双原子分子排列及高次谐波辐射理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在强飞秒脉冲激光场中,空间排列有序的分子辐射出的高次谐波(HHG)正在引起人们越来越广泛的兴趣。由于分子相对于原子来说具有非球对称结构及更多的空间自由度,导致分子辐射的高次谐波不但包含了更丰富的物理现象,而且可以在更大程度上被调节和控制,所以推动了当前排列有序分子辐射高次谐波研究的发展。本文首先研究了最高占据分子轨道(HOMOs)和转动温度对分子空间转动排列的影响。然后基于强场电离理论和含时薛定谔方程提出了两种全新的计算双原子分子高次谐波辐射的理论方法,一种是价键轨道方法,它不但能描述双原子分子高次谐波辐射随分子空间取向变化的性质,而且能详细分析不同价键轨道对高次谐波的贡献;另一种是比较精确的分子波函数方法,它能计算包含分子不同初始转动温度、空间取向、飞秒光强以及初始态是激发态等条件下的高次谐波辐射性质。此外,还进行了一系列高次谐波实验研究,理论计算结果与实验观测值进行了比较。
     本文首先采用含时薛定谔方程数值计算和分析了分子在非共振激光场下的转动激发和空间无场排列性质。通过飞秒脉冲来激发一系列由共轭角空间定义的展宽分子波包,其展开系数通过求解一组耦合的线性方程来获得。通过分析HOMOs在CO和O2分子空间转动排列中的重要作用,得到了具有不同宇称分子角分布随温度变化的规律。
     其次,通过引入空间转动算符推导出了采用价键轨道波函数来计算任意取向双原子分子高次谐波辐射的理论公式。详细计算了O2和N2分子每一个价键轨道对高次谐波辐射随分子取向变化的影响。指出N2分子轴平行于激光偏振方向时氮气的成键轨道决定了谐波辐射的最大值。对于O2分子两个反键轨道贡献了谐波辐射的最大值,而两个成键轨道则稍微影响最大谐波辐射的方向角使其并不精确等于分子轴与激光偏振夹角的450,这些性质与文献中相关实验观测结果相一致。
     然后基于含时薛定谔方程我们又推导出了分子波函数法计算高次谐波的理论公式。其中分子波函数由一系列含时系数加权的包含不同分子轨道、转动和振动能级的电子谱项波函数的叠加而构成。数值计算了分子不同初始转动温度、不同空间取向排列以及初始电子态是不同的激发态或是混合态的条件下分子高次谐波强度的变化规律。并在此基础上根据大量的数值计算结果提出利用分子激发态操控高次谐波。
     最后进行了N2和O2分子不同空间取向、不同转动温度、不同飞秒脉冲光强、不同椭圆偏振率以及双色场中不同气体压强等条件下的高次谐波实验研究工作,详细分析了不同实验条件下的高次谐波辐射性质。国外文献及我们的实验观测值与理论计算结果相吻合。
High-order harmonic generation (HHG) from aligned molecules in strong laser fields of femtosecond duration has attracted increasing interest due to the extra degrees of freedom and nonspherical symmetry of molecules as compared to atoms. Therefore current study of harmonic emission of aligned molecules is motivated by the properties of molecules which may lead to richer physics phenomena and a higher degree modulation of HHG. Firstly in this paper the influences of the highest occupied molecular orbitals (HOMOs) and rotational temperature on molecular spatial alignment are discussed. Secondly based on intense field ionization and time-dependent Schr?dinger equation we present two innovative methods of calculating the harmonic emission of diatomic molecule. One is the valence orbital method which not only can describe the properties of molecular alignment-dependent harmonic emission from diatomic molecule, but also can analyze the contributions to harmonic emission from different valence orbitals. The other is the molecular wave function method which can precisely calculate the harmonic emission with different initial condition including the rotational temperature, spatial alignment and the excited electronic states. The comparisons are carried out between theoretical calculations of molecular wave function method and a series of experimental results.
