求解辐射传递方程的DRESOR法及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
辐射强度空间高方向分辨率分布对于反演辐射传热系统内光学参数和源项等理论问题,以及解决大尺寸燃烧系统(如燃煤锅炉和大型加热设备)内燃烧可视化等实际问题具有重要价值。本文提出一种求解辐射传递方程的新方法——DRESOR法(Distribution of Ratio of Energy Scattered by the medium Or Reflected by the boundary surface,被介质散射或被壁面反射的能量分布份额)。具体工作如下:
     首先给出DRESOR法求解辐射传递方程的具体推导过程,建立了采用基于蒙特卡洛法的DRESOR法求解辐射传递方程的基本原理和方法。在具有不同边界条件的各向同性一维灰性平行平板系统中验证了DRESOR法求解辐射传递方程的有效性和准确性。通过验证发现DRESOR法一些有吸引力的优点,例如辐射强度对不同发射源的线性可加性和求解的辐射强度自动满足边界条件等,这些特点使得DRESOR法便于采用并行计算研究复杂辐射传热系统和处理复杂的边界条件。
     用前向蒙特卡洛法和逆向蒙特卡洛法在处理辐射源是平行光入射并且需要计算任意很小区域和很小立体角内的入射辐射问题时,它们的计算效率非常低。本文中用基于蒙特卡洛法的DRESOR法处理这类问题,在各向同性散射平行平板中求解有平行光入射的辐射传递问题。在研究中,整个4π空间立体角被离散成13087个小立体角,通过DRESOR法可以计算得到系统内任意位置处的辐射强度在如此之多离散方向上的值,进而得到任意位置处探测器在不同接收角下接收的辐射热流,其值和相关文献中结果吻合很好。
     在充满颗粒云和燃烧气固颗粒混合物的高温系统中各向异性散射是一个基本特征。本文用DRESOR法在具有不同边界条件的一维灰性平行平板中处理各向异性散射问题。通过研究发现:介质的散射并不是不能改变介质中能量的大小,实际上,更强的散射使得能量有更多的机会被介质吸收,从而间接地改变了能量的大小;同时一个有趣的现象被发现:散射介质中的散射特性使得边界辐射强度不能达到同温度下黑体的辐射强度值,即使是光学厚度趋于无限大。
     目前在一些应用领域,例如短激光脉冲对金属的加工、小尺度系统传热、遥感测量、激光治疗等,需要考虑瞬态辐射传递对事物特性变化的影响。本文用DRESOR法在散射、吸收、无发射的一维平行平板中,处理不同周期和波形的序列脉冲平行入射条件下瞬态辐射传递问题。通过在系统内计算一单位入射辐射能对介质的DRESOR数分布,就能计算任意波形序列脉冲入射辐射在系统内的瞬态分布特性,简便的计算方式说明DRESOR法处理序列脉冲入射问题的优势。同时,用DRESOR法还考察了不同波形平行入射、壁面反射、介质散射率、光学厚度、各向异性散射等条件对辐射能传播及瞬态辐射分布的影响。
     本文将DRESOR法求解辐射传递问题扩展到二维矩形系统。在二维各向同性散射介质中DRESOR法可以在半球空间立体角内提供6658个方向分辨率的辐射强度分布。在二维各向异性散射辐射传递研究问题中发现,前向散射能有效提高辐射能量穿过介质的能力,使对面边界出射辐射强度最大;后向散射对辐射传递起阻碍作用,使对面边界出射辐射强度最小。
     最后,本文用能够给出辐射强度在高方向分辨率上分布的DRESOR法建立辐射成像装置中辐射图像信息和三维不规则加热炉内温度分布的定量关系,这是炉内燃烧可视化监测系统的关键技术之一。用建立的这种辐射成像计算关系式,结合三维温度场重建技术,在武汉钢铁(集团)公司一个工业加热炉内开展了三维温度场检测试验研究。为了对用DRESOR法建立的辐射成像计算关系式和系统检测的三维温度分布进行验证。在工业炉内进行了火嘴调试试验和在线实时运行试验。通过试验证明,本系统能准确直观的反映不同工况下,炉内温度分布及板坯温度分布的变化情况,和热电偶最大测温误差在40 C以内,相对误差在5%以内,证明该系统能够满足工业炉在线检测炉内板坯上表面及空间三维温度分布的要求。
The radiative intensity distribution with high directional resolution meets lots of demands in many numerical simulations to estimate the radiative parameters and radiation source and practical applicaitions to measure temperature distribution by radiative image processing techniques in the large-scale combustion systems such as pulverized-coal-fired boiler and industrial heat equipments. A new method called DRESOR (Distribution of Ratio of Energy Scattered by the medium Or Reflected by the boundary surface, DRESOR) method is developed to solve the radiative transfer eqution. The detailed description is as below.
