波浪作用下建筑物周围的泥沙冲刷及海床演变
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用数值方法研究了海上建筑物周围的泥沙冲刷和海床演变,建立了用于模拟建筑物周围海床演变的数值模型。由于直接利用三维模型计算量非常大,为了提高计算速度和节省计算机存储量,本文利用深度平均的二维模型计算波浪场和水流场,并利用在海底边界层内对动量方程进行垂向积分的数值模型计算海底剪切应力。本文中所有的数值方法利用有限元方法实现。
     本文提出的数值模型主要用于模拟大尺度建筑物周围的泥沙冲刷情况,所以在计算时必须考虑波浪对建筑物的绕射和反射。在本文中首先分别利用有限元方对缓坡方程和Boussinesq方程进行了数值求解,并在此基础上分别建立了基于缓坡方程和Boussinesq方程的波浪作用下建筑物周围的海床演变数值计算模型。在求解波浪方程时应用了边界处利用解析解拟合和内部边界造波、边界阻尼层消波的方法,避免了利用数值方法近似处理边界条件引起的误差。在求解波浪引起的水流场时利用二维浅水方程,将辐射应力梯度项加入浅水方程中以考虑波浪对水流的影响。计算海底剪切应力时应用波流共同作用模型,而不是纯波浪和纯水流两种情况下的剪切应力的叠加。计算了波浪周期内各个时刻瞬时的悬移质和推移质泥沙输沙率,并对输沙率进行时间平均求得时间平均的输沙率。计算输沙率时考虑了Lagrangian漂移速度和由于波浪边界层不均匀产生的竖向流速的影响,在计算海底地形演变时通过求解用输沙率表示的泥沙质量守恒方程来实现。推导出了利用波面随时间的分布来表示的辐射应力计算公式。对泥沙在斜坡上运动时的临界Shields数进行了修正,并将其应用于本文提出的数值模型中。利用本文数值模型的计算结果与他人的数值结果和试验结果进行了比较。利用数值方法研究了KC数、泥沙粒径和模型比尺对圆柱周围的泥沙冲刷情况的影响。
     本文利用物理模型试验对波流共同作用下大尺度圆柱周围的泥沙冲刷进行了研究,研究了在波流作用下不同直径的圆柱周围的泥沙冲刷情况,并建立了用于模拟波流共同作用下建筑物周围的泥沙冲刷的数值模型,将此数值模型的计算结果与物理模型试验中的实测值进行了比较。由于实际工程中水流速度相对波浪水质点速度很小,所以在数值模型中忽略了水流对波浪的影响,而考虑波浪辐射应力对水流的影响。
The local scour and topographical change around offshore structures are studied numerically in this thesis. The numerical models are established for simulating the topographical change around structures. Because the computation using 3D numerical models is time-consuming, the depth-averaged 2D numerical models are applied in the calculation of wave and current fields for saving computer memory and increasing the computing speed. The shear stress at the sea bed is calculated by solving the depth-integrated momentum equation over the thickness of the boundary layer near the bed. The numerical models are implemented by finite element method.
    The numerical models proposed in this thesis are applied to simulate the local scour around the large-scale structures and the wave reflection and diffraction around structures can be computed. The finite element models for solving the Mild-slope equation and Boussinesq equations are firstly established in this thesis. The methods of coupling with an analytical solver, inner wave generation and wave absorption using spongy layer are applied to the boundaries in calculation of the wave field for reducing the numerical errors. The wave-induced current is calculated by solving a set of 2D shallow water equations in the horizontal plane. The gradients of radiation stress components are added to the shallow water equations to take into account the affect of waves on current. The combined wave-current models are applied to the calculation of bed shear stress instead of the simple addition of wave and current. The instantaneous sediment transport
    of suspended and bed load are computed, and the sediment transport rates are time-averaged over one wave period. The Lagrangian drift velocity and the bed shear stress due to streaming are considered when calculating the suspended sediment transport rate. A conservation equation of sediment mass expressed by time-averaged sediment transport rates is solved for simulating the topographical evolution. Equations expressed by the time series of wave surface elevation for computing the radiation stress components are proposed. The critical shields parameter is modified when the sediment grain moving on a slope beach and the modified shields parameter is applied to the numerical model. The computation results using the models in this thesis are compared with experimental data and other numerical results. The influence of KC number, sediment grain size, and scale affect on process of scour are examinated numerically in this thesis.
