地球临边环形成像仪性能评价及辐射定标研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天基大气临边遥感是目前最热门的探测方式,它有效地兼顾了天底观测方式的高空间覆盖范围和掩日/掩月观测方式的高精度和高垂直分辨率优点,在任务上体现出多样性,在时间上则能连续探测。地球临边环形成像仪正是这样一种遥感仪器,它能实时给出多方位的大气临边光谱散射信息,同时兼顾星下点10°视场的天底观测数据。这种多方位、双视场提供大气遥感探测数据的全新探测方式,在国际上是首创。
     本文在863项目支持下,依据未来空间平台上对地球临边大气探测的应用指标要求,分别研制出140°~146°超大视场紫外临边环形成像仪和可见临边环形成像仪系统,共6个工作波段。每套环形成像仪均由光、机、电及数据处理系统组成,光学单元包括12棱锥反射器、滤光片单元、透镜单元以及CCD探测器单元。根据地球临边大气紫外-可见光谱辐射特性、紫外/可见光学元件光谱传输特性,利用Zemax软件进行光学设计及仿真计算,设计出满足技术指标要求且可实现的环形成像仪系统。根据系统结构特点,研究了系统集成方法,集成的试验样机达到了技术指标要求。
     多年来,国内在空间遥感仪器研制方面蓬勃发展,相应的紫外光谱类、可见-红外成像及成像光谱类仪器检测和定标等方面基础雄厚。而紫外成像和成像光谱仪器研制尚属起步阶段,其性能评价及辐射定标国内基础比较薄弱,特别是140°~146°超大视场检测与定标成为本项目的技术难点。
     本论文针对试验样机设计、性能评价及辐射定标,开展了如下的研究:
     1.构建了紫外空间分辨率测试装置,验证了试验样机水平及垂直方向空间分辨率满足技术指标要求;
     2.利用高稳定性、可调节式紫外积分球,配备相应设施,对仪器某一积分时间下的线性和不同积分时间下的线性关系进行研究,确定了仪器正确响应的范围以及不同积分时间下的换算公式;
     3.分析并推导出遥感仪器信噪比的计算公式,基于已知太阳高度角和地球临边高度下大气光谱辐亮度以及试验样机光学系统的光谱传输特性,估算了试验样机各通道的信噪比,实际验证其大小,为后续项目设计提供了依据;
     4.开展了环形成像仪极化效应的研究,发现干涉滤光片是产生该成像系统偏振效应的主要因素,对后续干涉滤光片技术指标要求提供了新的依据;
     5.构建一台紫外/可见波长定标及相对光谱响应度测试装置,有效解决了传统波长定标方法对波段或者能量方面的限制,试验样机波长定标精度达到±0.5nm;
     6.通过分析环形成像仪超大视场辐亮度定标的难点,提出一种视场分割的定标方式,利用开口直径Ф1.5m的可见积分球对可见环形成像仪进行全视场及分割视场光谱辐亮度响应度定标研究,验证了分割视场定标的可行性,从而利用该方法完成了紫外环形成像仪光谱辐亮度的标定;
     7.研究构建了环形成像仪几何定标专用设备,确定出像面有效区域与方位角的一一对应关系。
     地球临边环形成像仪的设计思想使我国天基紫外/可见临边探测在高度以及精度方面都达到国际先进水平,该试验样机的成功研制,为下一步正式样机的研制提供了重要的参考价值,填补了国内相关领域的空白。
As the most hot observation method nowadays, space-based limb remotesensing of atmosphere has effectively merits of high coverage similar to nadirviewing and high precision and vertical resolution similar to occultation, with anembodiment of multiplicity on task and continuous detection on time. The EarthLimb Annular Imager is a kind of remote sensor just like that. It theoretically givesreal time spectral scattering information in multi-directions of limb observing andnadir observing data in10degrees field too. This new detecting method is a firstinternational way which provides data for remote sensing of atmosphere based onmulti-directions and double field observing mode.
