (2003). Ecom模式的改进及在长江河口、杭州湾及邻近海区的应用.海洋与湖沼,(4):364-374.
    邹志利,常梅,邱大洪等. (2002).沿岸流的实验研究.水动力学研究与进展(A辑)(02): 174-180.
    Battjes J A. (2006). Developments in coastal engineering research. Coastal Engineering 53(2-3): 121-132.
    Battjes, J A and Janssen J P F M. (1978). Energy loss and set-up due to breakingofrandom waves. Proc. 16th Int. Conf. Coastal Engineering, ASCE, 569-587.
    Bode L and Hardy T A. (1997). Progress and recent developments in storm surge modeling. Journal of Hydraulic Engineering 123(4): 315-331.
    Booij N, Holthuijsen L H and Ris R C. (1997). `swan' wave model for shallow water, Orlando, FL, USA, ASCE, New York, NY, USA.
    Booij N, Ris R C and Holthuijsen L H. (1999). A third-generation wave model for coastal regions. 1. Model description and validation. Journal of Geophysical Research 104(C4): 7649-66.
    Bouws E, and Komen G J. (1983). On the balance between growth and dissipation inan extreme, depth-limited wind-sea in the southern North Sea. J. Phys. Oceanogr.,13: 1653-1658.
    Cavaleri L and Malanotte-Rizzoli P. (1981). Wind wave prediction in shallow water: Chen Q, Wang L, Zhao H, et al. (2005). Prediction of storm surges and wind waves in mobile bay, al, Charleston, SC, United States, American Society of Civil Engineers, Reston, VA 20191-4400, United States.
    Cheung K F, Phadke A C, Wei Y, et al. (2003). Modeling of storm-induced coastal flooding for emergency management. Ocean Engineering, 30(11): 1353-1386.
    Choi B H, Eum H M and Woo S B. (2003). Modeling of coupled tide-wave-surge process in the yellow sea. Ocean Engineering 30(6): 739-759.
    Collins J I. (1972). Prediction of shallow water spectra. J. Geophys. Res., 77(15): 2693-2707.
    Dean R G, Dalrymple R A. (1991). Water wave mechanics for engineers and scientists. Singapore: World Scientific.
    Demirbilek Z, Lin L and Bass G P. (2005). Prediction of storm-induced high water levels in chesapeake bay, Charleston, SC, United States, American Society of Civil Engineers, Reston, VA 20191-4400, United States.
    Dietsche D, Hagen S C and Bacopoulos P. (2007). Storm surge simulations for hurricane hugo (1989): On the significance of inundation areas. Journal of Waterway, Port, Coastal and Ocean Engineering 133(3): 183-191.
    Dingemans, M W, Radder A C and Vriend H J. (1978). Computations of thedriving forces of wave-induced currents. Coastal Engng., 11: 539-563.
    Doodson A T. (1956). Tides and storm surges in a long uniform gulf. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 237(1210): 325-343.
    Edge B L, Aggarwal M and Maske C. (2005). Hurricane surge at johnson space center, Charleston, SC, United States, American Society of Civil Engineers, Reston, VA20191-4400, United States.
    Eldeberky Y and Battjes J A. (1995). Parameterization of triad interactions in waveenergy models. Proc. Coastal Dynamics Conf.’95, Gdansk, Poland, 140-148.
    Flather R A. (2000). Existing operational oceanography. Coastal Engineering 41(1): 13-40.
    Fujita T. (1956). Pressure distribution in typhoon. Geophysical Magazine 23: 437.
    Gilman C S and Myers V A. (1961). Hurricane winds for design along new england coast. ASCE -- Proceedings -- Journal of the Waterways and Harbors Division 87(WW2, Part 1): 45-65.
    Hasselmann K, Barnett T P and Bouws E et al. (1973). Measurements of wind?wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP), Dtsch.Hydrogr. Z, Suppl., 12, A8.
    Hasselmann S, Hasselmann K and Allender J H. (1985). Computationsand parameterizations of the nonlinear energy transfer in a gravity wave spectrum.Part II: Parameterizations of the nonlinear transfer for application in wave models. J.Phys. Oceanogr., 15(11): 1378-1391.
    Holland G J. (1984). Tropical cyclone motion: A comparison of theory and observation. Journal of the Atmospheric Sciences 41(1): 68-75.
    Holthuijsen L H, Herman A and Booij N. (2003). Phase-decoupled refraction-diffraction for spectral wave models. Coastal Engineering 49(4): 291-305.
    Hsu T-W, Ou S-H and Liau J-M. (2005). Hindcasting nearshore wind waves using a fem code for swan. Coastal Engineering 52(2): 177-195.
    Huang S, Li Y, Zhao X, et al. (2007) Numerical investigation of high tide level due to a super typhoon in a coastal region. China Ocean Engineering. 21(3): 471-484.
    Janssen, P.A.E.M. (1991). Quasi-linear theory of wind-wave generation applied to wave forecasting. J. Phys. Oceanogr., 21: 1631-1642.
    Jelesnianski C, Jye C, Shaffer W, et al. (1984). Slosh - a hurricane storm surge forecast model. OCEANS.
    Kakinuma T and Tomita T. (2004). Development of Storm surge and tsunami simulator in oceans and coastal areas. Proceeding of Coastal engineering 2004 [C], Singapore, World Scientific.1552-1564
    Kang H-g, Zhang H-w and Qu X-t. (2009). Numerical study of effect of wave around single break-water with the swan model. Journal of Hydrodynamics 21(1): 136-141.
