近岸海洋动力要素相互作用的数值模拟及其对物质输运影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浅海波浪、潮汐风暴潮相互作用的研究是当今国际热点研究方向之一。本项研究针对典型浅海海域渤海,研究了在这个海域的波浪、潮汐风暴潮的相互作用以及物质输运规律。建立了一个渤海波浪和潮汐风暴潮运动相互作用的数值模式。模式主要由两部分组成:一个物理上先进的第三代浅海波浪数值模式和一个二维潮汐风暴潮数值模式,实现了两个模式耦合。运用这个模式,重点研究了波浪对表面拖曳系数的影响;波浪对底摩擦应力的作用;辐射应力对潮汐风暴潮水位的影响以及潮汐风暴潮对波浪的作用。在这个基础上,对物质输运规律进行了研究。主要成果如下:
     1、波浪对表面拖曳系数的影响是明显的,特别是在浪大的时候,拖曳系数可以增大到原来的1.5倍;拖曳系数的改变也改变了水位场,在A点引起的增水量级值得人们注意。
     2、在近岸浅水地区,考虑波浪作用后的底摩擦应力明显增加,引起流速的减少及水位的减小。
     3、辐射应力对水位的影响不容忽视,在数值模拟中必须考虑辐射应力的存在。
     4、潮汐、风暴潮对波浪的作用是通过其产生的不定常水深与流场实现的;水深与流速对波向的影响很小。
     5、考虑波浪、潮汐风暴潮相互作用的数值模式从物理机制上讲更加合理,从数值模拟结果看,与实测值更加接近。
     6、浪、潮汐风暴潮作用下的物质输运规律明显不同于单纯潮流作用下的物质输运规律;在考虑物质输运的时候,必须重视波浪的影响。
Study on the wave-tide-surge interaction in shallow sea is one of the up-to-date active research areas around the world. This research has studied the Bohai sea wave-tide-surge interactions and the laws of substance transport. The combined wave-tide-surge numerical model which is composed of two components:a third generation shallow water wave model and a two-dimensional tide-surge model. By adoption this numerical model,the study has emphases on the effect of wave on the wind stress,wave on the bottom stress and radiation stress on the sea level. The study also has researched the effect of tide-surge to wave. On the basis of the simulated current filed by used the numerical model we studied the laws of substance transport. The main results are as follows:
    1) It is a obvious effect of wave on the wind drag coefficient. The wind drag coefficient can be add up to 1.5 times of origin value when we consider the wave effect on the drag coefficient. It also has changed the sea level. The magnitude of set-up is a noticed number.
    2) The wave has improved the magnitude of bottom stress in the shallow water,and decreased the current velocity.
    3) The radiation stress has a strong effect on the sea level. It also make the set-up occurs.
    4) The sea level and current velocity have an effect on wave height,and the wave direction modulation is small.
    5) It is more reasonable when the numerical model including the wave-tide-surge interactions,and the numerical results are close to the measured data.
    6) Tha laws of substance transport under the tide are different from that of the wave-tide-surge.
