墙体型太阳能集散热辐射板的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着建筑能耗在社会总能耗中的比重越来越大,将太阳能等可再生能源与建筑物相结合,对于缓解常规能源短缺,改善建筑环境具有重要意义。本文旨在综合利用太阳能源、空气源和太空低温冷源,结合太阳能热水集热技术和低温太空辐射制冷技术,研发一种新型墙体一体化太阳能集散热辐射板。太阳能集散热辐射板可以作为建筑立面或屋顶或者建筑构件使用,实现太阳能利用技术装置与建筑外围护结构的完美结合。
     建立了太阳能集散热辐射板性能测试实验平台,测定了太阳能集散热辐射板的时间常数,为以后对实验数据拆分重组和系统性能进行分析奠定了基础。实验测定了具有通风流道和没有通风流道的太阳能集散热辐射板系统的集热和制冷性能,结果表明没有通风流道的太阳能集散热辐射板系统具有较好的集热性能,而具有通风流道的太阳能集散热辐射板系统则具有较好的制冷性能;实验测定了辐射板外表面涂层对系统性能的影响,在涂料发射率基本相同的条件下,吸收率高而反射率低的涂料有较好的集热性能;实验系统测试了典型晴天和多云天气条件下太阳能集散热辐射板系统的性能。
     建立了带通风流道的太阳能集散热辐射板的二维非稳态数学模型,主要包括太阳能集散热辐射板的二维非稳态数学模型和集散热管内流体的一维非稳态数学模型。模型可以详细分析太阳能集散热辐射板传热过程中的能量传递过程,得到太阳能集散热辐射板的板面温度和流体出口温度,进而得到太阳能集散热辐射板系统的集热和制冷性能。利用数学模型对太阳能集散热辐射板的热结构和光学结构进行了设计优化,并且对太阳能集散热辐射板的流体流量以及安装的朝向和倾斜角度对其性能的影响进行了模拟计算,得到不同形式的太阳能集散热辐射板系统在不同应用场合中的最优结构。
With the high proportion of building energy consumption in the total energy consumption, it is of great importance to relieve the shortage of the conventional energy resource and improve the building environment by incorporating the renewable energy such as solar energy into buildings. This paper aims at utilizing solar energy, natural energy and nocturnal radiation in a combination way. The solar water heating technology and radiative cooling technology are combined to develop a wall-typed solar heating and cooling panel-SHCP which can be perfectly integrated with building envelopes. These panels can be used as building roofs and fa?ades or components of roofs and fa?ades.
     The solar heating and radiative cooling system experimental setup was established. The time constant of the solar heating and cooling panel was measured to provide the theoretical foundation to separate and recombine the time-dependent experimental data and analyze the transient performances of the system. The heating and cooling performances of the solar heating and radiative cooling system with and without air gap were measured, and the system without an air gap has the better heating performance, while the air-gapped one has the better cooling performance. The performances of the solar heating and radiative cooling system with different coating materials were measured, and the coating material with higher absorptivity and lower emissivity is in favor of heating performance of the solar heating and radiative cooling system. The performances of the solar heating and radiative cooling system were measured under typical sunny day and cloudy day.
     The transient two-dimensional mathematical model of the solar heating and radiative cooling system was established, which mainly includes the transient two-dimensional model of the solar panel and one-dimensional model for depicting water flow in the collector tubes. The mathematical model can analyze in detail the energy transfer process of the solar heating and cooling panel, and the temperature distribution of the solar heating and cooling panel and the water outlet temperature can be obtained, and then the heating and cooling performances of the solar heating and radiative cooling system are achieved. The thermal construction and optical properties of the solar heating and cooling panel are designed and optimized by terms of the mathematical model. And then the influences of the mass flow rate, installation orientations and inclination angles of the solar heating and cooling panel to the performances are simulated. The optimal structure of the solar heating and cooling panel are achieved under different application conditions.