    Kim K and Yamshita T. (2004). Wind-wave-surge parallel computation model and itsapplication to storm surge simulation in shallow sea. Proceeding of Coastal engineering 2004 [C], Singapore, World Scientific.1578-1590.
    Kim S Y Takayama T and Yasuda T. (2007). Effect of large tidal variation on storm surge in the western coast of korea [a]. Asian and pacific coasts 2007 [C], Nanjing, China, China ocean press.
    Kim S Y, Yasuda T and Mase H. (2008). Numerical analysis of effects of tidal variations on storm surges and waves. Applied Ocean Research 30(4): 311-322.
    Komen, G J, Cavaleri L, and Donelan, M. et al. (1994). Dynamics and Modelling of Ocean Waves, Cambridge University Press.
    Komen, G J, Hasselmann S, and Hasselmann K. (1984). On the existence of a fully developed wind-sea spectrum. J. Phys. Oceanogr., (14): 1271-1285
    Longuet-Higgins M S and Stewart R W. (1964). Radiation stresses in water waves; a physical discussion with applications. Reprint: Radiation Stresses in Water Waves; a Physical Discussion with Applications. United States: 2p.
    Luettich R A and Westerink J J. (2000). A parrallel advanced circulation model for oceanic, coastal end estuarine waters.
    Madsen H and Jakobsen F. (2004). Cyclone induced storm surge and flood forecasting in the northern bay of bengal. Coastal Engineering 51(4): 277-296.
    Madsen, O.S., Y.-K. Poon and H.C. Graber. (1988). Spectral wave attenuation by bottom friction: Theory, Proc. 21th Int. Conf. Coastal Engineering, ASCE, 492-504.
    McAloon C, Garza R C, Sylvestre J, et al. (2005). The coastal storms program: Improved prediction of coastal winds, waves and flooding, Charleston, SC, United States, American Society of Civil Engineers, Reston, VA 20191-4400, United States.
    Cheng M,Yin B,Yang D,et al. (2005). Improvement of different source function expressions in swan model for the bohai sea, Progress in Natural Science. Nelson, R.C. (1994). Depth limited design wave heights in very flat regions. Coastal Engineering, 23: 43-59.
    Nielsen O S R D, Gray (2007). Hydrodynamic modeling of coastal inundation. 518-523.
    Nielsen P, Brye S d, Callaghan D P, et al. (2008). Transient dynamics of storm surges and other forced long waves. Coastal Engineering 55(6): 499-505.
    Ou S-H, Liau J-M, Hsu T-W, et al. (2002). Simulating typhoon waves by swan wave model in coastal waters of taiwan. Ocean Engineering 29(8): 947-971.
    Peng M, Xie L and Pietrafesa L J. (2004). A numerical study of storm surge andinundation in the croatan-albemarle-pamlico estuary system. Estuarine, Coastal and Shelf Science 59(1): 121-137.
    Proudman J. (1955). The propagation of tide and surge in an estuary. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 231(1184): 8-24.
    Reed D B and Stucky B E. (2005). Forecasting hurricane storm surge on the mississippi river, Charleston, SC, United States, American Society of Civil Engineers, Reston, VA 20191-4400, United States.
    Ris R C, Holthuijsen L H and Booij N. (1999). A third-generation wave model for coastal regions. 2. Verification. Journal of Geophysical Research 104(C4): 7667-81.
    Ris R C, Holthuijsen L H, Booij N, et al. (1998). Swan wave model verified along the southern north sea coast, Virginia Beach, VA, USA, ASCE.
    Rogers W E, Kaihatu J M, and Petit H A H. (2002). Diffusion reduction in a arbitrary scale third generation wind wave model. OceanEngng., 29: 1357-1390.
    Shaffer W, Jelesnianski C and Jye C. (1986). Hurricane storm surge forecasting. OCEANS.
    Shibaki H, Nakai K, Suzuyama K and Watanabe A. (2004). Multi-level storm surge model incorporating density stratification and wave setup. Proceeding of Coastal engineering 2004 [C], Singapore, World Scientific.1539-1531.
    Shibaki H. (2007). Numerical simulation of storm surge inundation induced by overflow overtopping and dike breach. Proceedings of fourth international conference on Asian and Pacific coasts. China Ocean Press. 181-184
    Stelling G S and Leendertse J J. (1992). Approximation of convective processes bycyclic AOI methods. Proceeding 2nd international conference on estuarine and coastalmodeling, ASCE,Tampa, Florida, 771-782.
    SWAN team. (2009). Scientific and technical documentation.of SWAN. Delft University of Technology.
    Tolman H J. (1992). Effects of numerics on the physics in a third-generation wind-wave model. J. Phys. Oceanogr., 22(10): 1095-1111.
    Van Vledder, G. Ph. and Bottema M. (2003). Improved modelling of nonlinear fourwaveinteractions in shallow water. Proc. 28th Int. Conf. Coastal Engineering, ASCE, 459-471.
    WAMDI group (1988). The WAM model ? a third generation ocean wave prediction model. J Phys Oceanogr., (18): 1775?1810.
    Weaver R J and Donald N S. (2004). Effect of wave force on storm surge. Proceedingof Coastal engineering 2004 [C], Singapore, World Scientific.1532-1538.
    Winer H and Naomi A. (2005). The advanced circulation model - a hurricane protection design tool, Charleston, SC, United States, American Society of Civil Engineers, Reston, VA 20191-4400, United States.
    Yasuda T, Hiraishi T, Kawai H, et al. (2005). Field survey and 3-d simulation on inundation disaster due to storm surge in masan city in south korea, Charleston, SC, United States, American Society of Civil Engineers, Reston, VA 20191-4400, United States.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700