     Firstly molecular rotational excitation and field-free spatial alignment in a nonresonant intense laser field are studied numerically and analytically by using time-dependent Schr?dinger equation. The broad rotational wave packets excited by the femtosecond pulse are defined in the conjugate angle space, and their coefficients are obtained by solving a set of coupled linear equations. The temperature-dependent properties of angular distributions of CO and O2 molecules are obtained through analyzing the influences of the HOMOs on molecular spacial alignment.
     Secondly we present a valence orbital method for high-order harmonic generation from diatomic molecule with arbitrary orientation by using space rotation operator. We evaluated the effects of each valence orbital of N2 and O2 on harmonic emission with different molecular alignment in detail. The calculation results show that the bonding orbital of N2 decides the maximum of harmonic emission when the molecular axis of N2 is aligned parallel to laser vector. For O2 molecule the two antibonding orbitals contribute the maximum of harmonic yield and two bonding orbitals slightly influence the alignment angle of maximum of harmonic radiation not exactly at 450 which confirm the experimental results in references.
     Furthermore we also present a method of molecular wave functions for calculating harmonic emission of diatomic molecules based on time-dependent Schr?dinger equation. The molecular wave functions are superposed by a series of wave functions of electron terms weighted by time-dependent coefficients for different molecular orbitals, rotational and vibrational levels. The molecular alignment and rotational temperature dependent properties of harmonic emissions are calculated in detail when the initial conditions are excited states or mixed states. We put forward the theory of manipulating the harmonic emission with excited states of molecule based on a lot of calculated results.
     Finally we carry out a series of harmonic emission experiments of N2 and O2 under different molecular alignment, different rotational temperature, different intensity of femtosecond pulse, different ellipticity of fundamental pulse, and different gas pressure in two color field. The properties of harmonic emission under different conditions are analyzed in detail. We find a well agreement between theoretical calculations and experimental results including those in foreign references.
引文
1 P. B. Corkum. Plasma Perspective on Strong-Field Multiphoton Ionization. Phys. Rev. Lett. 1993, 71(13): 1994~1997
    2 Jeffery L. Krause, Kenneth J. Schafer and Kenneth C. Kulander. High-Order Harmonic Generation from Atoms and Ions in the High Intensity Regime. Phys. Rev. Lett. 1992, 68(24): 3535~3538
    3 Chang Zenghu, A. Rundquist, and Wang Haiwen et al. Generation of Coherent Soft X-Rays at 2.7nm Using High Harmonics. Phys. Rev. Lett. 1997, 79(16): 2967~2970
    4 Ch. Spielmann et al. Generation of Coherent X-Rays in the Water Window Using 5-Femtosecond Laser Pulses. Science. 1997, 278: 661