引文
尹宝树,1996,渤海波浪和风暴潮潮汐运动相互作用的理论和数值研究,博士学位论文
    谢强,1999有限区域海面风场数值模式及其在海洋动力要素预报中的应用,博土学位论文
    雷坤,2000,东海陆架悬浮体输送及其数值研究,博士学位论文
    韩光,2000,浅海近岸大面积波浪场的数值模拟及波流共同作用下污染物输移的数学模型研究,博士学位论文
    蒋东辉,2001,渤海海峡沉积物输运的数值模拟,博士学位论文
    江文胜、孙文心,2000,渤海悬浮颗粒物三维输运模式的研究Ⅰ.模式 海洋与湖沼 31 (6),682-687
    江文胜、孙文心,2001,渤海悬浮颗粒物三维输运模式的研究Ⅱ.结果 海洋与湖沼 32 (1),95-99
    辛文杰,1997 潮流、波浪综合作用下河口二维悬沙数学模型 海洋工程 15 (2) 30-47
    陈沈良,1999 沙质海岸沿岸输沙率的数值模型 海洋工程 17 (4) 79-84
    景振华,1981 海流流速计算的研究 海洋学报 3 (1) 1-13
    赵永良 张廷廷 陈则实,1992 黄海风暴潮和天文潮非线性耦合作用的数值研究 海洋学报 14 (3) 37-46
    张廷廷、王以娇,1989,渤海潮汐及大风作用下水位的数值模拟海洋学报 11 (6) 701-707
    洪广文、张洪生,1999,任意水深变化水域非线性波数值模拟 海洋工程 17 (4) 64-73
    窦振兴、张存智、张矾峰,1986渤海风海流的数值计算 海洋学报 8 (5) 527-533
    方国洪、朱耀华、魏则勋、王凯,1999半隐半拉格朗日差分格式的三维海洋动力学数值模式 水动力学研究与进展 14 (4) 40-49
    金正华、王淘、尹宝树,1998 浪、潮、风暴潮联合作用下的底应力效应 海洋与湖沼 29 (6) 604-610
    李芳君、陈士荫,1994疏浚引起泥沙扩散的三维数值模拟 泥沙研究 (4) 68-75
    袁业立、潘增弟、华锋、孙乐淘,1992,LAGFD—WAM海浪数值模式:Ⅰ.基本物理模型 海洋学报 14 (5)1-7
    袁业立、华锋、潘增弟、孙乐淘,1992,LAGFD—WAM海浪数值模式:Ⅱ.区域性特征线嵌入格式及其应用 海洋学报 14 (6) 12-24
    袁业立、潘增弟、邹建生,1988 LFGD海浪数值预报方法:Ⅰ.海浪数值预报模式 黄渤海海洋 6 (2) 1-5
    
    
    潘增弟、袁业立、邹建生,1988 LFGD海浪数值预报方法:Ⅱ.海浪数值预报计算模式 黄渤海海洋 6 (3) 1-9
    张廷廷、王以娇,1986,8114台风暴潮与天文潮非线性耦合作用的初步探讨 海洋学报 8 (3) 283-290
    张廷廷、王以娇,1986,8114台风影响下黄海水位场和流场的数值模拟 海洋学报 4 (1) 1-7
    张二骏、张东生、高飞,1986,一种新的数值方法—准分析法在二维非恒定流动问题中的应用 海洋学报 8 (5) 636-643
    羊天柱、应仁方,1997,海洋工程中台风暴潮及风暴海流的计算分析 海洋工程 15 (2) 48-59
    王宗山、龚滨、李繁华、邹娥梅、徐伯昌,1992,黄渤海风海流的数值计算 黄渤海海洋 10 (1) 12—18
    洪广文、朱庆,1987,非线性三维波波要素的计算方法 海洋工程 5 (3) 40-53
    赵跃辰、路季平,1986,线性倾斜海底上的二维风海流 海洋学报 8 (3) 265-271
    张晨、戚建华、左军成、张法高,1997,黄、渤海温跃层三维数值模拟 海洋学报 19 (6) 11-20
    吴培木、许永水、李燕初、陈玉霞、陈季良,1981,台湾海峡台风暴潮非线性数值计算 海洋学报 3 (1) 28-43
    王宗山、徐伯昌、邹娥梅、龚滨、李繁华、孙卫阳,1992,黄渤海底层温、盐度与其垂直平均值的统计关系 黄渤海海洋 10 (1) 1-7
    文圣常、宇宙文,1984,海浪原理与计算方法,科学出版社
    周朦、方国洪,1987,|(?)|u的Fourier展开和渤海海底拖曳系数C_0,海洋与湖沼,16,337-569
    方国洪、杨景飞,1985,渤海潮运动的一个二维数值模型,海洋与湖沼,18,1-11
    方国洪等,1990,渤海油田海洋环境条件数值计算及区域性研究,第四册
    王涛等,1996,埕岛海域海底长期冲淤变化规律及海水动力因素长期演化规律调查研究,第一分册。
    杨作升,王淘主编,1993.埕岛油田勘探开发海洋环境,青岛海洋大学出版社
    An, H. S., 1977, A numerical experiment of the M_2 tide in the Yellow sea, J. Oceanogr. Soc. Jap., 33, 103-110
    
    
    Bretherthon, F. P. and Garrett, C. J. R, 1968. Wave trains in inhomogeneous moving media, Proc. Roy. Soc. london, A, 302, 529-554
    Bouws, E. and Komen, G. J., 1983. on the balance between growth and dissipation in an extreme depth-limited wind-sea in the Southern North sea J. Phys. Oceanogr., 9, 1653-1658
    Battjes, J. A., Janssen, J. P. F. M., 1985. Calibration and verification of a dissipation model for random breaking waves. J. Geophys. Res., 90, 9159-9167
    Battjes, J. A., 1974, Computation of set-up, longshore currents, run-up and overtopping due to wind-generated waves. Rep, No 74-2, 244p, Deflt Univ. of Technology
    Beji, S. and Battjes, J. A., 1993, Experimental investigation of wave propagation over a bar, Coastal Eng., 19, 151-162
    Burges, G. and Makin, V. K., 1993. boundary-layer model results for wind-sea growth. J. Phys. Oceanogr., 23, 372-385