     First the detailed deduce process of the DRESOR method to sovling the radiative transfer equation was given. The fundamental principle and technique of the DRESOR method based on the Monte Carlo method was also built. The method was applied to a gray absorbing, emitting, isotropically scattering, gray, plane-parallel medium with diffusely or specularly reflecting boundaries. And validation results demonstrated its accuracy. Some attractive features, such as the additivity of intensity for different emitting sources and automatically meeting the boundary conditions, make the present method feasible in dealing with complicated radiative transfer problems by parallel computation.
     Forward and backward Monte Carlo methods may become inefficient when radiant source is collimated and radiation onto a small, arbitrary spot and onto a small, arbitrary direction cone is desired. In this paper, the DRESOR method was formulated to study the radiative heat transfer process in an isotropically scattering layer exposed to collimated radiation. As the whole 4πsolid angle space was uniformly divided into 13087 discrete solid angles, the intensity at some point in up to such discrete directions was given. The radiation fluxes incident on a detector inside the layer for varying acceptance angles were also got, which agreed well with those in literature.
     It is well known that anisotropic scattering is usually a basic feature in high-temperature systems, which are filled with particles cloud as well as the combustion gases–particles mixtures. The DRESOR method was proposed to deal with the anisotropic scattering, emitting, absorbing, plane-parallel media with different boundary conditions. An attractive phenomenon is observed that the scattering of the medium makes the intensity at boundary can not reach the blackbody emission capability with the same temperature, even if the optical thickness tends to very large. It is also revealed that the scattering of the medium does not mean it can not alter the magnitude of the energy; actually, stronger scattering causes the energy to have more chance to be absorbed by the medium, and indirectly changes the energy magnitude in the medium.
     In many application areas, such as short laser pulse processing of metal, heat transfer in microstructures, remote sensing and medical diagnosis et al., the effect of transient heat transfer on the charecteristic change of meterial should be considerd. The time-dependent DRESOR method was utilized to solve the transient radiative transfer in a one-dimensional slab filled with an absorbing, scattering and non-emitting medium and exposed to collimated incident serial-pulse with different shape and width. In the DRESOR method, by calculating the time-dependent DRESOR values for a unit short-pulse radiation incident into a scattering media, the solution of intensity can be got by integral with DRESOR values for a serial of incident pulse with different shape and width. So there is no obvious difficulty for solution of the transient radiation transfer process with different shape and width incident serial-pulse, even in the anisotropic scattering medium. The influences of the pulse shape and width, reflectivity of the boundary, the scattering albedo, the optical thickness and anisotropic scattering on the transient radiative transfer were investigated.
     The DRESOR method was developed to solve the radiative transfer equation in a 2-D, anisotropic/isotropic scattering, rectangular enclosure. Radiative intensity with highly directional resolution in 6658 directions in the hemisphere space at the boundary of the enclosure was provided by the DRESOR method. It was found that in the anisotropic scattering media, the largest boundary intensity occurs with the largest forward scattering capability, and the smallest one with the largest backward scattering capability.
     Finally, quantified relationship between the radiation temperature image and the temperature distribution in the irregular 3-D industrial heat furnace was built by the DRESOR method, which can give the intensity distributions with high direction resolution. Based on this relationship and 3-D temperature reconstruction technology, a 3-D temperature mesurement test was carried out in a industrail heat furnace of Wuhan iron steel company. To validate calculation relationship of the radiation image and correctness of measured temperature, a burner combustion regulating test and an on-line monitoring test were conducted. The tests confirmed that the system could accurately and intuitively display the temperature change inside the furnace. The error between the temperature measured by thermocouples and the present system were less than 40 C , and relative error was less than 5%. The results demonstrated that the 3-D temperature measurement system could on-line and availably provide top surface of billets and full-scale temperature distributions in the furnace.
引文
[1]杨世铭,陶文铨.传热学. 3版.北京:高等教育出版社,1998.
    [2]郑楚光,柳朝晖.弥散介质的光学特性及辐射传热.武汉:华中理工大学出版社,1996.
    [3]范维澄,万跃鹏.流动与燃烧的模型与计算.合肥:中国科学技术大学出版社,1992.
    [4] Modest M F. Radiative heat transfer, 2nd Edition. San Diego: Academic Press, 2003.
    [5] Siegel R, Howell J R. Thermal Radiation Heat Transfer. 4th Edition. New York: Taylor & Francis, 2002.