    5 M. Schnurer et al. Coherent 0.5-keV X-Ray Emission from Helium Driven by a Sub-10-fs Laser. Phys. Rev. Lett. 1998, 80(15): 3236~3239
    6 E. A. Gibson et al. Coherent Soft X-Ray Generation in the Water Window with Quasi-Phase Matching. Science. 2003, 302: 95
    7 T. Brabec and F. Krausz. Intense Few-Cycle Laser Fields: Frontiers of Nonlinear Optics. Mod. of Phys. 2000, 72: 545~591
    8 Ivan P. Christov et al. High-Harmonic Generation of Attosecond Pulses in the“Single-Cycle”Regime. Phys. Rev. Lett. 1997, 78(7): 1251~1254
    9 Ph. Antoine et al. Generation of Attosecond Pulses in Macroscopic Media. Phys. Rev. A. 1997, 56(6): 4960~4969
    10 A. Pukhov, S. Gordienko and T. Baeva. Temporal Structure of Attosecond Pulses from Intense Laser-Atom Interactions. Phys. Rev. Lett. 2003, 91(17): 173002
    11 Markus Drescher et al. X-Ray Pulses Approaching the Attosecond Frontier. Science. 2001, 291: 1923
    12 M. Hentschel et al. Attosecond Metrology. Nature. 2001, 414(29): 509~513
    13 H. Stapelfeldt and T. Seidemann. Colloquium: Aligning Molecules with Strong Laser Pulses. Rev. Mod. Phys. 2003, 75: 543~557
    14 T. Pfeifer, D. Walter. and G. Gerber et al. Transient Enhancement of High-Order Harmonic Generation in Expanding Molecules. Phys. Rev. A. 2004, 70: 13805
    15 J. Itatani, D. Zeidler and J. Levesque et al. Controlling High-Harmonic Generation with Molecular Wave Packets. Phys. Rev. Lett. 2005, 94: 123902
    16 M. Lein, N. Hay and R. Velotta et al. Interference Effects in High-Order Harmonic Generation with Molecules. Phys. Rev. A. 2002, 66: 023805
    17 M. Lein, N. Hay and R. Velotta et al. Role of the Intramolecular Phase in High-Harmonic Generation. Phys. Rev. Lett. 2002, 88: 183903
    18 B. Shan. S, Ghimire. and Z. Chang. Effect of Orbital Symmetry on High-Order Harmonic Generation from Molecules. Phys. Rev. A. 2004, 69: 021404(R)
    19 P. W. Dooley et al. Direct Imaging of Rotational Wave-Packet Dynamics of Diatomic Molecules. Phys. Rev. A. 2003, 68: 023406
    20 R. de Nalda et al. Role of Orbital Symmetry in High-Order Harmonic Generation from Aligned Molecules. Phys. Rev. A. 2004, 69: 031804 (R)
    21 H. Sakai et al. Controlling the Orientation of Polar Molecules with Combined Electrostatic and Pulsed Nonresonant Laser Fields. Phys. Rev. Lett. 2003, 90: 083001
    22 N. Hay.R, Velotta. and M. Lein et al. High-Order Harmonic Generation in Laser-Aligned Molecules. Phys. Rev. A. 2002, 65: 053805
    23 M. Lein, P. P. Corso, J. P. Marangos and P. L. Knight. Orientation Dependence of High-Order Harmonic Generation in Molecules. Phys. Rev. A. 2003, 67: 023819
    24 R. Torres, R. de Nalda. and J. P. Marangos. Dynamics of Laser-Induced Molecular Alignment in the Impulsive and Adiabatic Regimes: A Direct Comparison. Phys. Rev. A. 2005, 72: 023420
    25 I. V. Litvinyuk et al. Alignment-Dependent Strong Field Ionization of Molecules. Phys. Rev. Lett. 2003, 90: 233003
    26 Hirofumi Sakai, C. P. Safvan and Jakob Juul Larsen et al. Controlling the Alignment of Neutral Molecules by a Strong Laser Field. J. Chem. Phys. 1999, 110: 10235
    27 F. Rosca Pruna and M. J. J. Vrakking. Revival Structures in Picosecond Laser- Induced Alignment of Molecules.II. Numerical Modeling. J. Chem. Phys. 2002, 116: 6579~6588 I2