引文
[1]江亿,我国建筑能耗趋势与节能重点,建筑科技,2006,7:10-15
    [2]郎四维,建筑节能是可持续发展的重要战略,制冷技术,2004,2:11-13
    [3] Werner Weiss. New emerging markets and applications for solar thermal systems, Invited Lecture in The 5th ISES Europe Solar Conference 2004, 20-23, Freiburg, Germany
    [4]陆维德,罗振涛,我国太阳能热利用进展,太阳能,2002,1:3-4
    [5]曹军,太阳能热水器与建筑一体化,农村能源,2002,2:11-13
    [6]敖三妹,太阳能与建筑一体化结合技术进展,南京工业大学学报,2005,27(6):101-106
    [7]胡洋,袁莹,我国太阳能集热器建筑构件化概念探讨,太阳能学报,2007,28(9):1039-1044
    [8] Anne Grete Hestnes, Building integration of solar energy systems, Solar Energy, 1999, 67(4-6):181-187
    [9]苏粤,太阳能热水器与建筑一体化设计,新建筑,2003,6:79-80
    [10]胡润青,李俊峰,太阳能与建筑结合技术进展与工程实例,太阳能建筑,2005,2:20-23
    [11] http://www.mirosolar.com/sunselect.html
    [12]马丁·雷斯,德国太阳能热水器与建筑结合,太阳能,1998,1:8-9
    [13]袁莹,王国栋,王子文,集热器构件化—太阳能与建筑一体化设计的必由之路,太阳能学报,2005,26(1):44-48
    [14]中华人民共和国节约能源法,1998
    [15]中华人民共和国可再生能源促进法,2005
    [16]中华人民共和国可再生能源法,2006
    [17]卜震,陆善后,朱伟峰,上海市生态办公示范楼节能设计及能耗模拟分析,上海设计科技,2005,2:21-25
    [18] http://news.xinhuanet.com/newscenter/2005-07/21/content_3247326.htm
    [19] http://www.chinagb.net/cstc/zt/200710/20071017162919.html
    [20] http://www.hbjjrb.com/(河北经济日报网站)
    [21]程冠华,对太阳热水器与建筑一体化扶持政策的分析与建议,能源工程,2003,1(6):1-5
    [22] Afif Hason, Thermaosyphon solar water heaters: effect of storage tank volume and configuration on efficiency, Energy Conversion and Management, 1997, 38(9):847-854
    [23] Vassilis Belessiotis, Emmanouil Mathiioulakis, Analytical approach of thermosiphon solar domestic hot water system performance, Solar Energy, 2002, 72(4):307-315
    [24]戚学贵,陈则韶,强制循环式太阳热水系统动态特性分析,太阳能学报,2002, 23(5):575-579
    [25]杨延柱,杨汇涛,顾海燕,强制循环太阳能热水系统的改进,太阳能,1994,5:12-13
    [26]陆维德,过慧芬,孙孝兰,自然循环式太阳能热水系统的设计研究,太阳能学报,1981,2(1):23-32
    [27] Rama Subba Reddy Gorla, Finite element analysis of a flat plate solar collector, Finite Elements in Analysis and Design, 1997, 24:283-290
    [28] M.Ouzzane, N. Galanis, Numerical analysis of mixed convection in inclined tubes with external longitudinal fins, Solar Energy, 2001, 71(3):199-211
    [29] F. Hilmer, K. Vajen, A. Ratka, et al, Numerical solution and validation of a dynamic model of solar collectors working with varying fluid flow rate, Solar Energy, 1999, 65(5):305-321
    [30] E.H. Amer, J.K. Nayak, G.K. Sharma, A new dynamic method for testing solar flat-plate collectors under variable weather, Energy Conversion and Management, 1999, 40:803-823
    [31] E.H. Amer, J.K. Nayak, Evaluation of a transient test procedure for solar flat-plate collectors, Energy, 1998, 24:979-995
    [32] C. Cristofari, G. Notton, P. Poggi et al, Influence of the flow rate and the tank stratification degree on the performances of a solar flat-plate collector, International Journal of Thermal Sciences, 2003,42:455-469
    [33] M.A. Minn, K.C. Ng, W.H. Khong et al, A distributed model for a tedlar-foil flat plate solar collector, Renewable Energy, 2002, 27:507-523
    [34] M. C. Pereira, Advance solar dryer for salt recovery from brine effluent of desalination MED plant, ISES Solar World Congress, 2003, June 14-19, American Solar Energy Society
    [35] D.K. Mahanta, Samir Kumar Saha, Internal irreversibility in a water heating solar flat plate collector, Energy Conversion and Management, 2002,43:2425-2535
    [36]张鹤飞,各类集热器热性能分析的统一理论,太阳能学报,1991,12(3):237-246
    [37]王兴安,胡立刚,平板太阳能集热器陈列的二维模型与热性能,太阳能学报,1989,10(3):238-246