    [6]谈和平,夏新林,刘林华,等.红外辐射特性与传输的数值计算-计算热辐射学.哈尔滨:哈尔滨工业大学出版社, 2006.
    [7]余其铮.辐射换热原理.哈尔滨:哈尔滨工业大学出版社, 2000.
    [8]卞伯绘.辐射传热的分析与计算.北京:清华大学出版社, 1988.
    [9]西格尔R,豪威尔JR.热辐射传热.曹玉章,黄素逸,陆大有,陶文铨,朱芙英,胡桅林,译.北京:科学出版社,1990.
    [10]刘林华,谈和平.梯度折射率介质内热辐射传递的数值模拟.北京:科学出版社,2006.
    [11] McCormick N J. Inverse radiative transfer problems: a review. Nuclear Science and Engineering, 1992, 112: 185-198.
    [12] Ou N R, Wu C Y. Simultaneous estimation of extinction coefficient distribution, scattering albedo and phase function of a two-dimensional medium. International Journal of Heat and Mass Transfer, 2002, 45(23): 4663-4674.
    [13] Silva Neto A J, Ozisik M N. An inverse problem of simultaneous estimation of radiation phase function, albedo and optical thickness. Journal of Quantitative Spectroscopy and Radiative Transfer, 1995, 53: 397-409.
    [14] Li H Y, Yang C Y. A Genetic Algorithm for Inverse Radiation Problems. International Journal of Heat and Mass Transfer, 1997, 40(2): 1545-1549.
    [15] Siewert C E. Inverse solutions to radiative-transfer problems with partially tranparent boundaries and diffuse reflection. Journal of Quantitative Spectroscopy and Radiative Transfer, 2002, 72: 299-313.
    [16] Menguc M P, Manickavasagam S. Inverse radiation problem in axisymmetric cylindrical scattering media. Journal of Thermophysics and Heat Transfer, 1993, 7(3) : 479-486.
    [17] Li H Y. Estimation of the Temperature Profile in a Cylindrical Medium by Inverse Analysis. Journal of Quantitative Spectroscopy and Radiative Transfer, 1994, 52: 755-764.
    [18] Bokar J C. The estimation of spatially varying albedo and optical thickness in a radiating slab using artificial neural networks. Int Comm Heat Mass Transfer,1999, 26(3): 359-367.
    [19] Holloway J P, Shannon S, Sepke S M, Brake M L. A reconstruction algorithm for a spatially resolved plasma optical emission spectroscopy sensor. Journal of Quantitative Spectroscopy and Radiative Transfer, 2001, 68: 101-115.
    [20] Liu LH, Tan HP and Yu QZ. Inverse radiation problem of sources and emissivities in one-dimensional semitransparent media. International Journal of Heat and Mass Transfer, 2001, 44(1):63-72.
    [21]张昊春,谈和平.一维辐射系统吸收系数的反问题.工程热物理学报, 2004, 25(2): 203-205.
    [22] Ai Y H, Zhou H C. Simulation on simultaneous estimation of non-uniform temperature and soot volume fraction distributions in axisymmetric sooting flames. Journal of Quantitative Spectroscopy and Radiative Transfer. 2005, 91(1): 11-16.
    [23] Li H Y. A two-dimensional cylindrical inverse source problem in radiative transfer. Journal of Quantitative Spectroscopy and Radiative Transfer, 2001, 69(4): 403-414.
    [24] Kudo K, Kuroda A, Eid A, et al. Radiative load problem using the singular value decomposition technique. JSME, International Joumal, Series B, 1996, 39(4): 808-814.
    [25]盛锋.基于辐射成像逆问题求解的温度场重建方法研究:博士学位论文.华中科技大学, 2000.
    [26]韩曙东.大型燃煤锅炉炉膛温度场重建逆问题研究:博士学位论文.华中科技大学, 2002.
    [27] Liu L H. Simultaneous identification of temperature profile and absorption coefficient in one-dimensional semitransparent medium by inverse radiation analysis. Int. Comm. Heat Mass Transfer, 2000, 27(5): 635-643.
    [28] Zhou H C, Hou Y B, Chen D L, et al. An inverse radiative transfer problem of simultaneously estimating profiles of temperature and radiative parameters from boundary intensity and temperature measurements. Journal of Quantitative Spectroscopy and Radiative Transfer, 2002, 74(5): 605-620.
    [29]范维澄,等.计算燃烧学.安徽科学技术出版社,1988.
    [30]柳朝晖,邢华伟,周英彪,等.煤粉炉内弥散介质辐射特性传热的综合模拟.工程热物理学报, 1999, 20(3): 383-387.
