基于数值与随机统计方法的光学成像光传输问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种新兴的成像技术,分子成像在近十年来获得了飞速的发展,并已经在疾病诊断、肿瘤检测和药物研发中获得了广泛的应用。这种技术可以在分子和细胞水平上实现对生物体生理病理变化的实时、无创、动态的成像,为研究特定基因功能、生物生长发育、疾病发生发展过程、药物治疗效果等提供了获取信息的有效手段。在分子成像的各种模态中,光学分子成像技术拥有高灵敏度、高性价比和高安全性等独特优势,因此成为近年来本领域中的研究热点。
     光学分子成像的核心问题之一是如何对光在生物组织中的传输情况进行准确建模和快速求解。本文的研究工作即主要围绕这一问题而展开,通过分析各种光传输模型的特点,利用数值方法与随机统计方法对光学分子成像中的光传输问题进行了深入的研究。涉及的主要研究内容包括:
     1.由于光学分子成像的真实实验非常昂贵、复杂和耗时,作者提出了一种通过光学分子仿真软件平台(molecular optical simulation evironment, MOSE)来对光学分子成像中的光传输问题进行研究的方法。所提出的方法不但可以为逆向断层重建算法的研究提供实验数据,还可以为真实实验系统搭建过程中的设备选择提供参考依据。其中蒙特卡洛方法(Monte Carlo, MC)被用来模拟光在生物组织中的传输过程。由于MC方法计算量大、比较耗时,本文提出了一种基于中央处理器(central processing unit, CPU)并行计算的方法对MC方法进行加速。这种方法将MC方法中光子包的仿真按比例分配给几台通过局域网连接的PC机进行并行计算,有效地降低了并行计算系统的成本。由于具有高分辨率的优势,非接触式成像成为了目前光学分子成像中探测系统的主流,这需要对光在自由空间中的传输进行研究。作者以前面MC方法提供的生物体表面光强分布数据作为输入,通过混合辐射度学理论对非接触式光学探测系统进行了研究,并设计了一系列的模拟仿真与真实实验来验证所提出方法的有效性。
     2.提出了一种基于点加权最小二乘无网格法(point weighted least-squaresMeshless, PWLS)的生物组织光传输数值求解方法。由于较小的计算量与特定条件下可以接受的计算精度,漫射方程是目前光学分子成像中应用最广泛的生物组织光传输模型。漫射方程通常采用有限元等数值方法进行求解。但是有限元方法过分依赖于整个求解域的网格剖分,而对于类似生物组织这种形状极不规则的求解域的网格剖分是非常困难的,甚至昂贵的商业软件也难以很好的处理。本文所使用的PWLS无网格方法只需要在求解域内布置一系列规则分布的配点即可进行数值求解,从而可以避免有限元方法中困难而又耗时的网格剖分工作。此外,这种方法通过最小化控制方程和边界条件在每个配点上产生的残差加权平方和,来建立光源功率密度和光子流率密度之间的关系,不需要进行任何数值积分运算,非常适合应用于非规则求解域的求解。基于数字鼠模型的数值仿真实验和基于仿体的真实实验验证了该方法的准确性和有效性。
     3.提出了一种基于图形处理器(graphic processing unit, GPU)并行计算加速的辐射传输方程(radiative transport equation, RTE)数值求解方法。RTE方程被公认为最为准确的生物组织光传输模型,离散坐标法(discrete ordinate method, SN)是目前最为常用的RTE方程数值求解方法。通过将光子辐射率的连续角度分布离散化,SN方法将RTE方程转化为了一系列的离散坐标方程,然后通过源迭代方法(source iteration, SI)进行求解。虽然SN方法非常精确且易于实现,然而其求解过程极为耗时。SI每步迭代的巨大计算量是造成SN方法时间代价大的主要原因之一。本文通过充分构造和寻找每一步SI迭代中所存在的计算独立性,通过GPU并行计算来减少其所消耗的时间。两个层次的计算独立性被用于进行并行计算:第一个层次是离散坐标方程层次,第二个层次是空间离散单元层次。通过使用前一次迭代的光子辐射率来近似计算边界反射,所提出的方法构造了离散坐标方程层次的计算独立性;由于计算独立性并不对任意的两个空间离散单元成立,一种单元扫描(element sweeping, ES)策略被提出来寻找存在计算独立性的特定空间单元。一种被称为通用计算设备架构(compute unified device architecture,CUDA)的GPU并行计算框架为本文的工作提供了一种高性能且低成本的并行计算解决方案。在NVIDIAGTX260显卡及Intel Xeon处理器W3505上进行的仿真对比实验验证了所提出方法的加速效果。
Molecular imaging is a promising and rapidly developing biomedical researchfield, which enables the visualization of the cellular function and the follow-up of themolecular process in living organisms noninvasively, and can be applied to the earlydisease diagnosis, tumor cell detection and drug improvement. Among molecularimaging modalities, optical molecular has become a research focus over the past yearsbecause of its significant advantages in sensitivity, cost-effectiveness and non-ionizingradiation.