    The local scour around a large-scale vertical cylinder due to wave and current is studied experimentally and numerically. The scour processes of wave and current acting on cylinders with various diameter are tested. The numerical model for simulating the scour process around large-scale structures due to wave and current is established, and the numerical results are compared to with experimental data. Because the current velocity is smaller than the wave particle velocity in real coastal engineering, the affect of current on waves is neglected in the numerical model, but the affect of radiation stress of waves on current was considered.
引文
1. Breusers,H.N.C.,Raudkivi,A.J.,1991. Scouring,A.A.Balkema,Rotterdam.
    2. Keulegan,G.H.,Carpenter,L.H.Forces on cylinders and plates in an oscillating fluid.J.Reseach of the National Bureau of Standards Research Paper,1958,60 (5) : 423-440.
    3. Sumer,B.M.,Fredsee,J.Wave scour around structures.Advances in Coastal Ocean Engineering,1999,4: 191-249.
    4. Saito,E.,Sato S.,Shibayama T.Local scour around a large circular cylinder due to wave action,Proc.22nd Int.Coastal Engineering Conference,ASCE,Delft,the Netherlands,1990,2: 1795-1804.
    5. Sumer,B.M.,Fredsoe J.Scour around a large vertical circular cylinder in waves.16th Int.Conference on Offshore Mechanics and Arctic Engineering,Yokohama,Japan,1997,April 13-18.
    6. Katsui H.,Toue T.Bottom stress in coexistent field of superimposed waves and current and scouring around a large-scale circular cylinder,Coastal Engineering in Japan,1992,35 (1) ,93-110
    7. Zhao,M.,Teng,B.Numerical simulation of local scour around a large circular cylinder under wave action.China Ocean Engineering,2001,15 (3) : 371-382.
    8. Kim,C.J.,Iwata K.,Miyaike Y,Yu,H.S.Topographical change around multiple large cylindrical structures under wave actions,Proc.24th Int.Coastal Engineering Conference,ASCE,Kobe,Japan,1994,2: 1212-1226.
    9. Fredsee,J.,Sumer,B.M.Scour at the round head of a rubble-mound breadwater.Coastal Engineering,1997,29:231-262.
    10. Hirt,C.W.,Nichols,B.D.Volume of fluid (VOF) Method of the Dynamics of Free Boundaries,1981,39:201-225.
    11. Berkhoff,J.C.W.Computations of combined refraction-diffraction.Proc.13th Coastal Eng.Conf.,ASCE,1972,1:471-490.
    12. Peregrine D H.Long waves on a beach.J.Fluid Mech.,1967,27 (4) : 815-827.
    13. Fredsφe,J.The turbulent boundary layer in combined wave current motion.J.Hydraulic Eng.,ASCE,1984,110 (HY8) ,1103-1120.
    14. Christoffersen,J.B.,Jonsson,I.G.Bed friction and dissipation in combined current and wave motion,Ocean Eng.,1985,12,387-423.
    15. Myrhaug,D.,Slaattelid,H.A rational approach to wave-current friction coefficient for rough,smooth and transitional turbulent flow.Coastal Engineering,1990,14: 265-293.
    16. Engelund,F.,Freds0e,J.A sediment transport model for straight alluvial channels,Nordic Hydrology,1976,7,293-306.
    17. Meyer-Peter,E.,Muller,R.Formulas for bed-load transport.Rep.22nd Meet.Int.Assoc.Hydraul.Struct.Res.,Stockholm,1948,pp.39-64.