    Byrne, H. M., 1982, The variation of the drag coefficient in the marine surface layer due to temporal and spatial variations in the wind and sea state. Ph. D. dissertation, University of Washington
    Blake R. A., 1991, The dependenc of wind stress on wave height and wind speed. J. Jeo. Res., 96, 20531-20545
    Banner, M. L. and Melville, W. K., 1976, on the separation of airflow over waterwaves. J. fluid Meth., 77, 825-842
    Clayson, C. H. and Ewing, J. A., 1988. Directional wave data recorded in the Sounthern North Sea. Institute of Oceanographic Sciences Deacon Laboratory, Rep. No. 258, 70pp
    Chen, Y. H., and Wang, H., 1983, Numerical model for nonstationary shallow water wave spectral transformations. J. Seo. Res., 88, 9851-9863
    Collins, J. I., 1972. Prediction of shallow water spectra. J. Geo. Res., 77, 2693-2707
    Cavaleri, L., Bertotti, L. and Lionello, P., 1989. Shallow water application of the third Generation WAM wave model. J. Geo. Res., 94, 8111-8124
    Chalikov, D. V. and Belevich, M. y., 1993. One-dimensional theory of the wave boundary Layer. Bound-Layer Meteor., 63, 65-96
    Casulli, V. and Cheng, R. T., 1992, Semi-implicit finite difference methods for three Dimensional water flow. International Journal for numerical methods in fluids, 15,629-648
    
    
    Casulli,V.and Csattani, E., 1994, Stability, accuracy and efficiency of a semi-implicit methods for three dimensional water flow. Computers Math. Applic., 27, 99-112
    Choi, B. H., 1980. A tidal model of the yellow sea and the eastern china sea. KORDI REP. 80-02, 1-72
    Charnock, H., 1955. Wind stress on a water surface. Quart. J. Roy. Metero. Soc., 81, 639-640
    Christoffersen, J. B., 1982. Current depth refraction of dissipative water waves. Institute of Hydrodynamics and Hydraulic Eng, Techn. Univ. Denmark, series paper No. 30
    Christoffersen, J. B. and Jonsson, I. G., 1985. Bed friction and dissipation in a combined current and wave motion. Ocean Engineerings, 12, 387-423
    A. M. Davies, J. Lawrence, 1994, Examining the influence of wind and wind wave turbulence on tidal current, using a three-dimensional hydrodynamic model including wave-current interaction, J. Phys. Oceanogr., 24, 2441-2460
    A. M. Davies, J. Lawrence, 1995, Modelling the effect of wave-current interaction on the three dimensional wind-driven circulation of the eastern Irishi sea. J. Phys. Oceanogr., 25, 29-45
    Donelan, M. K., 1979. on the fraction of wind momentum retained by waves. In. J. C. J. Nihaul(ed,). Marines forecasting, Amsterdan, Elserier, 141-159
    Donelan, M. K., 1982. The dependence of of the aerodynamic drag coefficient on wave parameters. Conf. on Metero. and air-sea interaction of the coastal zone, 381-387
    Donelan, M. K., 1985. Direction spectra of wind-generated waves. philios. Trans. R.. Soc. London. 315, 509-562
    Donelan, M. K., 1986. The effect of swell on the growth of windwaves. NWRI Contrib. No. 86-117
    Donelan, M. K., 1990. Ari-sea interaction. The sea. B. Lemehaute and D. M. hans, 239-292
    Donelan, M. K., 1991. The mechanical coupling between air and sea-an evolutiom of ideas and observations. InM. Latif(ed.), max-planck inst. Fur meteorologie, 77-94
    
    