     The study of photon transport is one of the most important research contents inoptical imaging and our work is focused on this issue. According to the analysis on theactual demand of optical imaging and the characters of the different light transportmodels, we employed the numerical and random statistic methods to research thephoton transport issue of optical imaging. The main work of this dissertation can besummarized as follows:
     1. Since the physical experiment is usually complicated and expensive for theoptical imaging, research methods based on simulation platforms have obtainedextensive attention. We developed a simulation method to research optical imagingthrough a soft platform named Molecular Optical Simulation Environment (MOSE). Inthis method, Monte Carlo (MC) method was used to simulate photon transport inbiological tissues. A central processing unit (CPU) parallelization strategy wasemployed to improve the computational efficiency of MC method. In this strategy, thephoton packages which need to be simulated in MC method were distributed to severalPCs which are connected by LAN with proper proportion, so the cost of the parallelcomputation system could be reduced. For the character of high resolution, thenon-contact imaging system has become quite popular recently, so the research for thephoton progress in free space is necessary. With the photon flux distribution on thesurface of the tissues which produced by MC method, we employed the hybridradiosity-radiance theorem to simulate the non-contact measurement mode of opticalimaging. A serial of simulated and physicial experiments were used to varify theefficiency of the proposed method.
     2. A point weighted least-squares (PWLS) meshless method is proposed to obtainthe numerical solution of the light transport in tissues. For its acceptable accuracy inthe case of high scattering and small computation cost, the diffusion equation (DE) wasthe most popular photon transport model in optical imaging. The numerical solution of DE is usually obtained by the finite element method (FEM). However, theeffectiveness of FEM is heavily affected by the finite element mesh which is used todiscretize the domain of interested and construct the approximation function.Unfortunately, the generation of high quality mesh for the three-dimensional irregulardomain with complex geometrical structure is still a challenging and time-consumingtask. The proposed method does not need any mesh to construct the approximationfunction, so that complicated and time-consuming mesh generation can be avoid.Moreover, the linear relationship between source distribution and photon flux densitywas established by minimizing the weighted residuals quadratic sum of all collocationpoints for governing equation and boundary condtion, so no numerical integral isneeded. This proposed method is suitable to be applied to the domain with complexstructure because of the pre mentioned characters. The performance of the proposedmethod was dementrate by the experiments with phantom and numerical mouse.
     3. A graphic processing unit (GPU) parallel accelerated algorithm was proposed toobtain the numerical solution for the radiative equation (RTE). RTE is considered asthe most accurate model for light transport in tissues. The discrete is a widely usedmethod to obtain the numerical solution of RTE. The discrete ordinates reduce the RTEto a serial of differential equations which can be solved by source iteration (SI).However, the tremendous time consumption of SI, which is partly caused by theexpensive computation of each SI step, limits its applications. Utilizing the calculationindependence on the levels of the discrete ordinate equations and spatial elements, theproposed method reduces the time cost of each SI step by parallel calculation. Thephoton reflection at the boundary was calculated based on the results of the last SI stepto ensure the calculation independence on the level of the discrete ordinate equation.An element sweeping strategy was proposed to detect the calculation independence onthe level of the spatial element. A GPU parallel frame called the compute unifieddevice architecture (CUDA) was employed to carry out the parallel computation. Thesimulation experiments, which were carried out with a PC of GTX260graphic cardand Xoen CPU, indicated that the time cost of each SI step can be reduced by morethan two orders of magnitudes with the proposed method.
引文
[1] Kalender WA. X-ray computed tomography. Physics in Medicine and Biology.2006,51(13):29-43.