     An UV/visible Limb Annular Imager system with140~160degrees wide-fieldis developed in this paper based on the application demands of the earth limbatmospheric detecting on future platform with the support of863project. It includes6wavebands, each consisting of optics unit、electronics unit and mechanical shell,while12pyramids reflector、filter、lens and CCD detector units combining to formthe whole optics unit. According to the UV/visible spectral radiometriccharacteristics of earth limb atmosphere and the optics designing and emulating withZemax software, an optics unit of the Annular Imager which satisfied the demands isdesigned finally. With configuration characteristics of the system, the integrating of system is studied and the experimental prototype gives a perfect consistency with thetechnology demands.
     Over recent years, the research of space remote sensor in our country isvigorously developed, the testing and calibration of UV spectrometer、visible-infrared imager or imaging spectrometer is fully experienced. But UV imageror imaging spectrometer is just on the initial stage. Without any experiences onperformance evaluation and calibration, the huge140°~146°field test andcalibration is the biggest technical difficulty in this project.
     A series research about the designing、performance evaluation and radiometriccalibration is developed on that experimental prototype system as below:
     1. An UV spatial resolution testing device is designed and a feasible testing ofthe horizontal and vertical spatial resolution of the experimental prototype is made,while the results commendably meet the technical guide lines;
     2. The proper response range and conversion equation among differentintegrating times of the imager is confirmed by accurately measuring the linearitywith the help of a high stable、adjustable UV integrating sphere system;
     3. Signal-to-Noise calculative equation of remote sensor is analysised anddeduced. By combining with not only the atmospheric spectral radiance under aknown solar altitude angle and earth limb height but also the spectral transmissivequality of the experimental prototype’s optics system, a theoretic SNR of each bandis estimated and a real testing is made, which gives a reference to the late project;
     4. Test and analysis is made on the polarization characteristics and its effectsof the prototype. Further research shows a major reason caused by the interferencefilter for that polarization effection, which gives new requirements for purchasingthe interference filter in later stages;
     5. An UV/visible high precision wavelength calibration and relative spectralresponsibility testing device is designed and effectively solved the limits about theband and energy for the traditional method. The precision of wavelength calibrationfor the prototype is±0.5nm;
     6. The transfer method of spectral radiance of a large aperture UV/visibleintegrating sphere is studied. A field segmental spectral radiance calibration methodis put forward by analyzing the problems of the wide-field Annular Imager. Study ofthe spectral radiance calibration of the visible Annular Imager with both full andsegmental field is made using an aperture diameter of1.5meters visible integratingsphere. Then a segmental field method which is proved to be effective is used on thespectral radiance calibration of the ultraviolet Annular Imager;
     7. A special equipment for geometric calibration of the annular imager isdesigned, a corresponding relationship between effective area and the azimuth isgiven.
     Thought of the UV/visible Limb Annular Imager makes an international levelachieved in height and precision of space-based limb remote sensing in our country.It is a foundation stone in technology for the next formal step since the triumphantlydesigned of the prototype, which supplies a gap in domestic related domain.
引文
[1]吕达仁,王普才,邱金桓等.大气遥感与卫星气象学研究的进展与回顾[J].大气科学,2003,27(4):552-556.
    [2]王革丽,吕达仁,杨培才.人类活动对大气臭氧层的影响[J].地球科学进展,2009,24(3):331-337.
    [3]邱金桓,王普才,夏祥鳌等.近年来大气遥感研究进展[J].大气科学,2008,32(4):841-853.
    [4]邱金桓,陈洪滨,王普才等.大气遥感研究展望[J].大气科学,2005,29(1):131-136.
    [5]吕达仁,王英鉴.中国中层大气研究的近期进展[J].地球物理学报,37(增刊1):74-84.
    [6]郭品文,朱乾根,刘宣飞.北半球春季大气臭氧年际变化特征及其对大气温度和环流场的影响[J].高原气象,2001,20(3):245-251.
    [7]薛庆生.用于空间大气遥感的临边成像光谱仪研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2010.