    [31]王补宣,李天铎,吴占松.图像处理技术用于发光火焰温度分布测量的研究.工程热物理学报, 1989, 10(4): 446-448.
    [32]王飞,薛飞,马增益,等.运用彩色CCD测量火焰温度场的试验研究及误差分析.热能动力工程,1998, 13(2): 81-84.
    [33]薛飞,李晓东,倪明江,等.基于面阵CCD的火焰温度场测量方法研究.中国电机工程学报,1999, 19(1):39-41.
    [34]卫成业,王飞,马增益,等.运用彩色CCD测量火焰温度场的校正算法.中国电机工程学报, 2000, 20(1):39-41.
    [35]严建华,马增益,王飞,等.运用代数迭代技术由火焰图像重建三维温度场.燃烧科学与技术, 2000, 6(3):298-261.
    [36]周怀春.炉内火焰可视化检测原理与技术.北京:科学出版社,2005.
    [37]娄春.煤粉炉内三维温度场及颗粒辐射特性重建:博士学位论文.华中科技大学,2007.
    [38]周怀春,娄新生,肖教芳,等.炉膛火焰温度场图像处理试验研究,中国电机工程学报, 1995, 15(5):295-300.
    [39]周怀春,娄新生,尹鹤龄,等.单色火焰图像处理技术在锅炉燃烧监控中的应用研究,电力系统自动化, 1996, 20(10):18-22.
    [40]秦裕琨.炉内传热北京:机械工业出版社,1981.
    [41] [美]E.M.斯帕罗R.D.塞斯.辐射传递.北京:高等教育出版社,1982年11月.
    [42]刘林华.炉膛传热计算方法的发展状况.动力工程, 2000, 20(1): 523-527.
    [43]王应时,范维澄,周力行,徐旭常.燃烧过程数值模拟.北京:科学出版社, 1986.
    [44]范维澄,陈义良,洪茂玲.计算燃烧学.合肥:安徽科学技术出版社, 1987.
    [45] Hottel H C and Cohen E S. Radiative heat exchange in a gas-filled enclosure: allowance for nonuniformity of gas temperature. AIChE Journal, 1958, 4:3-14.
    [46] Hottel HC and Sarofim AF, Radiative Transfer, New York: McGraw-Hill, 1967.
    [47]聂宇宏,陈海耿,杨泽宽.非灰介质中辐射直接交换面积的计算.计算物理, 1997, 14(3): 345-348.
    [48] Chandrasekhar S. Radiative Transfer, New York: Dove Publications Inc.,1960.
    [49] Lathrop K D. Use of discrete-ordinate methods for solution of photon transport problems. Nuclear Science and Engineering, 1966, 24: 381-338.
    [50] Love T J, Grosh R J. Radiative heat transfer in absorbing, emitting and scattering media. J. of Heat transfer-Transactions of the ASME, 1965, 87: 161-166.
    [51] Fiveland W A. Discrete Ordinates solutons of the radiative transport equation for rectangular Enclosures. ASME Journal of Heat Transfer, 1984, 106: 699-706.
    [52] Fiveland W A. Discrete Ordinates methods for radiative heat transfer in isotropically and anisotropically scattering media. ASME Journal of Heat Transfer, 1987, 109:809-812.
    [53] Fiveland W A. The selection of Discrete Ordinate quadrature sets for anisotropic scattering. HTD-vol.160, Fundamentals of Radiation Heat Transfer ASME, 1991, 160: 89-96
    [54] Lemonnier D, Le Dez V. Discrete ordinates solution of radiative transfer across a slab with variable refractive index. Journal of Quantitative Spectroscopy and Radiative Transfer,2002,73(2-5):195-204.
    [55] Chai J C, Lee H S, Patankar S V. Improved treatmeant of scattering using the discrete ordinates method. Journal of Heat Transfer, 1994, 116(1):260-263.
    [56]刘林华,余其铮,阮立明,等.求解辐射传递方程的离散坐标法.计算物理, 1998,15(3):
    [57]贺志宏,谈和平,董士奎,等.用贴体坐标系下离散坐标法求解再入目标辐射场.目标与环境特性研究, 2001, (1): 33-42.
    [58]董士奎,谈和平,贺志宏,等.高超声速再入体可见、红外辐射特性数值模拟.红外与毫米波学报,2002,21(3):180-184.
    [59]李本文,姚强,曹新玉,等.一种新的辐射换热离散坐标算法.化工学报, 1998, 49(3): 288-293.