    [2] Wells PNT. Ultrasound imaging. Physics in Medicine and Biology.2006,51(13):83-98.
    [3] Haacke ME, Brown RW, Thompson MR, et al. Magnetic resonance imaging:Physical principles and sequence design. New York: John Wiley&Sons,1999.
    [4] Rosenthal MS, Cullom J, Hawkins W. Quantitative SPECT imaging: a reviewand recommendations by the Focus Committee of the Society of NuclearMedicine Computer and Instrumentation Council. The Journal of NuclearMedicine.1995,36(8):1489-1513.
    [5] Muehllehner G, Karp JS. Positron emission tomography. Physics in Medicineand Biology.2006,51(13):117-137.
    [6] Weissleder R. Molecular imaging: exploring the next frontier. Radiology.1999,212(3):609-614.
    [7] Tarik FM, Sanjiv SG. Molecular imaging in living subjects: seeing fundamentalbiological processes in a new light.2003,17(5):545-580.
    [8] Ntziachristos V, Ripoll J, Wang L, et al. Looking and listening to light: theevolution of whole-body photonic imaging. Nature Biotechnology.2005,23(3):313-320.
    [9] Hielscher AH, Bluestone AY, Abdoulaev GS, et al. Near-infrared diffuse opticaltomography. Disease Marker.2002,18(5):313-337.
    [10] Gibson AP, Hebden JC, Arridge SR. Recent advances in diffuse optical imaging.Physics in Medicine and Biology.2005,50(4):1-43.
    [11] Jacobs RE, Cherry SR. Complementary emerging techniques: high-resolutionPET and MRI. Current Opinion in Neurobiology.2001,11(5):621-629.
    [12] Turetschek K, Roberts TP, Floyd E, et al. Tumor microvascular characterizationusing ultrasmall superparamagnetic iron oxide particles (USPIO) in anexperimental breast cancer model. Journal of Magnetic Resonance Imaging.2001,13(6):882-888.
    [13] Weissleder R, Cheng, HC, Bogdanova A, et al. Magnetically labeled cells can bedetected by MR imaging. Journal of Magnetic Resonance Imaging.1997,7(1):258–263.
    [14] Weissleder R, Simonova, M, Bogdanova A. MR imaging and scintigraphy ofgene expression through melanin induction. Radiology.1997,204(2):425–429.
    [15] Weissleder R, Moore A, Mahmood U, et al. In vivo magnetic resonance imagingof transgene expression. Nature Medicine.2000,6(3):351-355.
    [16] Zotev VS, Owens T, Matlashov AN, et al. Microtesla MRI with dynamic nuclearpolarization. Journal of Magnetic Resonance Imaging.2010,207(1):78-88.
    [17] Willmann KJ, Bruggen NV, Dinkelborg ML, et al. Molecular imaging in drugdevelopment. Nature Review Drug Discovery.2008,7(7):591-607.
    [18] Chatziioannou AF. Molecular imaging of small animals with dedicated PETtomographs. European Journal of Nuclear Medicine and Molecular Imaging.2002,29(1):98–114.
    [19] Rice BW, Cable MD, Nelson MB. In vivo imaging of light-emitting probes.Journal of Biomedical Optics.2001,6(4):432-440.
    [20] Weissleder R, Ntziachristos V. Shedding light onto live molecular targets.Nature Medicine.2003,9(1):123-128,
    [21] Mahmood U, Tung C, Bogdanov A, et al. Near infrared optical imaging systemto detect tumor protease activity. Radiology.1999,213(3):866-870.
    [22] Yang M, Baranov E, Jiang P, et al. Whole-body optical imaging of greenfluorescent protein-expressing tumors and metastases. Proceedings of theNational Academy of Sciences.2000,97(3):1206-1211.
    [23] Ntziachristos V, Bremer C, Weissleder R. Fluorescence imaging withnear-infrared light: new technological advances that enable in vivo. EuropeanRadiology.2003,13(1):195-208.
    [24] Ntziachristos V. Fluorescence molecular imaging. Annual Review of BiomedicalEngineering.2006,8:1-33.
    [25] Graves EE, Weissleder R, Ntziachristos V. Fluorescence Molecular Imaging ofSmall Animal Tumor Models. Current Molecular Medicine.2004,4(4):419-430.