    28 Andre D. Bandrauk, Samira Barmaki, and Gerard Lagmago Kamta. Laser Phase Control of High-Order Harmonic Generation at Large Internuclear Distance: The H + ?H+2 System. Phys. Rev. Lett. 2007, 98: 013001
    29 C. Vozzi, F. Calegari and E. Benedetti et al. Controlling Two-Center Interference in Molecular High-Harmonic Generation. Phys. Rev. Lett. 2005, 95: 153902
    30 Tsuneto Kanai and Eiji J. Takahashi et al. Observing Molecular Structures by Using High-Order Harmonic Generation in Mixed Gases. Phys. Rev. A. 2008, 77: 041402(R)
    31 Manfred Lein. Attosecond Probing of Vibrational Dynamics with High-Harmonic Generation. Phys. Rev. Lett. 2005, 94: 053004
    32 S. Ramakrishna and Tamar Seideman. Information Content of High Harmonics Generated from Aligned Molecules. Phys. Rev. Lett. 2007, 99: 113901
    33 S. Ramakrishna and Tamar Seideman. High-Order Harmonic Generation as a Probe of Rotational Dynamics. Phys. Rev. A. 2008, 77: 053411
    34 F. H. M. Faisal and A. Abdurrouf. Interplay of Polarization Geometry and Rotational Dynamics in High-Order Harmonic Generation from Coherently Rotating Linear Molecules. Phys. Rev. Lett. 2008, 100: 123005
    35 S. Baker and J. S. Robinson et al. Probing Proton Dynamics in Molecules on an Attosecond Time Scale. Science.2006, 312: 424~427
    36 J. Itatani and J. Levesque et al. Tomographic Imaging of Molecular Orbitals. Nature (London) 2004, 432(16): 867~871
    37 A. Mcpherson, G. Gibson and H. Jara et al. Studies of Multiphoton Production of Vacuum-Ultraviolet Radiation in the Rare Gases. J. Opt. Soc. Am. (B). 1987, 4(4): 595~601
    38 J. J. Macklin, J. D. Kmetec and C. L. Gordon. High-Order Harmonic Generation Using Intense Femtosecond Pulses. Phys. Rev. Lett. 1993, 70(6): 766~769
    39 E. S. Toma, Ph. Antoine, A. de Bohan and H.G. Muller. Resonance-Enhanced High Harmonic Generation. Journal of Physics B. 1999, 32(24): 5843~5852
    40 Midorikawa Katsumi, Tamaki Yusuke and Itatani Jiro et al. Phase-Matched High-Order Harmonic Generation by Self-Guided Intense Femtosecond Laser Pulses. The International Society for Optical Engineering Proceedings of the 1999 Soft X-Ray Lasers and Applications III. Denver. Jul 19th-20th 1999,3776: 135~142
    41 L. Miaja Avila et al. Laser-Assisted Photoelectric Effect from Surfaces. Phys. Rev. Lett. 2006, 97: 113604
    42 S. Kazamias et al. Global Optimization of High-Harmonic Generation. Phys. Rev. Lett. 2003, 90: 193901
    43 R. A. Bartels et al. Learning from Learning Algorithms: Application to Attosecond Dynamics of High-Harmonic Generation. Phys. Rev. A. 2004, 70: 043404
    44 E. Takahashi, Y. Nabekawa and K. Midorikawa. Low-Divergence Coherent Soft X-Ray Source at 13 nm by High-Order Harmonics. Appl. Phys. Lett. 2004, 84: 4
    45 H. T. Kim et al. Optimization of High-Order Harmonic Brightness in the Space and Time Domains. Phys. Rev. A. 2004, 69: 031805(R)
    46 E. Takahashi et al. Generation of Highly Coherent Submicrojoule Soft X-Rays by High-Order Harmonics. Phys. Rev. A. 2002, 66: 021802