    Donelan, M. K., et al., 1993. On the dependence of sea surface roughness on wave Development. J. Phys. Oceanogr., 23, 2143-2149
    Dobson, F. W., et al., 1994. Measuring the relationship between wind stress and sea state in the open ocean in the presence of swell. Atmosphere-Ocean, 32(1). 237-256
    Fang, G. H. and Ichiye, T., 1983. On the vertical structure of tidal currents in a Homogeneous sea. Geophys. J. R. Astr. Soc., 73, 65-82
    Geici, R., Cazale, H. And Vassal, J., 1956. Utilization des diagrammes de propagation a la prevision energetigue de la houle, Bulletin d etudes des cote, 8, 169-197
    Glorioso, P. H. and Davies, A. M., 1995. The influence of eddy viscosity formulation bottom topography, and wind wave. J. Phys. Oceanogr., 25, 1243-1264
    Geernaert, G. L., et al., 1987. Measurements of wind stress, heat flux and turbulence intensity during storn conditions over the north sea. J. Geophys. Res., 93, 8215-8220
    Grant, W. D. and Madsen, O. S., 1979, Combined wave current interaction with a rough Bottom. J. Oecphys. Res., 84, 1797-1808.
    Hasselman, K., 1968. Weak-interaction theory of ocean waves in basic developments in Fluid mechanics. 12, M. Holt(ed), Academic press, New York
    Hasselman, K., 1960. Grundglei chungen der Seegang svoraussage. Schiffstechnik,7 Heft 39, 191-195
    Hasselman, K., 1962. On the nonlinear energy transfer in a gravity wave spectrum. Part1, General theory. J. Fiuid Meth., 12, 481-500.
    Hasselman, K., 1963a. On the non linear energy transfer in a gravity wave spectrum. Part2, Conservation theorems, wave particle correspondence, irreversibiity. J. Fiuid Meth., 15, 273-287.
    Hasselman, K., 1963b. On the non linear energy transfer in a gravity wave spectrum. Part3, Evaluation of the energy flux and swell-sea interaction for a Neuman spectrum, J. Fluid Meth., 15, 385-398
    Hasselman, K., Barnett, T. P., and Bouws, E., et al., 1973, Measurements of wind-wave growth and swell decay during the joint north sea wave project. Erganzungsheft zur Deutschen hydrographischen zeitschrift, 12
    Hasselman, K., and Hasselman, S., 1985a. Computation and parameterizations of the nonlinear energy transfer in a gravity wave spectrum. Partl, a new methods for efficient computation of the exact nonlinear transfer integral. J. Phys, Oceanogr. 15, 1369-1377.
    
    
    Hasselman, K., and Collins, J. i., 1986. Spectral dissipation of finite depth gravity Waves due to turbulent bottom frictio. J. Mar. Res., 26, 1-12
    Hedges, T. S., Tickell, R. G. and Akrigg, J., 1993. Interaction of short-crested random Waves and large-scale currents. Coastal Eng., 19, 207-221.
    Holthuijsen, L. H., Ronde, J. G. and Ellseberky, Y., et. al., 1994. Modelling extreme wave conditions in the southern north sea. Int. symposium: waves-physical and numerical modelling, vancouver, 694-703
    Hotthuijsen, L. H., Booij, N. and Herbers, T. H. C., 1989. A prediction model for stationary short crested waves in shallow water with ambient currents. Coastal Eng., 13, 23-54.