    [26] Rao J, Dragulescu-Andrasia A, Yao H. Fluorescence imaging in vivo: recentadvances. Current Opinion in Biotechnology.2007,18(1):17-25.
    [27] Contag CH, Bachmann MH. Advance in in vivo bioluminescence imaging ofgene expression. Annual Review of Biomedical Engineering.2002,4:235-260.
    [28] Sadikot RT, Blackwell TS. Bioluminescence imaging. Proceedings of theAmerican Thoracic Society.2005,2(6):537-540.
    [29] Arridge SR, Hebden JC. Optical imaging in medicine: II. Modelling andreconstruction. Physics in Medicine and Biology.1997,42(5):841-853
    [30] Zhu X, Song X, Wang D, Bai J. Introduction of fluorescence molecular Imagingtechnology and its development. Chinese Journal of Medical Instrumentation.2008,32(1):1-5.
    [31]申宝忠,分子影像学是未来医学影像学发展的方向和主导.中华放射学杂志.2008,42(1):11-15.
    [32] Jobsis FF. Noninvasive, infrared monitoring of cerebral and myocardial oxygensufficiency and circulatory parameters. Science.1977,198(4323):1264-1267.
    [33] Mahmood U. Near infrared optical applications in molecular imaging.Engineering in Medicine and Biology Magazine.1999,23(4):58-66.
    [34] Weissleder R. Scaling down imaging: molecular mapping of cancer in mice.Nature Reviews Cancer.2002,2(1):11-18.
    [35] Hebden JC, Arridge SR, Delpy DT. Optical imaging in medicine1experimentaltechniques. Physics in Medicine and Biology.1997,42(5):825–840.
    [36] Arridge SR, Lionheart WR, Non-uniqueness in diffusion-based opticaltomography. Optics Letter.1998,23(11):882–884.
    [37] Pei YL, Graber HL, Barbour RL. Normalized constraint algorithm forminimizing inter-parameter crosstalk in DC optical tomography. Optics Express.2001,9(2):97–109.
    [38] Xu Y, Gu XJ, Khan T et al. Absorption and scattering images of heterogeneousscattering media can be simultaneously reconstructed by use of dc data, AppliedOptics.2002,41(25):5427–5437.
    [39] Arridge SR. Optical tomography in medical imaging. Inverse problems.1999,15(2):41–93.
    [40] Cheung C, Culver JP, Takahashi K, et al. In vivo cerebrovascular measurementcombining diffuse near-infrared absorption and correlation spectroscopies.Physics in Medicine and Biology.2001,46(8):2053–2065.
    [41] Gratton G, Gooman-Wood MR, Fabiani M. Comparison of neural andhemodynamic measures of the brain response to visual stimulation: an opticalimaging study, Human Brain Mapping.2001,13(1):13–25.
    [42] Netz U, Beuthan J, Capius HJ, Koch HC, et al. Imaging of rheumatoid arthritisin finger joints by sagittal optical tomography. Medical Laser Application.2001,16(4):306–310.
    [43] Pogue BW, Poplack SP, McBride TO, et al. Quantative hemoglobin tomographywith diffuse near-infrared spectroscopy: pilot results in the breast, Radiology.2001,218(1):261-266.
    [44] Wang G, Cong WX, Shen HO. Overview of bioluminescence tomography-a newmolecular imaging modality. Frontiers in Bioscience.2008,13(5):1281-1293.
    [45] Guo XL, Liu X, Wang X, et al. A combined fluorescence and microcomputedtomography system for small animal imaging. IEEE Transactions on BiomedicalEngineering.2010,57(12):2876-2883.
    [46] Lakowicz JR. Principles of Fluorescence Spectroscopy3rd. Springer,2006, pp:56-57.
    [47] Healthcare GE. Fluorescence Imaging Principles and Methods. Handbook,2002,pp:113-114
    [48] Cherry SR. In vivo molecular and genomic imaging: new challenges for imagingphysics. Physics in Medicine and Biology.2004,49(3):13-48.
    [49] Campbell RE, Tour O, Palmer AE, et al. A monomeric red fluorescent protein.Proceedings of the National Academy of Sciences,99(12):7877-7882,2002.
    [50] Ntziachristos V. Fluorescence molecular imaging. Annual review of Biomedicalengineering.2006,8:1-33.