    18. Rakha,K.A.,Deigaard,R.,Braker,1. A phase-resolving cross shore sediment transport model for beach profile evolution.Coastal Engineering,1997,31: 231-261.
    19. Rakha,K.A.A quasi-3D phase-resolving hydrodynamics and sediment transport model.Coastal Engineering,1998,34: 277-311.
    20. Freds0e,J.,Deigaard,R.Mechanics of coastal sediment transport.World Scientific Publishing Co.Pte.
    
    Ltd.,1992.
    21. Mei,C.C.A note on the averaged momentum balance in two-dimensional water waves.J.Mar.Res.,1973,31 (2) : 97-104.
    22. Einstein,H.A.,1950. The bed-load function for sediment transportation in open channel flows.U.S.Dept.of Agriculture,Techn.Bulletin No.1026.
    23. Zyserman,J.A.,Fredsee,J.Data analysis of bed concentration of suspended sediment,J.Hydr.Eng.,ASCE,1994,120 (9) ,1021-1042.
    24. Abbott,M.B.,Basco,B.R.Computational fluid dynamics [M].Wiley,New York,1989.
    25. De Vriend,H.J.,Zyserman,J.,Nicholson,J.,Roelvink,J.A.,Pechon,P.,Southgate,H.N.Medium-term 2HD coastal area modeling.Coastal Engineering,1993,21: 193-224.
    26. Abbott,M.B.,McCowan,A.D.,Warren,I.R.Accuracy of short-wave numerical model.J.Hydraulic Eng.,1984,110(10) : 1287-1301.
    27. Chen,H.S.,Mei,C.C.Oscillations and wave forces in an offshore harbour.Massachusetts Institute of Technology,Parsons Laboratory,1974,Rep.No.190.
    28. Behrendt,L.,Jonsson,I.G.The physical basis of the mild-slope equation.Proc.19th Coastal Eng.Conf.,Houston.ASCE.,1984.
    29. Li B.A generalized conjugate gradient model for the mild slope equation.Coastal Eng.,1994,23: 215-225.
    30. Zheng,Y.H.,Shen,Y.,Qiu,D.H.An elliptic solver for the mild slope equation using BI-CGSTAB method.China ocean Eng.2000,14.
    31. Van Der Vorst H A.BI-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear system.SIAM,J.Sci.Stat.Comput.,1992,13 (2) : 631-644.
    32. Radder,A.C.On the parabolic equation method for water wave propagation.J.fluid mech.,1979,95(1) : 159-176.
    33. Li B.An evolution equation for water waves.Coastal Eng.1994,23:227-242.
    34. 潘军宁,左其华,王红川.一种高效的缓坡方程数值解法,第九届全国海岸工程学术讲座讨论会 论文集。海洋出版社,北京,1999,67-176.
    35. Copeland,G.J.M.A practical alternative to the "mild-slope" wave equation.Coastal Engineering,1985,9:125-149.
    36. Madsen,P.A.,Larsen,J.An efficient finite-difference approach to the mild-slope equation.Coastal Engineering,1987,11: 329-351.
    37. 张延芳.计算流体力学.大连:大连理工大学出版社,1992.
    38. Teng B ,Eatock Taylor,R.New higher-order boundary element methods for wave diffraction/radiation.Applied Ocean Research,1995,17: 71-77.
    39. 赵明,滕斌,金生.缓坡方程的有限元解.大连理工大学学报,2000,40(1) :117-119.
    40. Ito,T.,Tanimoto,K.A method of numerical analysis of wave propagation-application to wave diffraction and refraction.Proc 13th International Conference on Coastal Engineering,Vancouvc,ASCE,1972:503-522.
    41. Berkhoff,J.C.W.,Booji,N.,Radder,A.C.Verification of numerical wave propagation models for simple harmonic water waves.Coastal Engineering,1982,6: 255-279.
    42. Booij N.Gravity waves on water with no-uniform depth and current[R].Delft University of Tech.,Dep.
    
    Civil Eng.,Report No.81-1,1981.