    47 I. J. Sola and A. Za?r et al. Temporal and Spectral Studies of High-Order Harmonics Generated by Polarization-Modulated Infrared Fields. Phys. Rev. A. 2006, 74: 013810
    48 Ariel Gordon and Franz X. Kartner. Quantitative Modeling of Single Atom High Harmonic Generation. Phys. Rev. Lett. 2005, 95: 223901
    49 K. C. Kulander and B. W. Shore. Calculations of Multiple-Harmonic Conversion of 1064-nm Radiation in Xe. Phys. Rev. Lett. 1989, 62(3): 524~526
    50 I. Jong Kim and Chul Min Kim et al. Highly Efficient High-Harmonic Generation in an Orthogonally Polarized Two Color Laser Field. Phys. Rev. Lett. 2005, 94:243901
    51 H. R. Lange and A. Chinron et al. High-Order Harmonic Generation and Quasiphase Matching in Xenon Using Self-Guide Femtosecond Pulses. Phys. Rev. Lett. 1998,81(8): 1611~1613
    52 Andre D. Bandrauk and Nguyen Hong Shon. Attosecond Control of Ionization and High-Order Harmonic Generation in Molecules. Phys. Rev. A. 2002, 66: 031401
    53 N. Dudovich, D. Oron. and Y. Silberberg. Coherent Transient Enhancement of Optically Induced Resonant Transitions. Phys. Rev. Lett. 2002, 88: 123004
    54 Daniel Strasser and Thomas Pfeifer et al. Coherent Interaction of Femtosecond Extreme-UV Light with He Atoms. Phys. Rev. A. 2006, 73: 021805(R)
    55 R. López Martens et al. Amplitude and Phase Control of Attosecond Light Pulse. Phys. Rev. Lett. 2005, 94: 033001
    56 J. Mauritsson et al. Measurement and Control of the Frequency Chirp Rate of High-Order Harmonic Pulses. Phys. Rev. A. 2004, 70: 021801 (R)
    57 Tsuneto Kanai, Shinichirou Minemoto and Hirofumi Sakai. Quantum Interference During High-Order Harmonic Generation from Aligned Molecules. Nature(London). 2005, 435(26): 470~474
    58 Tsuneto Kanai and Shinichirou et al. Ellipticity Dependence of High-Order Harmonic Generation from Aligned Molecules Phys. Rev. Lett. 2007, 98: 053002
    59 Qingbin Zhang and Peixiang Lu et al.. Control of High-Order Harmonic Generation from Molecules Lacking Inversion Symmetry with A Polarization Gating Method. Phys. Rev. A. 2009, 80: 033405
    60 Lotte Holmegaard and Simon S. Viftrup et al. Control of Rotational Wave-Packet Dynamics in Asymmetric Top Molecules. Phys. Rev. A. 2007, 75: 051403(R).
    61 Van-Hoang Le and Anh-Thu Le et al. Theoretical Analysis of Dynamic Chemical Imaging with Lasers Using High-Order Harmonic Generation. Phys. Rev. A. 2007, 76: 013414
    62 Xiao Xin Zhou, X. M. Tong, Z. X. Zhao, and C. D. Lin. Alignment Dependence of High-Order Harmonic Generation from N2 and O2 Molecules in Intense laser Fields. Phys. Rev. A. 2005, 72: 033412
    63 Carsten Winterfeldt, Christian Spielmann, and Gustav Gerber. Colloquium: Optimal control of high-harmonic generation. Rev. Mod. Phys. 2008, 80: 117~140
    64 Pengfei Lan, Peixiang Lu et al. Phase-Locked High-Order-Harmonic and Sub-100- As Pulse Generation from Stretched Molecules. Phys. Rev. A. 2006, 74: 063411
    65 C. C. Chiril? and M. Lein. Strong-Field Approximation for Harmonic Generation in Diatomic Molecules. Phys. Rev. A. 2006, 73: 023410
    66 G. Lagmago Kamta and A. D. Bandrauk. Three-Dimensional Time-Profile Analysis of High-Order Harmonic Generation in Molecules: Nuclear Interferences in H2+. Phys. Rev. A. 2005, 71: 053407