    [51] Brooksby B, Srinivasan S, Jiang S, et al. Spectral priors improve near-infrareddiffuse tomography more than spatial priors. Optics. Letter.2005,30(15):1968–1970.
    [52] Srinivasan S, Pogue BW, Jiang S, et al. Spectrally constrained chromophore andscattering near-infrared tomography provides quantitative and robustreconstruction. Applied. Optics.2005,44(10):1858–1869.
    [53] Zacharakis G, Favicchio R, Simantiraki, M. Spectroscopic detection improvesmulti-color quantification in fluorescence tomography. Biomedical OpticsExpress.2011,2(3):431-439.
    [54] Tseng J, Levin B, Hurtado A, et al. Systemic tumor targeting and killing bysindbis viral vectors. Nature Biotechnology.2003,22(1):70-77.
    [55] Zhu B, Rasmussen JC, Lu Y, et al. Reduction of excitation light leakage toimproce near-infrared fluorescence imaging for tissue surface and deep tissueimaging. Medical physics.2010,37(11):5961-5970.
    [56] Zhao H, Doyle TC, Coquoz O, et al. Emission spectra of bioluminescentreporters and interaction with mammalian tissue determine the sensitivity ofdetection in vivo. Journal of Biomedical Optics,2005,10(4):41210.
    [57] Loening AM, Wu AM, Gambhir SS. Red-shifted Renilla reniformis luciferasevariants for imaging in living subjects. Nature Methods.2007,4(8):641-643.
    [58] Loening AM, Andrasi AD, Gambhir SS. A red-shifted Re-nilla luciferase fortransient reporter-gene imaging. Nature Methods.2010,7(1):5-6.
    [59] Rice BW, Cable MD, Nelson MB. In vivo imaging of light emitting probes.Journal of Biomedical Optics.2001,6(4):432–440.
    [60] Weng YH, Tatarov A, Bartos BP, et al. HO-1expression in type II pneumocytesafter transpulmonary gene delivery. American. Journal of Lung Cellular andMolecular. Physiology.2000,278(6):1273–1279(2000).
    [61] Wu JC., Sundaresan G, Iyer M, et al. Noninvasive optical imaging of fireflyluciferase reporter gene expression in skeletal muscles of living mice. Molecular.Therapy.2001,4(4):297–306.
    [62] Honigman A, Zeira E, Ohana P. et al. Imaging transgene expression in liveanimals. Molecular. Therapy.2001,4(3):239–249.
    [63] Zhang W, Feng JQ, Harris SE, et al. Rapid in vivo functional analysis oftransgenes in mice using whole body imaging of luciferase expression.Transgenic Research.2001,10(5),423–434.
    [64] Vooijs M, Jonkers J, Lyons S, et al. Noninvasive imaging of spontaneousretinoblastoma pathway-dependent tumors in mice. Cancer Research.2002,62(6),1862–1867.
    [65] Wang G, Cong W, Durairaj K, et al. In vivo mouse studies with bioluminescencetomography. Optics Express.2006,14(17):7853-7871.
    [66] Dehghani H, Davis SC, Jiang S, et al. Spectrally resolved bioluminescenceoptical tomography. Optics Letters,2006,31(3):365-367.
    [67] Dehghani H, Davis SC, Pogue BW. Spectrally resolved bioluminescencetomography using the reciprocity approach. Medical Physics,2008,35(11):4863-4871.
    [68] Lv YJ, Tian J, Cong WX, et al. Spectrally resolved bioluminescence tomographywith adaptive finite element: methodology and simulation. Physics in Medicineand Biology.2007,52(15):4497-4512.
    [69] Ishimaru A. Wave Propagation and Scattering in Random Media. New York:Academic;1978:241-242.
    [70] Ishimaru A. Diffusion of light in turbid material. Applied Optics.1989,28(12):2210-2215.
    [71]徐可欣,高峰,赵会娟.生物医学光子学.北京:科学出版社,2007:8-9.
    [72] Wang LV, Wu HI. Biomedical optics: principles and imaging. Hoboken: JohnWiley&Sons,2006:85-88.
    [73] Hielscher AH, Klose AD, Scheel AK, et al. Sagittal laseroptical tomography forimaging of rheumatoid finger joints. Physics in Medicine and Biology.2004,49(7):1147–1163
    [74] Arridge SR, Dehghani H, Schweiger M, et al. The finite element model for thepropagation of light in scattering media: a direct method for domains withnonscattering regions. Medical Physics.2000,27(1):252–264.