    Holthuijsen, L. H., and Tolman, H. L., 1990, Effects of the gulf stream onnearbycoastal waves. Proc. 22st Int. Cont. Coastal Eng., asce, Deflt, 384-395
    Holthuijsen, L. H., and Tolman, H. L., 1991, Effects of the gulf stream on ocean waves. J. Geo. Res., 96, 12755-12771
    Hsu, S. A., 1974. A dynamic roughness equation and its application to wind stress Determination at air-sea interface. J. Phys. Oceanogr., 4, 116-120
    Hsu, S. A., 1986. A mechanism for the increase of wind stress (drag) coefficient with wind speed over water surface: a parametric model J. Phys. Oceanogr., 16, 144-150
    Hang, N. and Long, S., 1981. On the importance of significant slope in empirical wind Wave studies. J. Phys. Oceanogr., 11, 569-573
    Jeffreys, H., 1925. On the formation of water waves by wind. proc. roy. soc. london, A, 107, 189-206
    Jonsson, J. G. and Cartsen, N. A., 1976. Experimental and theoretical investigation in an oscillatory turbulent boundary layer. J. Hydraulic Res., 14, 45-60
    Jonsson, J. G., 1966a. Wave boundary layers and friction factors. Proc. 10thInt. Coastal Eng., Tokyo, Japan, 127-148
    Jonsson, J. G., 1966b. The friction factor for a current superimposed on waves. Coastal Eng. Lab. and Hydraulic Lab., Techn. Univ. Denmark, Basic Res. No. 11, 2-12.
    
    
    Janssen, P. A. E. M., 1991. Quasi-linear theory of wind-wave generation applied to wave forecasting. J. Phys. Oceanogr., 21, 1631-1641
    Janssen, P. A. E. M., 1989. Wave-induced stress and the drag of the drag of airflow over sea waves. J. Phys. Oceanogr., 19, 745-754
    Juszko, B. A., et al., 1995. wind stress from wave slopes using phillips equilibrium Theory. J. Phys. Oceanogr., 25, 185-203
    Jenkins, A. D., 1993. A simplified quasi-linear model for wave generation and air sea momentum flux. J. Phys. Oceanogr., 23, 2001-2018
    Komen, G. J., Hasselmann, S. and Hasselmann, K., 1984. On the existence of a fully Developed wind-sea spectrum. J. Phys. Oceanogr., 1, 127-138
    Lin, R. q. and Huang, N. E., 1996. The goddard coastal wave model. part 1: numerical Method. J. Phys. Oceanogr., 26, 833-847
    Longuet-Higgins, M. S. and Stewart, R. W. 1960. Changes in the form of short gravity waves on steady non-uniform currents. J. Fluid Mech., 1, 565-583
    Longuet-Higgins, M. S. and Stewart, R. W. 1961. Changes in amplitude of short gravity waves on steady non-uniform currents. J. Fluid Mech., 1, 529-549
    Longuet-Higgins, M. S. and Stewart, R. W. 1962. Radiation stress and mass transport in gravity waves, with application to surf-beats. J. Fluid Mech., 1, 529-549
    Longuet-Higgins, M. S. and Stewart, R. W. 1964. Radiation stress in water waves; a Physical discussion with application. J. Phys. Oceanogr., 26, 848-862
    Masrenboek, C., Buigers, G. and Janssen, P. A, E. M., 1993. The dynamical coupling of a wave model and a storm surge model through the atmospheric boundary layer. J. Phys. Oceanogr., 8, 1856-1866
    Mathiesen, M., 1987. Wave refraction by a current whirl. J. Geophys. Res., 92, 3905-3912
    Masson, D., 1996. A case study of wave-current interaction in a strong tidal current. J. Phys. Oceanogr., 26, 359-372
    Maat, N., et al, 1991. The roughness of wind stress. Bound-layer meteor; 54, 89-103
    Nordeng, T. E., 1991. On the wave age dependent drag coefficient and roughness length At sea. J. Geophys. Res., 96, 7167-7174.
    
    
    O connor, B. A. and Yoo, D., 1988. Mean bed friction of combined wave/current flow. Coastal. Eng., 12, 1-21
    Perrie, W. And Wang, L. M., 1995. Acoupling mechanism for wind and waves. J. Phys. Oceanogr., 25, 615-630
    Roelvink, J. A., 1993. Dissipation in random wave groups incideng on a beach. Coastal Eng., 19, 127-150
    SWAMP Group, 1985, Ocean wave modelling. Plennm Press, New York and London.