    [60]魏小林,徐通模.用改进的离散坐标法计算炉内三维辐射传热.燃烧科学与技术. 2000, 6(2): 140-145.
    [61]李宏顺,周怀春,陆继东,郑楚光.用离散坐标法计算炉膛火焰辐射能成像.工程热物理学报, 2003, 24(5): 843-845.
    [62]李宏顺,周怀春,陆继东,郑楚光.炉膛辐射换热计算的一种改进的离散传递法.中国电机工程学报, 2003, 23(4): 162-166.
    [63] Li H S, et al. An Alternative Discrete Ordinates Scheme for Collimated Irradiation Problems, Int. Comm. Heat Mass Transfer, 2003, 30(1): 61-70.
    [64] Raithby G D, Chui E H. A finite-volume method for predicting a radiant heat transfer in enclosures with participating media. J of heat transfer-transactions of the,ASME, 1990, 112: 415-423.
    [65] Chui E H Raithby G D. Implicit solution scheme to improve convergence rate in radiative transfer problems. Numerical Heat transfer, Part B-Fundamentals, 1992, 22(3): 251-272.
    [66] Chui E H Raithby G D. Hughes P M J. Prediction of radiative transfer in cylindrical enclosures by the finite volume method. J of Thermophysics and heat transfer,1992,6(4): 605-611.
    [67] Kim M Y, BAEK S W. Analysis of radiative transfer in cylindrical enclosures using the finite volume method. J. of Thermophysics and heat transfer,1997,11(2):246-252.
    [68] Hao J B, Ruan L M, Tan H P. Effect of Anisotropic scattering on radiative in two-dimensional rectangular media. Journal of Quantitative Spectroscopy and Radiative Transfer, 2003,78(2): 151-161.
    [69]阮立明,郝金波,谈和平.散射相函数对一维介质内辐射传递的影响规律.计算物理, 2002, 19(6): 517-520.
    [70]贺志宏,刘林华,谈和平,等.炉内辐射换热过程的有限体积法.动力工程, 1999, 19(4): 265-268.
    [71]贺志宏,谈和平,刘林华.有限体积法求散射性介质辐射传递及耦合换热.化工学报, 2000, 21(3): 338-341.
    [72] Chai J C, Parthasarathy G, Lee H S, Patankar S V. Finite volume radiative heat transfer procedure for irregular geometries. J of Thermophysics and Heat Transfer, 1995, 9(3): 410-415.
    [73] Reddy J N Murty V D. Finite element solution of integral equations arising in radiative heat transfer and laminar bounfary-layer theory. Numerical Heat transfer.1978,1: 389-401.
    [74] Nice M L. Application of finite elements to heat transfer in a participating medium.Numerical properties and Methodologies in Heat transfer.1983:62-71
    [75] Tan H P, Lallemandm. Transeint radiative-conductive heat transfer in flat glasses submitted to temperature,flux and mixed boundary conditions. Int. J. of Heat and Mass transfer, 1989,32(5):795-810.
    [76] Tan H P, Yi H L, Zhang H C, Wang P Y, Tong T W. Coupled Radiation conduction heat tarnsfer in an Anisotropically scattering slab with mixed boundaries. J. of Quantiative Spectroscopy and Radiative Transfer, 2004, 83(3-4): 667-698.
    [77]罗剑锋.镜漫反射下多层吸收散射性介质内的瞬态耦合换热:博士论文,哈尔滨工业大学,2002.
    [78] Jeans J H. The equations of radiative transfer of energy. Monthly Notices Royal Astronomical Society, 1917, 78:28-36.
    [79] Kourganoff V. Basic methods in transfer problems, New York: Dover Publications, 1963.
    [80] Krook M. On the solution of the equation of transfer. New York: Academic Press, 1964.
    [81] Cheng P. Dynamics of a radiating gas with application to flow over a wavy wall.AIAA Journal, 1966, 4(2):238-245.
    [82] Ou SCS and Liou KN. Generalization of the spherical harmonic method to radaition transfer in multi-dimensional space. Journal of Quantitative Spectroscopy and Radiative Transfer, 1982, 28(4): 271-188.
    [83] Mark J C. The spherical hramonics method, part I, Technical Report Atomic Energy Report No. MT 92, National Research Councile of Canada, 1944.
    [84] Mark J C. The spherical hramonics method, part II, Technical Report Atomic Energy Report No. MT 97, National Research Councile of Canada, 1945.
    [85] Marshak RE, Note on the spherical harmonics method as applied to the milne problem for a sphere, Phys. Rev., 1947, 71: 443-446.
    [86] Hammersley JM and Handscomb DC. Monte Carlo methods. New York: John Wiley & Sons, 1964.