    [75] Heino J, Arridge SR, Sikora J, et al. Anisotropic effects in highly scatteringmedia, Physical Review. E.2003,68:031908.
    [76] Wang T, Gao SP, Zhang L, et al. Overlap Domain Decomposition Method forBioluminescence Tomography (BLT). International Journal for NumericalMethods in Biomedical Engineering.2010,26(5):511-523.
    [77] Klose AD, Larsen EW. Light transport in biological tissue based on thesimplified spherical harmonics equations. Journal of Computational Physics.2006,220(1):441-470.
    [78] Liemert A, Kienle, A. Analytical solutions of the simplified spherical harmonicsequations. Optics Letters.2010,35(20):3507-3509.
    [79] Klose AD, Poschinger, T. Excitation-resolved fluorescence tomography withsimplified spherical harmonics equations. Physics in Medicine and Biology.2011,56(5):1443-1469.
    [80] Liu K, Lu YJ, Tian J, et al. Evaluation of the simplified spherical harmonicsapproximation in bioluminescence tomography through heterogeneous mousemodels. Optics Express.2010,18(20):20988-21002.
    [81] Chu M, Dehghani H. Image reconstruction in diffuse optical tomography basedon simplified spherical harmonics approximation. Optics Express.2009,17(26):24208-24223.
    [82] Arridge SR, Hebden JC. Optical imaging in medicine II: Modeling andreconstruction. Physics in Medicine and Biology.1997,42(5):841-853.
    [83] Wang L, Jacques SL, Zheng L. Monte Carlo modeling of light transport inmulti-layered tissues in standard C. Computer Methods and Programs inBiomedicine.1995,47(2):131–146.
    [84] Margallo BE, French PJ. Shape based Monte Carlo code for light transport incomplex heterogeneous tissues. Optics Express.2007,15(21):1408614098.
    [85] Boas DA, Culver JP, Stott JJ, et al. Three dimensional Monte Carlo codes forphoton migration through complex heterogeneous media including the adulthuman head. Optics Express.2002,10(3):159–170.
    [86] Li H, Tian J, Zhu F, et al. A mouse optical simulation environment (MOSE) toinvestigate bioluminescent phenomena in the living mouse with Monte Carlomethod. Academic Radiology.2004,(11)9:1029-1038.
    [87] Wilson BC, Adam G, A Monte Carlo model for the absorption and fluxdistribution of light in tissue. Medical Physics.1983,10(6):824-830.
    [88] Briesmeister JF, MCN--A General Monte Carlo N-particle Transport Code,Version4B. Los Alamos National Laboratory Manual LA-12625-M,1997.
    [89] Chen XL, Gao XB, Qu XC, et al. A study of photon propagation in free-spacebased on hybrid radiosity-radiance theorem. Optics Express2009,17(18):16266-16280.
    [90]李慧.在体生物光学成像前向问题及逆向问题研究.中国科学院自动化所博士论文.2005.
    [91] Ripoll J, Ntziachristos V. Imaging scattering media from a distance: theory andapplications of noncontact optical tomography. Modern Physics Letters.2004,18(25):1-29.
    [92]张建奇,方小平.近红外物理.西安:西安电子科技大学出版社.2004:40.
    [93] Qin D, Zhao H, Tanikawa Y, et al. Experimental determination of opticalproperties in turbid medium by TCSPC technique. Proceedings of the SPIE.2007,64(34):64342.
    [94] Alexandrakis G, Rannou FR, Chatziioannou AF. Tomographic bioluminescenceimaging by use of a combined optical-PET (OPET) system: a computersimulation feasibility study. Physics in Medicine and Biology.2005,50(17):4225–4241.
    [95] Cong WX, Wang LV, Wang G. Formulation of photon diffusion from sphericalbioluminescent sources in an infinite homogeneous medium. BioMedicalEngineering OnLine.2004,3(1):12.
    [96] Lv YJ, Tian J, Cong WX, et al. Spectrally resolved bioluminescencetomography with adaptive finite element analysis: methodology and simulation.Physics in Medicine Biology.2007,52(15):4497-4512.
    [97] Ntziachristos V. Fluorescence molecular imaging, Annual Review ofBiomedical Engineering.2006,8:1-33.