    43. Israeli M,Orszag S A.Approximation of radiation boundary conditions.J.Comp.Phys.,1981,41: 115-135.
    44. Teng B,Zhao M,Bai W.Wave diffraction in current over a local shoal.Coastal Eng.,2001,42: 163-172.
    45. Panchang,V.G.,Cushman-Roisin,B.,Pearce,B.R.Combined refraction-diffraction of short waves in large coastal regions [J].Coastal Eng.,1988,12:133-156.
    46. Kirby J T,Dalrymple R A.An approximate model for nonlinear dispersion in monochromatic wave propagation models [J].Coastal Eng.,1986,9: 545-561.
    47. Witting,J.M.A unified model for the evolution of nonlinear water waves.J.Comput.Phys.,1984,56: 203-236.
    48. Madsen,P.A.,Murray,R.,Sorensen,O.R.A new form of the Boussinesq equations with improved linear dispersion characteristics.Coastal Eng.,1991,15: 371-388.
    49. Madsen,P.A.,Sorensen,O.R.A new form of the Boussinesq equations with improved linear dispersion characteristics.Part 2. A slowly-varying bathymetry.Coastal Eng.,1992,18:183-204.
    50. Schaffer,H.A.,Madsen,P.A.Further enhancements of Boussinesq equations.Coastal Engineering,1995,26: 1-14.
    51. Nwogu,O.An alternative form of the Boussinesq equations for near shore wave propagation.J.Water way,Port,Coast and Ocean Eng.,1993,119 (6) : 618-638.
    52. Beji S.,Nadaoka K.A formal derivation and numerical modelling of the improved Boussinesq equations for varying depth.Ocean Eng.,1996,23 (8) : 691-704.
    53. Gobbi,M.R,Kirby,J.T.Wave evolution over submerged stills: tests of a high-order Boussinesq model.Coastal Engineering,1999,37: 57-96.
    54. 邹志利.高阶Boussinesq水波方程,中国科学(E),1999,27(5) :460-473.
    55. Wei B.,Kirby J.T.Time-depended numerical code for extended Boussinesq equations.J.of Water Way,Port,Coastal,and Ocean Eng.,1995,121 (5) : 251-251.
    56. Kashiyama,K.,Ito,H.Three-step explicit finite element computations of shallow water flows on a massively parallel computer.Int.J.Numerical Methods Fluids,1995,21: 885-990.
    57. Li,Y.S.,Zhang,J.M.A 3-dimensional finite element method for stratified coastal seas.J.Hydraulic Engineering.ASCE,1998,124 (7) : 699-703.
    58. Antunes do Carmo J.S.,Seabra Santos F.J.,Barthelemy E.Surface wave propagation in shallow water: a finite element model.Int.J.Numer.Methods Fluid,1993,16: 447-459.
    59. Antunes do Carmo J.S.,Seabra Santos F.J.On breaking waves and wave-current interaction on shallow water: a 2DH finite element model.Int.J.Numer.Methods Fluid,1996,22: 429-444.
    60. Li Y.S.,Liu S.X.,Yu Y.X.,Lai G.Z.Numerical modeling of Boussinesq equations by finite element method,1999,37:97-122.
    61. Larsen,J.,Dancy,H.Open boundaries in short wave simulations-a new approach.Coastal Engineering,1983,7: 285-297.
    62. 聂铁军,候宜,郑介庸.数值计算方法.1990,西北工业大学出版社.
    63. Whalin,R.W.The limit of applicability of linear wave refraction theory in a convergence zone.Res.Rep.H-71-3,U.S.Army Corps of Engrs,Waterways Expt.Station,Vicksburg,M.S.,1971.
    
    
    64. Rygg,O.B.Nonlinear refraction-diffraction of surface waves in intermediate and shallow water.Coastal Eng.,1988,12: 191-211.
    65. Isaacson,M.de St.Q.Wave run up around large circular cylinder.J.Wtrwy.,Port,Coast.Oc.Division,ASCE,1978,104(1) ,69-79.