    [87] Fleck JA. The calculation of nonlinear radiation transport by a Monte Carlo method: statistical physics. Methods in Computational Physics, 1961, 1:43-65.
    [88] Howell J R. Application of Monte Carlo to heat transfer problems. in Advances in Heat Transfer, eds. Hartnett JP and Irvine TF, Vol. 5, New York: Academic Press, 1968
    [89] Howell J R and Perlmutter M. Monte Carlo solution of thermal thransfer through radiant media between gray walls. ASME Journal of Heat Transfer, 1964, 86(1):116-122.
    [90] Howell J R. The Monte Carlo method in radiative heat transfer. ASME Proceedings of the 7th AIAA/ASME Joint Thermophisics and Heat Transfer Conference, Volume 1, HTD-Vol., 1998, 357(1): 1-19.
    [91] Yang W J, Taniguchi H, Kudo K. Radiative Heat Transfer by the Monte Carlo Method, in J. P. Hartnett and F. T. Irvines, eds., Advances in Heat Transfer, San Diego: Academic Press, 1995, 27: 1-215.
    [92] Maruyama S, Aihara T. Radiation heat transfer of arbitrary three-dimensional absorbing, emitting, and scattering media and specular and diffuse surfaces. J of Heat Transfer.-Trans. ASME, 1997, 119: 29-136.
    [93] Altac Z. Tekkalmaz M. The SK N approximation for solving radiation transportproblems in absorbing, emitting and scattering rectangular geometries. Journal of Quantitative Spectroscopy and Radiative Transfer, 2002, 73: 219-230.
    [94] Baek S W, Byun D Y, Kang S J. The combined Monte-Carlo and Finite-volume method for radiation in a two-dimensional irregular geometry . Int. J. of Heat and Mass Transfer, 2000, 43: 2337-2344.
    [95] Zhou H C, Han S D, Sheng F, et al. Visualization of three-dimensional temperature distributions in a large-scale furnace via regularized reconstruction from radiative energy images: numerical studies, JQSRT, 2002, 72:361-383.
    [96] Zhou H C, Sheng F, Han S D, et al. A fast algorithm for calculation of radiative energy distributions received by pinhole image-formation process from 2D rectangular enclosure, Numerical Heat Transfer: Applications, 2000, 38(7): 757-773.
    [97] Zhou H C, Sheng F, Han S D, et al. Reconstruction of Temperature Distribution in a 2-D Absorbing-Emitting System from Radiant Energy Images, JSME International Journal, Series B, 2000, 43(1): 104-109.
    [98] Yang W J, Taniguchi H, Kudo K. Radiative heat transfer by the Monte Carlo method. In: Hartnett J P and Irvines F T, eds. Advances in heat transfer, San Diego: Academic Press, 1995. 27: 1-215.
    [99] Kudo K, Kuroda A, Eid A, et al. Radiative load problem using the singular value decomposition technique. JSME International Joumal, Series B, 1996. 39(4): 808-814.
    [100] Fleck J A. The calculation of nonlinear radiation transport by a Monte Carlo method: statistical physics. Methods in Computational Physics, 1961, 1:43-65.
    [101] Howell J R. Application of Monte Carlo to heat transfer problems, In: Hartnett J P and Irvines F T, eds. Advances in heat transfer, San Diego: Academic Press, 1968.
    [102] Modest, M. F. Backward Monte Carlo Simulations in Radiative Heat Transfer. Journal of Heat Transfer, Transactions of the ASME, 1992, 35(12): 3323-3333.
    [103] Lacrox, D., Jeandel, G., and Boudot, C. Solution of the Radiative Transfer Equation in an Absorbing and Scattering Nd: YAG Laser-induced Plume. Journal of Applied Physics, 1998, 84: 2443-2449.
    [104] Wu, S. C., and Wu, C. Y. Radiative Heat Transfer in a Two-dimensional Cylindrical Medium Exposed to Collimated Radiation. Int. Comm. Heat mess Transfer, 1997, 24(4): 475-484.
    [105] Modest, M. F., and Tabanfar, S., A Multi-dimensional Differential Approximation for Absorbing/Emitting Anisotropically Scattering Media with Collimated Irradiation, Journal of Quantitative Spectroscopy & Radiative Transfer, 1983 29: 339-351.
    [106] Chui E.H, Raithby G.D., Hughes P.M.J. Prediction of radiative transfer in cylindrical enclosures with the finite volume method. J Thermophys Heat Transfer 1992; 6(4):605-611.