    [98] Cong WX, Wang G, Kumar D. Practical reconstruction method forbioluminescence tomography. Optics. Express.2005,13(18):6756-6771.
    [99] Bayford RH, Gibson A, Tizzard AA, et al. Solving the forward problem inelectrical impedance tomography for the human head using IDEAS (integrateddesign engineering analysis software), a finite element modelling tool.Physiological Measurement.2001,22(1):55-64.
    [100] Koopman SJ, Harvey AC, Doornick JA, et al. Stamp5.0: structural time seriesanalyser, modeller and predictor. London: The Manual Chapman&Hall,1995:24-27.
    [101] Belytschko T, Lu Y, Gu L. Element free Galerkin methods. International Journalfor Numerical Methods in Engineering.1994,37:229–256.
    [102] Belytschko T, Krongauz Y, Organ D. Meshless methods: an overview and recentdevelopments. Computer. Methods in Applied Mechanics and Engineering.1996,139(1):3–47.
    [103] Atluri SN, Zhu TL. The meshless local Petrov–Galerkin (MLPG) approach forsolving problems in elasto-statics. Computional Mechanics,2000,25(2):169–179.
    [104] Long S, Atluri SN. A meshless local Petrov–Galerkin method for solving thebending problem of a thin plate. Computer Modeling in Enginering&Sciences.2002,3(1):53–63.
    [105] Gingold RA, Monaghan JJ. Smoothed particle hydrodynamics: theory andapplications to non-spherical stars. Monthly Notices of Royal AstronomicalSociety.1977,181(11):375–389
    [106] Onate E, Idelsohn S, Zienkiewicz OZ, et al. A finite point method incomputational mechanics, Applications to convective transport and fluid flow.International Journal for Numerical Methods in Engineering.1996,39(22):3839–3867.
    [107] Liu W, Jun S, Zhang Y. Reproducing kernel particle methods. InternationalJournal for Numerical Methods in Fluids.1995,20(8):1081–1106.
    [108] Kansa EJ. Multiquadrics-A Scattered Data Approximation Scheme withApplications to Computational Fluid dynamics. Computers&Mathematics withApplications.1990,19(8):147–161.
    [109] Zhang X, Liu X, Song K, et al. Least-squares collocation meshless method.International Journal Numerical Methods in Eng.2001,51(9):1089–1100.
    [110] Qin CH, Tian J, Yang X, et al. Galerkin-based meshless methods for photontransport in the biological tissue. Optics Express.2008,16(25):20317-20333.
    [111] Wang Q, Li H, Lam K, Development of a new meshless-point weightedleast-squares (PWLS) method for computational mechanics. ComputionalMechanics.(2005),35(3):170–181.
    [112]张雄,刘岩.无网格法.北京:清华大学出版社.2004:35-37.
    [113] Dogdas B, Stout D, Chatziioannou A, et al. Digimouse: A3D Whole BodyMouse Atlas from CT and Cryosection Data. Physics in Medicine and Biology.2007,52(3):577-587.
    [114] Patwardhan S, Bloch S, Achilefu S, et al. Time dependent whole-bodyfluorescence tomography of probe bio-distributions in mice. Optics Express.2005,13(7):2564–2577.
    [115] Graves EE, Ripoll J, Weissleder R. A submillimeter resolution fluorescencemolecular imaging system for small animal imaging. Medical Physics.2003,30(5):901–911.
    [116] Aydin ED, Oliveira CR, Goddard AJ. A comparison between transport anddiffusion calculations using a finite element-spherical harmonics radiationtransport method. Medical Physics.2002,29(9):2013–2023.
    [117] Klose AD, Larsen EW. Light transport in biological tissue based on thesimplified spherical harmonics equations. Journal of Computional Physics.2006,220(1):441–470.
    [118] Rasmussen JC, Joshi A, Pan T, et al. Radiative transport influorescenceenhanced frequency-domain photon migration. Medical Physics.2006,33(12):4685–4700.
    [119] Lewis EE, Miller WF. Computational Methods of Neutron Transport. Hoboken:Wiley-Interscience,1993:220-247.
    [120] Wareing TA, McGhee JM, Morel JE, et al. Discontinuous finite element SNmethods on threedimensional unstructured grids. Nuclear Science andEngineering.2001,138(2):256–268.