    67 B. Zimmermann, M. Lein and J. M. Rost. Analysis of Recombination in High-Order Harmonic Generation in Molecules. Phys. Rev. A. 2005, 71: 033401
    68 Robin Santra. Three-Step Model for High-Harmonic Generation in Many-Electron Systems. Phys. Rev. Lett. 2006, 96: 073906
    69 E. Eremina and X. Liu et al. Influence of Molecular Structure on Double Ionization of N2 and O2 by High Intensity Ultrashort Laser Pulses. Phys. Rev. Lett. 2004, 92: 173001
    70 Y. Mairesse and D. Zeidler et al. High-Order Harmonic Transient Grating Spectroscopy in a Molecular Jet. Phys. Rev. Lett. 2008, 100: 143903
    71 J. Tate and T. Auguste et al. Scaling of Wave-Packet Dynamics in an Intense Midinfrared Field. Phys. Rev. Lett. 2007, 98: 013901
    72 A. Abdurrouf and F. H. M. Faisal. Theory of Intense-Field Dynamic Alignment and High-Order Harmonic Generation from Coherently Rotating Molecules and Interpretation of Intense-Field Ultrafast Pump-Probe Experiments. Phys. Rev. A. 2009, 79: 023405
    73 Kazumichi Yoshii, Godai Miyaji, and Kenzo Miyazaki. Dynamic Properties of Angle Dependent High-Order Harmonic Generation from Coherently Rotating Molecules. Phys.Rev. Lett. 2008, 101: 183902
    74 Anh-Thu Le, R. R. Lucchese, M. T. Lee, and C. D. Lin. Probing Molecular Frame Photoionization via Laser Generated High-Order Harmonics from Aligned Molecules. Phys.Rev. Lett. 2009, 102: 203001
    75 Y. Chen, Y. Li. S. Yang and J. Liu. High-Order Harmonic Generation and Molecular Orbital Tomography: Characteristics of Molecular Recollision Electronic Wave Packets. Phys. Rev. A. 2008, 77: 031402
    76 Serguei Patchkovskii and Zengxiu Zhao et al. High Harmonic Generation and Molecular Orbital Tomography in Multielectron Systems. J. Chem. Phys. 2007, 126: 114306
    77 Serguei Patchkovskii and Zengxiu Zhao et al. High Harmonic Generation and Molecular Orbital Tomography in Multielectron Systems: Beyond the Single Active Electron Approximation. Phys. Rev. Lett. 2006, 97: 123003
    78 Xiao Xin Zhou, X. M. Tong, Z. X. Zhao and C. D. Lin. Role of Molecular Orbital Symmetry on the Alignment Dependence of High-Order Harmonic Generation withMolecules. Phys. Rev. A. 2005, 71: 061801(R)
    79 C. B. Madsen and A. S. Mouritzen et al. Effects of Orientation and Alignment in High-Order Harmonic Generation and Above-Threshold Ionization. Phys. Rev. A. 2007, 76: 035401
    80 C. B. Madsen and L. B. Madsen. Theoretical Studies of High-Order Harmonic Generation: Effects of Symmetry, Degeneracy, and Orientation. Phys. Rev. A. 2007, 76: 043419
    81 Jerome Levesque and Yann Mairesse et al. Polarization State of High-Order Harmonic Emission from Aligned Molecules. Phys. Rev. Lett. 2008, 99: 243001
    82 Xibin Zhou and Robynne Lock et al. Elliptically Polarized High-Order Harmonic Emission from Molecules in Linearly Polarized Laser Fields. Phys. Rev. Lett. 2009, 102: 073902
    83 Nicholas Wagner and Xibin Zhou et al. Extracting the Phase of High-Order Harmonic Emission from a Molecule Using Transient Alignment in Mixed Samples. Phys. Rev. A. 2007, 76: 061403(R)