    66. Isaacson,M.Wave-Induced forces in the diffraction regime,Mechanics of Wave-Induced Forces on Cylinders,T.L.Shaw (ed.).Pitman Advanced Publishing Program,1979,68-69
    67. Katsui,H.,Toue T.Inception of sand motion around a large obstacle,Proc.21st Int Coastal Engineering Conference,ASCE,Costa del Sol-Malaga,Spain,1988,2: 1280-1294.
    68. Saito,E.,Shibayama,T.Local scour around a large circular cylinder on the uniform bottom slope due to waves and current,Proc.23rd Int.Coastal Engineering Conference,ASCE,Venice,Italy,1992,3: 2799-2810.
    69. Sumer,B.M.,Christiansen,N.,Fredse,J.Influence of cross section on wave scour around piles.J.Waterway,Port,Coastal and Ocean Engineering,ASCE,1992,119 (5) : 477-495.
    70. Kobayashi,T.,Oda,K.Experimental study on developing process of local scour around a vertical cylinder.Proc.24th Int.Conference on Coastal Engineering,Kobe,Japan,1994,2: 1284-1297.
    71. Sumer,B.M.,Fredsoe,J.Wave scour around structures.Advances in Coastal Ocean Engineering,1999,4: 191-249.
    72. Toue,T.,Katsui H.,Nadaoka,K.Mechanism of sediment transport around a large circular cylinder.Proc.23rd Int.Coastal Engineering Conference,ASCE,Venice,Italy,1992,3: 2867-2878.
    73. Katsui,H.,Toue,T.Methodology of estimation of scouring around large-scale offshore structures.Proc.Third Int.Offshore and Polar Engineering Conference,Singapore,1993,1: 599-602.
    74. McCamy R.C.,Fuchs R.A.Wave forces on piles: a diffraction theory.Tech.Memo of U.S.Army Coastal Centre,1954,69.
    75. Longuet-Higgins M.S.,Stewart R.W.Radiation stress in water waves: a physical discussion with applications.Deep-Sea Res.,1956,11: 527-561
    76. 谭维炎.计算浅水动力学-有限体积法的应用.1989,清华大学出版社.
    77. Copeland,G.J.M.Practical radiation stress calculation connected with equations of wave propagation.Coastal Engineering,1985,9:195-219.
    78. 郑永红,沈永明,邱大洪.结合抛物型缓坡方程计算波浪辐射应力.海洋学报,2000,6:110-116。
    79. Crapper,G.D.Energy and momentum integrals for progressive capillary-gravity waves.J.Fluid Mech.,1979,94: 13-24.
    80. Mei,C.C.A note on the averaged momentum balance in two-dimensional water waves.J.Mar.Res.1973,31(2) : 97-104.
    81. Bettess,P.,Bettess,J.A generalization of the radiation stress tensor.Appl.Math.Modell.,1982,6: 146-150.
    82. Jing Sheng,FAP-A general purpose flow analysis program.Rep.Department of Civil Engineering.Dalian University of Technology,1996.
    83. Myrhaug,D.,Slaattelid,O.H.Combined wave and current boundary layer model for fixed rough seabeds.Ocean Engineering,1989,16: 119-142.
    84. Mei,C.C.The applied dynamics of ocean surface waves,John Wiley & Sons,1983.
    85. Sumer,B.M.,Freds0e,J.Scour below pipelines in waves.J.Waterway,Port,Coastal and Ocean
    
    Engineering,ASCE,1990,116 (3) : 307-323.
    86. Kabiling,M.B.,Sato,S.Two-dimensional nonlinear dispersive wave-current and three-dimensional beacb deformation model.Coastal Engineering in Japan,1993,36 (2) : 195-211.
    87. Fredse,J.Mean current velocity distribution in combined waves and current.Progress Report No.53,Inst.Of Hydrodynamics and Hydraulic Engineering,ISVA,Techn.Univ.Denmark,1981,pp.21-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700