    [38]林树勋,太阳能集热器的热力学分析,甘肃科学学报,1992,4(1):1-5
    [39] A. Suzuki, H.Okamura, I. Oshida, Application of exergy concept to the analysisof optimum operating conditions of solar heat collectors, Journal of Solar Energy Engineering, 1987, 109(4):337-342
    [40]卞卫,王崇琦,太阳能集热器?效率的分析与计算,华中理工大学学报,1989,17(6):49-54
    [41] M. Altanmush Siddiqui, Heat transfer and fluid flow studies in the collector tubes of a closed-loop natural circulation solar water heater, Energy Conversion and Management, 1997, 38(8):799-812
    [42] Soteris A. Kalogirou, Sofia Panteliou, Argiris Dentsoras, Modeling of solar domestic water heating system using artificial neural networks, Solar Energy, 1999, 65(6):335-342
    [43] Soteris A. Kalogirou, Sofia Panteliou, Argiris Dentsoras, Artificial neural networks used for the performance prediction of a thermosiphon solar water heater, Renewable Energy, 1999, 18:87-99
    [44] Soteris A. Kalogirou, Artificial neural networks in renewable energy systems applications: a review, Renewable and Sustainable Energy Review, 2001, 5:373-401
    [45] Soteris A. Kalogirou, Prediction of flat-plate collector performance parameters using artificial neural networks, Solar Energy, 2006, 80:248–259
    [46] I. Farkas, P. Géczy-Víg, Neural networks modeling of flat-plate solar collectors, Computers and Electronics in Agriculture, 2003, 40:87-102
    [47] Adnan S?zen, Tayfun Menlik, Sinanünvar, Determination of efficiency of flat-plate solar collectors using neural network approach, Expert Systems with Applications, 2007 (in press)
    [48] Trombe F, Robert J F, M Cabanat, et al, Concretes walls to collect and hold heat, Solar Age, 1977
    [49] Sebald A V, Vered G, Design and control tradeooffs for rockbins in passively solar heated houses with trombe walls, direct gain and high solar fraction, Solar Energy, 1987, 39(4):267-289
    [50] Smolec W, Thomas A, Some aspects of trombe wall heat transfer models, Energy Conversion and Management, 1991, 32(3):269-277
    [51] Raman P, Sanjay Mande, Kishore V N, A passive solar system for thermal conditioning of building in composite climates, Solar Energy, 2000, 70(4):319-329
    [52] L. Zalewski, S. Lassue, B. Duthoit, et al, Study of solar walls-validating a simulation model,Building and Environment,2002, 37:109-121
    [53] L.Zalewski, M. Chantant, S.Lassue, et al, Experiment thermal study of a solar wall of composite type, Building and environment, 1996, 25:7-18
    [54] Jibao Shen, Stephane Lassue, Laurent Zalewski, et al, Numerical study onthermal behavior of classical or composite Trombe solar walls,Energy and Building,2007, 39:962–974
    [55] F.Mootz, J.J.Bezian, Numerical study of a ventilated fa?ade panel, Solar Energy, 1996, 57(1):29-36
    [56] B.Chen, X. Chen, Y.H. Ding, et al, Shading effects on the winter thermal performance of the Trombe wall air gap: An experimental study in Dalian,Renewable Energy, 2006, 31:1961-1971
    [57] U.Stritih, P.Novak, Solar heat storage wall for building ventilation, World Renewable Energy Congress 1996:268-271
    [58] D.Feldman, D.Banu, D.Hawes, et al, Obtaining an energy storing building material by direct incorporation of an organic change material in gypsum wallboard, Solar Energy Material and Solar Cells, 1991, 22:231-242