    84刘智,李儒新.相位匹配法在毛细管波导中产生高次谐波的分析.光学学报. 2000, 20(4): 433~439
    85 Zhinan Zeng and Ya Cheng et al. Tunable High-Order Harmonic Generation and the Role of the Folded Quantum Path. Phys. Rev. A. 2008, 77: 023416
    86曾志男,李儒新等.采用双脉冲驱动产生高次谐波阿秒脉冲.物理学报.2004, 53(7): 2316~2319
    87 Peng Liu and Pengfei Yu et al. Laser Intensity Dependence of High-Order Harmonic Generation from Aligned CO2 Molecules. Phys. Rev. A. 2008, 78: 015802
    88 Pengfei Wei and Peng Liu et al. Laser-Field-Related Recombination Interference in High- Order Harmonic Generation from CO2 Molecules. Phys. Rev. A. 2009, 79: 053814
    89 Bingbing Wang and J. Chen et al. Attosecond-Pulse-Controlled High-Order Harmonic Generation in Ultrashort Laser Fields. Phys. Rev. A. 2008, 78: 023413
    90曹伟,兰鹏飞,陆培祥.利用43飞秒的强激光脉冲实现单个阿秒脉冲输出的新机理.物理学报.2007, 56(3): 1608~1612
    91 Pengfei Lan and Peixiang Lu et al.. Macroscopic Effects for Quantum Control of Broadband Isolated Attosecond Pulse Generation with A Two-Color Field. Phys. Rev. A. 2009, 79: 043413
    92 Pengfei Lan and Peixiang Lu. Method to Image High-Order Harmonic Generation and Quantum Trajectories in the Real-Time–Frequency Domain. Phys. Rev. A. 2008, 77: 013405
    93 Huayu Hu and Jianmin Yuan. Time-Dependent QED Model for High-Order Harmonic Generation in Ultrashort Intense Laser Pulses. Phys. Rev. A. 2008, 78: 063826
    94陈建新,夏元钦等.飞秒激光脉冲在氮气中产生高次谐波的实验研究.光学学报. 2002, 22(6): 650~653
    95夏元钦,陈建新等.飞秒激光在氦气中的高次谐波.光学学报.2002, 22(9): 1035~1038
    96 Yang Zeng-Qiang and Zhou Xiao-Xin. The Influence of Molecular Ground State Wave Function on High-Order Harmonic Generation from N2 Molecules in Intense Laser Fields. Acta Phys. Sin. 2008, 57(3): 1616~1621
    97杨增强,周效信.用双激光脉冲操纵N2分子取向.物理化学学报.2007, 23(5): 751~756
    98杨增强,周效信.温度对激光场中N2、O2分子取向的影响.物理化学学报.2006, 22(8): 932~936
    99 Hui Xiong and Han Xu et al. Spectral Evolution of Angularly Resolved Third-Order Harmonic Generation by Infrared Femtosecond Laser-Pulse Filamentation in Air. Phys. Rev. A. 2008, 77: 043802
    100 Jian Wu, Hongxing Qi and Heping Zeng. Extreme-Ultraviolet Frequency Combs by Surface-Enhanced Optical Fields with Diatomic Molecules. Phys. Rev. A. 2008, 77: 053412
    101 Y. J. Chen and J. Liu. High-Order Harmonic Generation from Diatomic Molecules with Large Internuclear Distance: The Effect of Two-Center Interference. Phys. Rev. A. 2008, 77: 013410
    102 C. M. Dion and A. Keller et al. Laser-Induced Alignment Dynamics of HCN: Roles of the Permanent Dipole Moment and the Polarizability. Phys. Rev. A. 1999, 59: 1382~1391
    103 Tamar Seideman. Manipulating External Degrees of Freedom with Intense Light: Laser Focusing and Trapping of Molecules. J. Chem. Phys. 1997, 106: 2881~2992
    104 B. Friedrich and D. Herschbach. Alignment and Trapping of Molecules in Intense Laser Field. Phys. Rev. Lett. 1995, 74: 4623~4626
    105 L. D. Landau and E. M. Lifshitz. Quantum Mechanics. Butterworth- Heinemann Press Oxford. 1977: 437
    106 F. Rosca-Pruna and M. J. J. Vrakking. Revival Structures in Picosecond Laser- Induced Alignment of Molecules I. Experimental Results. J. Chem. Phys. 2002, 116: 6567~6578 I2