    [8]王加朋.紫外环形临边成像仪设计和性能评价[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2009.
    [9]徐丽华.大气层辐射遥感影像与大气环境质量研究[D]:[博士学位论文].上海:华东师范大学,2005.
    [10]阮宁娟,苏云.国外紫外空间探测器发展综述[J].航天返回与遥感,第29卷第3期,2008年9月.
    [11]陈述彭,赵英时编著.遥感地学分析[M].北京:测绘出版社,1990年5月.
    [12] Chen Shenbo. A new technique for atmospheric chemistry observations[J].SPIE,2006,6031(60310R):1-7.
    [13] Fred Ortenberg, V. Adasko, R. Salichov, V. Antoshkin and R. Muchamediarov. Infraredscanning radiometer of high spatial and spectral resolution for the Meteor-3satellite[J]. Proc.SPIE2312,2(1994).
    [14] Park H., Krueger A., Hilaenrath E. et al.. Radiometric calibration of sencond generation TotalOzone Mapping Spectrometer(TOMS)[J]. SPIE,1996,2820:162-173.
    [15] Haring R. E., Williams F. L., Hartmann U. G. et al.. Spectral band calibration of the TotalOzone Mapping Spectrometer(TOMS) using a tunable laser technique[J]. SPIE,2004,4135:421-431.
    [16] Park H., Habib S., Cunningham F. G. et al.. Joint Russian-USA Meteor-3M(2)/TOMS-5Mission[J]. SPIE,1998,3498:458-464.
    [17] Hearth D. F., Krueger A. J., Roeder H. A. et al.. The solar backscatter ultraviolet and TotalOzone Mapping Spectrometer(SBUV/TOMS) for NIMBUS G[J]. Optical Engineering,1975,14(4):323-331.
    [18] Weiss H., Cebula R. P., Laamann K. et al.. Evaluation of NOAA-11Solar BackscatterUltraviolet Radiometer, Mod2(SBUV/2): in flight calibration[J]. SPIE,1991,1493:80-90.
    [19] Richard P. Cebula, Ernest Hilsenrath, Thomas J. Kelly et al.. On the Radiometric Stability ofthe Shuttle Borne Solar Backscatter Ultraviolet Spectrometer [J]. SPIE,1991,1493:9199.
    [20] Achim R. Hahne, Alain Lefebvre, and Joerg Callies, Global Ozone Monitoring Experiment(GOME) on board of ERS2[J]. Proc. SPIE1715,594(1993).
    [21] Hahne A., Lefebvre A., Callies J.. Global Ozone Monitoring Experiment (GOME) on boardof ERS2[J]. SPIE,1992,1715:594-607.
    [22] Mariani A., Corpaccioli E., Fibbi M. et al.. GOME: a spectrometer for ozone monitoring fromspace[J]. SPIE,1994,2209:57-67.
    [23] Kamperman T. M., Goede A. P. H., Gunsing C. J. T. et al.. GOME instrument simulation[J].SPIE,1992,1715:562-572.
    [24] Vries J., Voors R., Dirksen R. et al.. In-orbit performance of the Ozone MonitoringInstrument[J]. SPIE,2005,5978(59780T):1-12.
    [25] Ahmad S. P., Levelt P. F., Bhartia P. K. et al.. Atmospheric products from the OzoneMonitoring Instrument(OMI)[J]. SPIE,2003,5151:619-630.
    [26] Dobber M., Dirksen R., Levelt P. et al.. EOS-Aura Ozone Monitoring Instrument in-flightperformance and calibration[J]. SPIE,2006,6296(62960R):1-12.
    [27] Vries J. D., Oord Gijsbertus H. J. van den, Hilsenrath E. et al.. Ozone MonitoringInstrument(OMI)[J]. SPIE,2002,4480:315-325.
    [28] Gordley Larry L., Marshall Benjamin T., Hervig Mark E. et al.. High precision broadbandextinction measurements using differential Solar Occultation[J]. SPIE,2002,4486:366-372.