    [59] D.W.Hawes, D. Feldman, Absorption of phase change materials in concrete, Solar Energy Materials and Solar Cells, 1992, 27(2):91-101
    [60] W. Saman, F. Bruno, E. Halawa, Thermal performance of PCM thermal storage unit for a roof integrated solar heating system, Solar Energy, 2005, 78(2):341-349
    [61] A.K.Athienitis, C.liu, D.Hawes,et al, Investigation of the thermal performance of a passive solar test-room with wall latent heat storage, Building and Environment, 1997, 32(5):405-410
    [62] L.karen, M.George Shepard, Phase change wallboard for peak demand reduction, Los Alamos National Laboratory Report, TM-93-4, August 1993
    [63]谭羽飞,新型相变蓄能墙体的应用探讨,新型建筑材料,2003,2:3-5
    [64] J.Hirunlabh, W.Kongduang, P.Namprakai, et al, Study of natural ventilation of houses by a metallic solar wall under tropical climate, Renewable Energy, 1999, 18:109-119
    [65]何伟,季杰,张爱凤等,带改进型Trombe墙体的热箱热性能的实验测定和分析,中国科学技术大学学报,2003,10:567-573
    [66] N.D, Kaushika, K. Sumathy, Solar transparent insulation materials: a review, Renewable and Sustainable Energy Reviews, 2003, 7:317-351
    [67] Hongxing Yang, Zuojin Zhu, John Burnett, Simulation of the behaviour of transparent insulation materials in buildings in northern China, Applied Energy, 2000, 67:293-306
    [68] J.KHEDARI, J.HIRUNLABH, T.BUNNAG, Experimental study of a roof solar collector towards the natural ventilation of new habitations, Energy and Buildings, 1997, 26(2): 159-164
    [69] M.Belusko, W.Saman, F.Bruno, Roof integrated solar heating system with glazed collector, Solar Energy, 2004, 76:61-69
    [70] Frank Bruno, Using phase change materials (PCMs) for space heating and cooling in buildings, AIRAH performance enhanced buildings environmentally sustainable design conference, EcoLibrium?, 2004:26-31
    [71] X.Q.Zhai, Y.J.Dai, R.Z.Wang, Comparison of heating and natural ventilation in a solar house induced by two roof collectors, Applied Thermal Engineering, 2005, 25:741-757
    [72] Y.Tripanagnostopoulos,TH. Nousia, et al, Hybrid photovoltaic/thermal solar systems, Solar Energy, 2002, 72(3):217-234.
    [73] Y.Tripanagnostopoulos, P.Ylanoulis, D.Patrikios, Hybrid PV-TC solar systems, Renewable Energy, 1996, 8(1-5):505-508
    [74] S.K. Firth, Design and performance evaluation of PV-Thermal roof systems for residential new build house, website (http://crestdl.lboro.ac.uk) March 2004
    [75]孟华,龙惟定,被动式供冷与辐射制冷技术,能源技术,2003,24(3):113-115
    [76]李戬洪,黄轶,江晴,一种被动式降温的新方法-辐射制冷,制冷,1997,59(2):21-26
    [77]葛新石,大气“窗口”和辐射制冷,自然杂志,1981,4(8):593-596
    [78] Evyatar Erell, Yair Etzion, Heating experiments with a radiative cooling system, Building and Environment, 1996, 31(6):509-517
    [79] M.A.AL-NLMR, Z.KODAH, B.NASSAR, A Theoretical and Experimental Investigation of a Radiative Cooling System, Solar Energy, 1998, 63(6):367-373
    [80] G.Mihalakakou, A.Ferrante, J.O.Lewis, The cooling potential of a metallic nocturnal radiator, Energy and Buildings, 1998, 28:251-256
    [81]郭兵,杜晖,王明真等,南宁日本友好太阳房设计和夏季热性能分析,广西科学院学报,1999,15(2):59-63
    [82] M. Al-Nimr, M. Tahat, M. Al-Rashdan, A night cold storage system enhanced by radiative cooling-a modified Australian cooling system, Applied Thermal Engineering, 1999, 19:1013-1026
    [83] M. G. MEIR, J. B. REKSTAD, O. M. L?VVIK, A Study of a Polymer-based Radiative Cooling System, Solar Energy, 2002, 73(6):403-417
    [84]李戬洪,江晴,辐射制冷的实验研究,太阳能学报,2000,2(3):243-247