    [107] Kim T.K., Lee H.S. Effect of anisotropic scattering on radiative heat transfer in two-dimensional rectangular enclosures. Int J Heat Mass Transfer 1988; 31(8):1711-1721.
    [108] Mengü? M.P., Viskanta R. Radiative transfer in three-dimensional rectangular enclosures containing inhomogeneous, anisotropically scattering media. JQSRT 1985; 33(6):533-549.
    [109] Maruyama S. Radiative heat transfer in anisotropic scattering media with specular boundary subjected to collimated irradiation. Int J Heat Mass Transfer 1998; 41: 2847-2856.
    [110] Guo Z.X., Kumar S., San K.C. Multidimensional Monte Carlo simulation of short-pulse laser transport in scattering media. AIAA J Thermophys Heat Transfer 2000;14(4):504–511.
    [111] Tan H.P., Yi H.L. Temperature response in participating media with anisotropic scattering caused by pulsed lasers. JQSRT 2004; 87:175-192.
    [112] Hao J.B., Ruan L.M., Tan H.P. Effect of anisotropic scattering on radiative heat transfer in two-dimensional rectangular media. JQSRT, 2003; 78:151-161.
    [113] Ruan L.M., Hao J.B., Tan H.P. The effect of anisotropic scattering on the radiative heat transfer in one-dimensional media. Chinese Journal of Computational Physics 2002; 19(6):517-520.
    [114] Busbridge I.W., Orchard S.E. Reflection and transmission of light by a thick atmosphere according to a phase function: 1+ xcosθ. The Astrophysical Journal 1967; 149: 655-664.
    [115] Trivedi A, Basu S, Mitra K. Temporal analysis of reflected optical signals for short pulse laser interaction with nonhomogeneous tissue phantoms, Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 93, 337–348.
    [116] Mitra K, and Kumar S. Application of transient radiative transfer equation to oceanographic lidar, ASME HTD, 1997, 353: 359–365.
    [117] Longtin J P, Tien C L, Saturable absorption during high-intensity laser heating of liquids, ASME J. Heat Transfer, 1996, 118: 924–930.
    [118] Liu F, Yoo K M, Alfano, R R, Ultrafast laser-pulse transmission and imaging through biological tissues, Appl. Opt, 1993,32(4): 554–558.
    [119] Sakami M, Mitra K and Vo-Dinh T, Analysis of short-pulse laser photon transport through tissues for optical tomograph, optical Letter, 2002, 27(5): 336-338.
    [120] Mitra K and Kumar S. Development and comparison of models for light pulse transport through scattering-absorbing media. Appl. Opt., 1993, 38: 188–196.
    [121] Guo Z and Kumar S. Discrete-ordinates solution of short-pulse laser transport in two-dimensional turbid media. Applied Opt., 2000, 39(24):4411-4417.
    [122] Guo Z and Kumar S. Three-dimensional discrete ordinates method in trsient radiative transfer. J. of Thermophysics and Heat Transfer, 2002, 16(3):289-296.
    [123] Tan Z M and Hsu P F. Transient radiative transfer in three-dimensional homogeneous and nonhomogeneous participating media, JQSRT, 2002,73:181-194.
    [124] Boulanger J and Charette A. Reconstruction optical spectroscopy using transient radiatvie transfer equation and pulsed laser: a numerical study. JQSRT, 2005, 93: 325-336.
    [125] Chai J C, Hsu P F, Lam Y C. Three-dimensional transient radiatvie transfer modeling using the finite-volume method. JQSRT, 2004, 86: 299-313.
    [126] Katika K amd Pilon L. Modified method of characteristics for transient radiative transfer, JQSRT, 2006, 98: 220-237.
    [127] Chai J. C. one-dimensional transient radiation heat transfer modeling using a finite-volume method, Numerical Heat Transfer B, 2003, 44: 187-208.
    [128] An W, Ruan L M, Tan H P, Qi H. Finite element method for radiative heat transfer in absorbing and anisotropic scattering media. JQSRT, 2005, 95(3):387-406.
    [129] Brewster M Q, Yamada Y. Optcal properties of thick, turbid media from picosecond time-resolved light scattering measurement. International Journal of Heat Mass Transfer, 1995, 38: 2569-2581.
    [130] Sakami M, Mitra K, Hsu P F. Transient radiative transfer in anisotropically scattering media using monotonicity-preserving schemes. In: Proceedings of IMECE 2000, Orlando, FL, 5–10 November, 2000.
    [131] Hsu P–F. Effects of multiple scattering and reflective boundary on the transient radiative transfer process. Int J. Therm. Sci., 2001, 40: 539-549.