    [29] Bevilacqua R. M., Shettle E. P., Hornstein J. S. et al.. The Polar Ozone and AerosolMeasurement Experiment(POAMⅡ)[J]. SPIE,1994,2266:374-382.
    [30] Shettle E. P., Bevilacqua R. M., Ainsworth T. L. et al.. Measurements of Antarctic Ozone byPOAMⅡ[J]. SPIE,1995,2582:306-312.
    [31] W.P.Chu,L.E.Mauldina. Overview of the SAGE III Experiment[J]. SPIE,1999,3756:102-109.
    [32] Gary E. Halama, James McAdoo, Murzy Jhabvala et al.. SAGE III Alternative DetectorDesign and Characterization[J]. SPIE,1999,3756:172-189.
    [33] R. E. Veiga, B. N. Wenny, G. M. Hansen et al.. The SAGE III Test Model:Ground-basedcoincident measurements with the SAGE III flight instruments and field characterizationmeasurements[J]. SPIE,2002,4485:135-141.
    [34] Didier R., Robert L.. Stratospheric and upper tropospheric aerosol retrieval from limb scattersignals[J]. SPIE,2007,6745(674509):1-12.
    [35] Aruga T., Heath D.F.. Determination of vertical ozone distribution by using spacecraftmeasurements using limb scatter technique[J]. Applied Optics,1982,21(16):3047-3054.
    [36] Herman B. M., Flittner D. E., McPeters R. D. et al.. Monitoring atmospheric ozone fromspace limb scatter measurements[J]. SPIE,1995,2582:88-99.
    [37] Guo Xia, LuYao and Lv Daren. Feasibility study for joint retrieval of air density and ozoneconcentration profiles in the mesosphere using an ultraviolet limb-scan technique[J]. Progressin Natural Science,Vol.06,2004.
    [38] Flittner David E., Hilsenrath Ernest, Janz Scott J., Loughman Robert P., McPeters Richard D.,Rault Didier F.. Retrievals from the Limb Ozone Retrieval Experiment on STS107[J]. EarthObserving Systems IX. Proceedings of the SPIE, Volume5542, pp.215-226(2004).
    [39] David E. Flittner, Scott J. Janz, Ernest Hilsenrath and Richard D. McPeters. Stray lightcharacterization of the Limb Ozone Retrieval Experiment[J]. Proc.SPIE,Vol.5526,220(2004).
    [40] McPeters R. D., S. Janz, E. Hilsenrath, T. Brown, D. Flittner and D. Heath. The retrieval ofozone profiles from limb scatter measurements:Results from the Shuttle Ozone LimbSounding Experiment[J]. Geophys. Res. Lett.,27,2597-2600,2000.
    [41] David E. Flittnera, Ernest Hilsenrathb, Scott J. Janzb et al.. Retrievals from the Limb OzoneRetrieval Experiment on STS107[J]. SPIE,2004,5542:215-226.
    [42] McLinden C. A. and Haley C. S.. Odin/OSIRIS observations of stratospheric NO3throughsunrise and sunset[J]. Atoms. Chem. Phys. Discuss.,8,5901-5917,2008.
    [43] Liewellyn E. J., Liloyd N. D. and Degenstein D. A. et al.. The OSIRIS instrument on theOdin spacecraft[J]. Can. J. Phys.,2004,82:411-422.
    [44] Haley C.S., Savigny C.von, Brohede S. et al.. A comparison of methods for retrievingstratospheric ozone profiles from OSIRIS limb-scatter measurements[J]. Advances in SpaceResearch,2004,34,769-774.
    [45] Rolf Mager, Wolfgang Fricke, John Burrows et al.. SCIAMACHY A New-Generation ofHyperspectral Remote Sensing Instrument[J]. SPIE,1999,3106:84-94.
    [46] S. No1, H. Bovensmann, J. P. Burrows et al.. The SCIAMACHY instrument onENVISAT-1[J]. SPIE,1998,3498:94-104.
    [47] H. Bovensmann, M. Buchwitz, J. Frerick et al.. SCIAMACHY on ENVISAT:In-flight opticalperformance and first results [J]. SPIE,2004,5235:160-173.