    [85] Danny S.Parker, Theoretical evaluation of the nightcool nocturnal radiation cooling concept, DOE Award No.DE-FC26-99GO10478, FSEC Contract No.20126003, 2005.4
    [86] Deta M.Diatezua, Paul A.Thiry, Alain Dereux, et al, Silicon oxynitride miltilayers as spectrally selective material for passive radiative cooling applications, Solar Energy Materials and Solar Cells, 1996, 40:253-259
    [87] Masato Tazawa, Ping Jin, Sakae Tanemura, Thin film used to obtain a constanttemperature lower than the ambient, Thin Solid Films,1996, 281-282:232-234
    [88] Zongcun Liang, Hui Shen, Jianhong Li, Microstructure and optical properties of silicon nitride thin films as radiative cooling materials, Solar Energy, 2002, 72:505-510
    [89] Torbjorn M.J, Nisson, Gunnar A.Niklasson, Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils, Solar Energy, 1995, 37:93-108
    [90] M. Benlattar, E.M. Oualim, M. Harmouchi, et al, Radiative properties of cadmium telluride thin film as radiative cooling materials, Optics Communications, 2005, 256:10-15
    [91] M. Benlattar, E.M. Oualim, T. Mouhib, et al, Thin cadmium sulphide film for radiative cooling application, Optics Communications, 2006, 267:65-68
    [92] Harrison. A. W, Wolton. M. R, Radiative Cooling of TiO2 while paint, Solar Energy, 1978, 20(2):185
    [93] National Institute for Rural Engineering, Effects of the Passive Use of Nocturnal Radiative Cooling in Fresh Vegetable Cooling, 2001
    [94] Aubrey Jaffer, Radiative Cooling in Hot Humid Climates, 2006.2
    [95] Rodney L. Pennington, Counterweight static pressure-air flow damper assembly, US4777932, 1988
    [96] John C. Hollick, Rolf W. Peter, Method and apparatus for preheating ventilation air for a building, US4934338, 1990
    [97] John Carl Hollick, Combined solar collector and photovoltaic cells, US5935343, 1999
    [98] John Hollick, Method and apparatus for preheating ventilation air for a building, US7032588, 2006
    [99] http://www.omsolar.net/en/index.html
    [100] http://www.solarwall.com/home/home.aspx
    [101]谭峰,太阳能空调和采暖系统,科技与经济,2006,2:114
    [102]何剑波,吴静怡,代彦军,太阳能制冷与供热系统的设计与比较,能源技术,2007,3:484-487
    [103] Constantinos A. Balaras, Gershon Grossman, Hans-Martin Henning, et al, Solar air conditioning in Europe-an overview, Renewable and Sustainable Energy Reviews, 2007, 11:299-314
    [104] G.C. Bakos,E. Tsioliaridou, N.F, Experimental investigation of a low energy consumption air conditioning system based on conventional central heating installation, Energy and Building, 2006, 38:45-52
    [105] Chaouki Alia, Habib Ben Bachaa, Mounir Baccarb, et al, Dynamic modeling and simulation of a new air conditioning prototype by solar energy, Renewable Energy, 2007, 32:200-215
    [106] K. Mountzouridis, N.F. Tsagas, Liquid Heating-Cooling Air Conditioning System, Greek Patent No. 1004485, 2004 (in Greek)
    [107] G.J. Plagakos, N.F. Tsagas, K. Mountzouridis, et al, Liquid heating-cooling air conditioning system, in: Proceedings of the International Conference on Ecological Protection of the Planet Earth I, Xanthi, Greece, 2001:5-8
    [108] K. Mountzouridis, N.F. Tsagas, G.C. Bakos, et al, Liquid heating-cooling air conditioning system, in:Proceedings of the 2nd International Conference on Ecological Protection of the Planet Earth, Sofia, Bulgaria, 2003