    Smith, S. D., 1980. Wind stress and heat flux over the ocean in gale force winds. J. Phys. Oceanogr., 10, 709-726
    Signell, R. P., et al., 1990. Effect of wave-current interaction on wind-drived Circulation in narrow, shallow embayments. J. Geophys. Res., 95, 9671-9678
    Sakai, T, Koseki, M. and Iwagaki, Y., 1983. Irregular wave refraction due to current. J. Hydraul. Eng., 109, 1203-1215
    Tolman, H. L., 1990. The influence of unsteady depth and current of tides on windwave propagation in shelf seas. J. Phys. Oceanogr., 20, 1166-1174
    Tolman, H. L., 1991. Effects of tides and storm surges on north sea wind waves. J. Phys. Oceanogr., 6, 766-781.
    Tolman, H. L., 1994. Wind waves and movable-bed bottom friction. J. Phys. Oceanogr., 2, 991-1009
    Thornton, E. B. and Guga, R. T., 1983. Transformation of wave height distribution. J. Geophys. Res, 88, 5925-5938
    Toba, Y.,1 978. Stochastic form of the growth of wind waves in a single parameter Representation with physical implications. J. Phys. Oceanogr., 8, 494-507
    Vincent, C.E., 1979. The interaction of wind-driven sea waves with tidal currents. J. Phys. Oceanogr., 9, 748-755
    Wolf, J., Hubbert, K. P. and Flather, R. A., 1988. A feasibility study for the development Of a joint surge and wave model. Proundman Oceanographic Laboratory. Res No. 1, 199
    Wu, X., and Flather R. A., 1992. Hindcasting waves using a coupled wave-tide-surge Model. third international workshop on wave hindcasting and forecasting. 19-22
    
    
    Wu, X., Flather R. A., and Wolf, J., 1994. A third generation depth and current refraction due to tides and surges and its validation using GEOSAT and Buoy measurements. Proudman Oceanogrphic Laboratory Report No. 33. 48
    Wang, D. W., Liu, A. K., Peng, C. Y. and Meindl, E. A., 1994. Wave-current interaction near the gulf stream during the surface wave dynmics experiment. J. Geophys. Res., 99, 5065-5097
    Weber, S. L., 1991a. Eddy-viscosity and drag law models for random ocean wave dissipation. J. Fluid Mech., 232, 73-98
    Weber, S. L., 1991b. Bottom friction for wind sea and swell in extreme depth-limited situation. J. Phys. Oceanogr., 21, 149-172
    Weber, S. L., 1989. Surface gravity waves and turbulent bottom friction. Ph. D. thesis, Univ of Utrecht. Natherlands.
    Weber, S. L., 1994. Statistics of the air-sea fluxes of momentum and mechanical energy in a coupled wave-atmosphere model. J. Phys. Oceanogr., 24, 1388-1398
    Yoo, D., 1989. Explicit modelling of bottom friction in combined wave-current flow. Cosatal Eng., 13, 325-340
    Zhao, Y., and Anaatasiou, K., 1993. Bottom friction effects in combined flow field of random waves and currents. Cosatal Eng., 19, 223-243.
    J. Wolf, D. Prandle, 1999, Some observations of wave-current interaction, Coastal Engineering 37, 471-485
    William D. Grant, Ole Secher Madsen, Combined wave and current interaction with a rough bottom, J. Jeo. Res., 84(c4), 1797-1808
    R. P. Signell, R. C. Beardsley, H. C. Graber, A. Capotondi, 1990, Effect of wave-current interaction on wind-drvien circulation in narrow, shallow embayments, J. Jeo. Res., 95(c6), 9671-9678
    The WAMDI Group, 1988, The wammodel-a third generation ocean wave prediction model, J. Phys. Oceanogr., 18, 1775-1810
    C. E. Vincent, 1979, The interaction of wind-generated sea waves with tidal current, J. Phys. Oceanogr., 748-755
    J. Monbaliu, J. C. Hargreaves, J. C. Carretero, H. Gerritsen, R. Flather, 1999, Wave modelling in the promise project, Coastal Engineering 37, 379-407
    
    
    Hans Burchard, Ole petersen, Tom P. Rippeth, 1998, Comparing the performance of the mellor-yamada and the k-ε two-equation turbulence models, J. Jeo. Res., 103(c5), 10543-10554
    Diane Masson, 1996, A case study of wave-current interaction in a strong tidal current, J. Phys. Oceanogr., 26, 359-371

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700