    [48] J. W. Leitch, J. V. Rodriguez, M. Dittman. Limb Scatter Ozone Profiling Sensor for theNPOESS Ozone Mapping and Profiler Suite (OMPS)[J]. SPIE,2003,4891:13-21.
    [49] Michael G. Dittman, James Leitch, Michael Chrisp. Limb Broad-Band Imaging Spectrometerfor the NPOESS Ozone Mapping and Profiler Suite (OMPS)[J]. SPIE,2002,4814:120-130.
    [50] Brian K. McComas, Colin Seftor, Quinn Remund. End-to-End Modeling of the OzoneMapping and Profiler Suite[J]. SPIE,2004,5420:106-117.
    [51]陈洪滨,卞建春,吕达仁.上对流层-下平流层交换过程研究的进展与展望[J].大气科学,2006年30卷5期.
    [52]中国航天工程内部资料.载人飞船工程手册[M].2007.
    [53]黄煜.臭氧垂直探测仪辐射定标的研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2007.
    [54]张振铎.臭氧垂直探测仪高精度辐照度响应度定标研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2010.
    [55]王淑荣,宋克非,李福田.星载太阳紫外光谱监视器的地面辐射定标[J].光学学报,2007,27(12):2256-2261.
    [56]王淑荣,李福田. FY-3卫星紫外臭氧垂直探测仪研制报告[R].2005.
    [57]王淑荣,李福田,宋克非等.地外太阳紫外光谱测量[J].光学精密工程,2010,18(6):1271-1277.
    [58]王淑荣,李福田,宋克非等. FY-3号气象卫星紫外臭氧垂直探测仪[J].光学学报,2009,29(9):2590-2593.
    [59]波恩,沃耳夫著,杨葭荪译.光学原理(第七版)[M].北京:电子工业出版社,2002.
    [60]郁道银,谈恒英.工程光学[M].北京:机械工业出版社,1998.
    [61]张以谟.应用光学[M].北京:电子工业出版社,2008.
    [62]李士贤,李林.光学设计手册[M].北京:北京理工大学出版社,1996年8月.
    [63]王之江,顾培森.实用光学技术手册[M].北京:机械工业出版社,2007,183-188.
    [64]袁旭昌.光学系统设计[M].北京:北京理工大学出版社,1988.
    [65] DouglasPledger, Jame Billing-Toss, William Saylor. Low Cost Ultraviolet3-Axis AttitudeSensor System[C]. Small-Satellite Technology and Application.[S.1]: SPIE,1940:231-238.
    [66] DouglasPledger, Jame Billing-Toss, William Saylor. Development of Honeywell’s EarthReference Attitude Determination system (ERADS)[C]. Proceedings of the7th annualAIAA/USU conference on Small Satellites. Logan, UT, USA:[s. n.],1993,437-443.
    [67]蔡伟,于松柏.紫外姿态敏感器[J].控制工程,2001,Vol5-6:79-90.
    [68]白剑,牛爽,杨国光,侯西云.全景光学环带凝视成像技术[J].红外与激光工程,2006,35(6):331-335.
    [69]尉志军,刘晓军.三轴紫外光学成像敏感器[J].光电工程,2008,35(11):86-90.
    [70]金伟奇,胡威捷.辐射度光度与色度及其测量[M].北京:北京理工大学出版社,2009.
    [71]车念曾,闫达远.辐射度学与光度学[M].北京:北京理工大学出版社,1990.
    [72]韩昌元.信息光学基础理论及其应用[M].长春:长春出版社,1989,46-49.
    [73]王庆有. CCD技术应用[M].天津:天津大学出版社,1992.
    [74]刘贤德. CCD及其应用原理[M].武汉:华中理工大学出版社,1990,162-175.
    [75] http://www.e2v.com/products-and-services/imaging/space---scientific-imaging/ccd---cmos-imaging-sensors.html.