    [109]胡志新,太阳能空调热水一体化技术开发研究,九江学院学报(自然科学版),2006,1:5-7
    [110]林邦初,太阳能空调热水系统研究分析,福建能源开发与节约,2001,3: 45-46
    [111]何梓年,太阳能吸收式空调及供热综合系统,太阳能,2002,2:2-4
    [112]何梓年,刘芳,南振英等,太阳能空调及供热综合系统,暖通空调,2002, 32(1):1-4
    [113]谢应明,梁德青,郭开华等,小型太阳能空调热水系统的构建,能源工程,2004,6:59-61
    [114]谢应明,顾建明,太阳能空调热水系统的现状与新构想,能源工程,2002, 6:5-7
    [115]喜文华,魏一康,张兰英,太阳能实用工程技术.兰州大学出版,2001: 157-160
    [116]吴正毅,韩云台,测试技术,机械工业出版社,北京,1987
    [117]张洪亭,王明赞,测试技术,东北大学出版社,沈阳,2005:58-62
    [118]蒋宏明,张庆,动态测试理论与应用,东南大学出版社,南京,1999: 61-64
    [119]张洪文,热工过程控制系统分析、设计和调试,中国电力出版社,北京, 1997:3-22
    [120]国家质量技术监督局,GB/T4271-2000,平板型太阳能集热器热性能试验方法,北京:中国标准出版社,2000-02-16
    [121] ASHRAE Inc, ANSI/ASHRAE93-1986,Method of testing to determine the thermal performance of solar collectors, New York, 1986
    [122] ISO 9806-1, Test methods for solar collectors. Part 1: thermal performance of glazed liquid heating collectors including pressure drop, 1994
    [123] EN12975-2-2001, Thermal solar systems and components solar collectors. Part 2: Test methods, 2001
    [124]侯宏娟,王志峰,王如竹等,集热器时间常数测试方法研究,太阳能学报,2006,27(4):415-418
    [125]王佩明,王志峰,侯宏娟,太阳集热器时间常数分析及测试讨论,太阳能学报,2005,26(2):258-261
    [126] Hill J E, Reed KA, Testing solar collectors, Advances in solar energy, 1986
    [127] D.G. Erbs, S.A. Klein, J.A.Duffie, Estimation of the diffuse radiation fraction for hourly, daily and monthly average global radiation, Solar Energy, 1982, 28(4):293-302
    [128] M. MATSUTA, S. TERADA, H. Ito, Solar heating and radiative cooling using a solar collector-sky radiator with a spectrally selective surface, Solar Energy, 1987, 39(3):183-186
    [129] M. S. Kruskopf, P. Berdahl, M. Martin, et al, Radiative cooling test facility and performance evaluation of 4 mil aluminized polyvinyl fluoride and white paint surfaces, Lawrence Berkeley Laboratory Report, No. LBL-12049, 1980:11
    [130]傅国伟,河流水质数学模型及其模拟计算,中国环境出版社,北京,1987: 48-50
    [131]葛绍岩,那鸿悦,热辐射性质及其测量,科学出版社,北京,1989:341
    [132] Jone A. Duffie, William A. Beckman, Solar Engineering of Thermal Processes(Third Edition), New York: John Wiley & Sons, INC. 2006
    [133] McClellan T M, Pedersen C O, Investigation of outside heat balance models for use in a heat balance cooling load calculation procedure, ASHRAE Transactions, 1997, 103(2):469-484
    [134] B.J.Brinkwoeth, R.H.Marshall, Z.Ibarahim, Avalidated model of naturally ventilaton PV cladding, Solar Energy, 2000, 69(1):67-81
    [135] Afonso C, Oliveira A. Solar chimneys: simulation and experiment. Energy and Buildings, 2000, 32(1):71-79
    [136] Lee W M,Infield D G,Gottschalog R. Thermal Modeling of Building Integrated PV systems. Proceeding of REMIC2001, Belfast, 2001
    [137]陆煜,程林,传热原理与分析,北京:科学出版社,1997:310-318
    [138]杨世铭,传热学(第二版),北京:高等教育出版社,1995:197-225
    [139] D.D.克罗夫特,D.G..利利(编著) ,张凤禄(译),传热的有限差分方程计算,冶金工业出版社,1982
    [140]陈黟,吴味隆,热工学,北京:高等教育出版社,2004,118-123
    [141]钱滨江,伍贻文,常家芳等,简明传热手册,高等教育出版社,1983
    [142]徐长发,李红,偏微分方程数值解法,华中理工大学出版社,2000
    [143]陶文铨,数值传热学(第2版),西安交通大学出版社,2001
    [144]胡健伟,汤怀民,微分方程数值方法,北京:科学出版社,1999
    [145]清华大学,北京大学合编,计算方法,北京:科学出版社,1981
    [146]王沫然,MATLAB与科学计算,北京:电子工业出版社,2004
    [147]黄华江,使用化工计算机模拟-MATLAB在化学工程中的应用,北京:化学工业出版社,2004
    [148] Evyatar Erell, Yair Etzion, Radiative cooling of buildings with flat-plate solar collectors, Building and Environment, 2000, 35:297-305

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700