    [132] Lu X D and Hsu P F. Reverse Monte Carlo simulations of light pulse propagation in nonhomogeneous media. Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 93: 349–367.
    [133] Guo Z X, Aber J, Garetz B A, et al, Monte Carlo simulation and experiments of pulsed radiative transfer. Journal of Quantitative Spectroscopy and Radiative Transfer, 2002, 73: 159–168.
    [134] Hasegawa Y, Yamada Y, Tamura M, Nomura Y. Monte Carlo simulation of light transmission through living tissues. Appl. Opt., 1991, 30: 4515-4520.
    [135] Tan Z -M, Hsu P–F. An integral formulation of transient radiative transfer, ASME J. Heat Transfer, 2001, 123: 466-475.
    [136] Wu C Y. Propagation of scattered radiation in a participating planar medium with pulse irradiation. JQSRT, 2000, 64: 537-548.
    [137] Ayranci I, Selcuk N. MOL solution of DOM for transient transfer in 3-D scattering media. Journal of Quantitative Spectroscopy and Radiative Transfer, 2004, 84: 409-422.
    [138] Chai J C. One-dimensional transient radiation heat transfer modeling using a finite-volume method. Numerical Heat Transfer Part B: Fundamentals, 2003, 44(2): 187-208.
    [139] Wu C Y, Ou N R. Differential approximations for transient radiative transfer through a participating medium exposed to collimated irradiation. Journal of Quantitative Spectroscopy and Radiative Transfer, 2002, 73: 111-120.
    [140] Hottel H.C. and Sarofim A.F. Radiative Transfer, McGraw-Hill, New York, 1967.
    [141] Chui E.H, Raithby G.D. Computation of heat transfer on a nonorthogonal mesh usingthe finite-volume method, Numerical Heat Transfer, Part B 23,1993, 269-288.
    [142] Chai J. C., Lee S.V. and Patankar S. V. Finite volume radiative heat transfer procedure for irregular geometries, AIAA J. Thermophysics Heat Transfer 9 (3),1995, 410-415.
    [143] Kim T.K., Lee H.S. Effect of anisotropic scattering on radiative heat transfer in two-dimensional rectangular enclosures. Int J. Heat Mass Transfer 1988; 31(8):1711-1721.
    [144] Pessoa-Filho J.B., Thynell S.T. An approximation solution to radiative transfer in two-dimensional rectangular enclosures, ASME J. Heat Transfer 1997; 119:738-745.
    [145] Hao J.B., Ruan L.M., Tan H.P. Effect of anisotropic scattering on radiative heat transfer in two-dimensional rectangular media. JQSRT, 2003; 78:151-161.
    [146] Baek S.W., Byun D. Y. and Kang S.J. The combined Monte-Carlo and finite-volume method for radiation in a two-dimensional irregular geometry, Int J. Heat Mass Transfer, 2000,43:2337-2344.
    [147]周桂娟,毛羽.燃油加热炉燃烧过程的三维数值模拟.工业炉, 2004, 26(6): 38-44.
    [148]杨帆,李朝祥,郭威,等.加热炉内流场的模拟与分析.工业炉,2005,27(4): 6-8.
    [149] Goeckner B.A.,Helmich D.R., McCarthy, T.A., Arinez, J.M., Peard, T.E.,et al., Radiative Heat Transfer Augmentation of Natural Gas Flames in Radiation Tube burners with Porous Ceramic Inserts, Exp. Thermal Fluid Sci.5, 848-860,1992
    [150] Elich J.J.P., Wieringa J.A. Themperature effects influencing the spectral and total emissivity of refractories, Exp. Thermal Fluid Sci.,1995,10:318-326.
    [151] Kim H. K., Song T. H. Measurement of gas temperature distributions in a test furnace using spectral remote sensing, Journal of Quantitative Spectroscopy & Radiative Transfer 2002, 73: 517-528.
    [152] Hall R.J., Eckbreth A.C. CARS application to combustion diagnostics in laser applications. New York: Academic Press, 1984.
    [153] Beckord P., Hofelmann G., Luck H.O., Franken D. Temperature and velocity flow fields measurements using ultrasonic computer tomography. Int J Heat Mass Transfer, 1997, 33: 395–404.
    [154] Hommert PJ, Viskanta R, Mellor AM. Flame temperature measurements by spectral remote sensing. Combust Flame, 1977, 30: 295-308.
    [155] Holloway J P, Shannon S, Sepke S M, et al. A reconstruction algorithm for a spatially resolved plasma optical emission spectroscopy sensor. Journal of Quantitative Spectroscopy and Radiative Transfer, 2001. 68: 101-115.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700