    [76]李云飞,司国良,郭永飞.科学级CCD相机的噪声分析及处理技术[J].光学精密工程,2005,13(Z1):158-163.
    [77] CCD47-20Backthinned High Performance AIMO Backthinned CCD Sensor#e2vtechnologies limited2003.
    [78]赵贵军,任建伟,万志等.用于探测飞行目标的光电成像系统信噪比分析[J].光学技术,2007,33(Suppl):162-163.
    [79] Chipman R. A. Mechanics of polarization ray tracing[J]. SPIE,1992,1746:62-75
    [80] Hansen J. E, Travis L. D. Light scattering in planetary atmospheres[J]. Space ScienceReviews,1974,16:527–610
    [81] Liou K. N. An Introduction to Atmospheric Radiation[M]: Academic Press,Inc,1980
    [82]金亚秋.电磁散射和热辐射的遥感理论[M].北京:科学出版社,1993
    [83] Van de Hulst H. C. Light Scattering by Small Particles[M]: Dover Publications, Inc,1981
    [84]胡翔宇,熊静懿,贺银波等.基于偏振干涉滤光片的宽波带偏振方向旋转器的设计[J].光学仪器,2003,25(2):28-32.
    [85]贺银波熊静懿郑伟等.用于偏振干涉滤光片性能评价的扩展琼斯矩阵研究[J].光电子激光,2002,12(2):125-128.
    [86]舒朝濂,田爱玲,杭凌侠等.现代光学制造技术[M].北京:国防工业出版社,2002,273-277.
    [87]林中,范世福.光谱仪器学[M].北京:机械工业出版社,1999,109-125.
    [88] Jiapeng Wang, Shurong Wang and Guanyu Lin. Design of resolution testing facility forultraviolet imager[J]. Chinese Optics Letters,2008,6(7):510-512.
    [89]王加朋,王淑荣,徐领娣等.紫外辐射计的波长定标及定标不确定度分析[J].光电工程,2008,35(6):42-47.
    [90]邢进.空间遥感仪器紫外-真空紫外光谱辐射标准及高精度辐射定标的研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2006.
    [91] Heath D. F., Wei Z.,Fowler W. K.. Comparability of spectral radiance calibrations of largeaperture earth observing instruments based upon diffuse reflective panels and internallyilluminated spherical integrator techniques[J]. SPIE,1994,2209:148-159.
    [92] Walker J. H., Cromer Chris L., McLean J. T.. A technique for improving the calibration oflarge-area sphere sources[J]. SPIE,1991,1493:224-230.
    [93]邢进,李福田,顾行发.星载遥感辐射计积分球定标新方法的研究[J].遥感学报,2006,10(5):644-650.
    [94]王淑荣,邢进,李福田.利用积分球光源定标空间紫外遥感光谱辐射计[J].光学精密工程.2006,April, Vol.14:185-190.
    [95]邢进,王淑荣,李福田.空间紫外遥感光谱辐射计光谱辐亮度定标三种方法的比较[J].中国激光.2006,April, Vol.33:509-515.
    [96]杨小虎,王淑荣,黄煜等.基于标准探测器研究标准灯光谱辐照度和漫反射板双向反射分布函数随波长的变化[J].光学学报.2011, June, Vol.31:0612008-1-0612008-7.
    [97]杨小虎,王淑荣,曲艺等.基于绝对辐亮度计定标的积分球紫外光谱辐射特性研究[J].中国激光.2011, October, Vol.38:1008007-1-1008007-6.
    [98]薛庆生,王淑荣,杨小虎等.临边成像光谱仪光谱辐亮度响应度定标研究[J].光电子·激光.2010, March, Vol.21:406-410.
    [99]李幼平,禹秉熙,王玉鹏等.成像光谱仪辐射定标影响量的测量链与不确定度[J].光学精密工程,2006,14(5):822-828.
    [100]费业泰.误差理论与数据处理[M].北京:机械工业出版社,2000.
    [101]李金海.误差理论与测量不确定度评定[M].北京:中国计量出版社,2003.11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700