    107 Tamar Seideman. Revival Structure of Aligned Rotational Wave Packets. Phys. Rev.Lett. 1999, 83: 4971~4974
    108 V. Renard and M. Renard et al. Nonintrusive Monitoring and Quantitative Analysis of Strong Laser-Field-Induced Impulsive Alignment. Phys. Rev. A. 2004, 70: 033420
    109 P. W. Dooley and I. V. Litvinyuk et al. Direct Imaging of Rotational Wave-Packet Dynamics of Diatomic Molecules. Phys. Rev. A. 2003, 68: 023406
    110 Christer Z. Bisgaard, Simon S. Viftrup and Henrik Stapelfeldt. Alignment Enhancement of a Symmetric Top Molecule by Two Short Laser Pulses. Phys. Rev. A. 2006, 73: 053410
    111 D. Pinkham and R. R. Jones. Interference Effects in Above-Threshold Ionization from Diatomic Molecules: Determining the Internuclear Separation. Phys. Rev. A. 2005, 72: 023418
    112 C. B. Madsen and L. B. Madsen. High-Order Harmonic Generation from Arbitrarily Oriented Diatomic Molecules Including Nuclear Motion and Field-Free Alignment. Phys. Rev. A. 2006, 74: 023403
    113 Erik W. Aslaksen. Dielectric Model of Diatomic Molecules. Phys. Rev. A. 1972, 6: 1367~1370
    114 L. Veseth. Many-Body Calculation of Photoionization Cross Section in CO. Phys. Rev. A. 1994, 49: 939~949
    115 Ashok Jain and K. L. Baluja. Total Cross Sections for Electron Scattering from Diatomic and Polyatomic Molecules at 10-5000 eV. Phys. Rev. A. 1992, 45: 202~218
    116 M. Lewenstein, Ph. Balcou and M.Yu.Ivanov et al. Theory of High Harmonic Generation by Low Frequency Laser Fields. Phys. Rev. A. 1994, 49(3):2117~2132
    117 G. F. Gribakin and M. Yu. Kuchiev. Multiphoton Detachment of Electrons from Negative Ions. Phys. Rev. A. 1997, 55: 3760~3771
    118 Howard R. Reiss. Effect of an Intense Electromagnetic Field on a Weakly Bound System. Phys. Rev. A. 1980, 22: 1786~1813
    119 M. Yu. Kuchiev and V. N. Ostrovsky. Quantum Theory of High Harmonic Generation as a Three-Step Process. Phys. Rev. A. 1999, 60: 3111~3124
    120 Richard N. Zare. Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics. John Wiley and Sons Press New York. 1988:89
    121 I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals Series and Products. Academic Press Boston. 1994: 1110~1112
    122 V. I. Usachenko and V. A. Pazdzersky. Reexamination of High-Energy Above- Threshold Ionization ATI: an Alternative Strong-Field ATI Model. Phys. Rev. A. 2004, 69: 013406
    123 F. H. M. Faisal, A. Abdurrouf, K. Miyazaki and G. Miyaji. Origin of Anomalous Spectra of Dynamic Alignments Observed in N2 and O2. Phys. Rev. Lett. 2007, 98: 143001
    124 Tamar Seideman. Rotational Excitation and Molecular Alignment in Intense Laser Fields. J. Chem. Phys. 1995, 103: 7887~7896
    125 V. B. Berestetskii, E. M. Lifshitz and L. P. Pitaevskii. Quantum Electrodynamics. Butterworth-Heinemann Press Oxford. 1982: 200
    126 Ira N. Levine. Molecular Spectroscopy. John Wiley & Sons. New York. 1975: 101~103
    127 Juan Ortigoso and Mirta Rodriguez et al. Time Evolution of Pendular States Created by the Interaction of Molecular Polarizability with a Pulsed Nonresonant Laser Field. J. Chem. Phys. 1999, 110: 3870~3875

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700