    [121] Klose AD, Ntziachristos V, Hielscher AH. The inverse source problem based onthe radiative transfer equation in optical molecular imaging. Journal ofComputional Physics.2005,202(1):323–345.
    [122] Klose AD, Hielscher AH. Fluorescence tomography with simulated data basedon the equation of radiative transfer. Optics Letter.2003,28(12):1019–1021.
    [123] Ren K, Abdoulaev GS, Bal G et al. Algorithm for solving the equation ofradiative transfer in the frequency domain. Optics Letter.2004,29(6):578–580.
    [124] Gao H, Zhao HK. A fast forward solver of radiative transfer equation. TransportTheory and Statistical Physics.2009,38(3):149–192.
    [125] Adams ML, Wareing TA, Walters WF. Characteristic methods in thick diffusiveproblems. Nuclear Science and Engineering.1998,130(1):18–46.
    [126] Adams ML, Larsen EW. Fast iterative methods for discrete-ordinates particletransport calculations. Prog. Nucl. Energy.2002,40(1):3–159.
    [127] Longoni G, Haghighat A, Yi C, et al. Benchmarking of PENTRAN-SSN paralleltransport code and fast preconditioning algorithm using the VENUS-2MOX-fueled benchmark problem. Journal of ASTM International.2006,7(3):321–330.
    [128] Kucukboyaci V, Haghighat A, Sjoden GE. Performance of PENTRAN3-Dparallel particle transport code on the IBMSP2and PCTRAN cluster. LectureNotes in Computer Science.2001,2131(4):36–43.
    [129] Ghita G, Sjoden G, Baciak J. A Methodology for experimental and3-Dcomputational radiation transport assessments of Pu-Be neutron sources.Nuclear Technology.2007,159(3):319–331.
    [130] NVIDIA, http://www.nvidia. com.
    [131] Murphy R. On the effects of memory latency and bandwidth on supercpmputerapplication performance. IEEE international Symposium on WorkloadCharacterization.2007,27(9):25-43.
    [132] Open Graphics Library (OpenGL). http://www.opengl.org.
    [133] Direct3D. http://www.microsoft.com.
    [134] ATI Stream. http://www.amd.com.
    [135] Open Computing Language (OpenCL). http://www.khronos.org/opencl.
    [136] Lebedev V. Values of the nodes and weights of ninth to seventeenth orderGauss—Markov quadrature formulae invariant under the octahedron group withinversion. USSR Computational Mathematics and Mathematical Physics.1975,15(7):44–51.
    [137] Lebedev V. Quadratures on a sphere. USSR Computational Mathematics andMathematical Physics,1976,16(3):10–24.
    [138] Kienle A, Forster FK, Hibst R. Influence of the phase function on determinationof the optical properties of biological tissue by spatially resolved reflectance.Optics Letter.2001,26(20):1571–1573.
    [139] Jackson JD. Classical Electrodynamics. Hoboken: Wiley-Interscience,1999:128-187.
    [140] Ren NN, Liang JM, Qu XC, et al. GPU-based Monte Carlo simulation for lightpropagation in complex heterogeneous tissues. Optics Express.2010,18(7),6811–6823.
    [141] Nicholls A, Honig B. A rapid finite difference algorithm utilizing successiveover-relaxation to solve the Poisson-Boltzmann equation. Journal ofComputational Chemistry.1991,12(4):435–445.
    [142] Dave JV, Gazdag J. A modified Fourier transforms method for multiplescattering calculations in a plane parallel Mie atmosphere. Applied. Optics.1970,9(6):1457–1466.
    [143] Ito S, Oguchi T. Approximate solutions of the vector radiative transfer equationfor linearly polarized light in discrete random media. Optical Society of America,Journal A.1989,6(12):1852–1858.
    [144] Budak VP, Kozelskii AV. Accuracy and applicability domain of the small angleapproximation. Atmospheric and Oceanic Optics Journal.2005,18(2):32–37.
    [145] Ilyushin YA, Budak VP. Narrow-beam propagation in a two-dimensionalscattering medium. Optical Society of America, Journal A.2011,28(2):76–81.
    [146] Rukolaine SA, Yuferev VS. Discrete ordinates quadrature schemes based on theangular interpolation of radiation intensity. Journal of Quantitative Spectroscopyand Radiative Transfer.2001,69(1):257–275.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700