面向燃料电池的聚芳醚基聚合物电解质膜材料的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成一种高磺化度的同时含有羧基和磺酸基的磺化聚芳醚酮(SPAEK-C),再将PVA以共混的方式引入到SPAEK-COOH的溶液中,利用羧基与PVA中的羟基的酯化反应,引发共价交联,制备交联型应用于直接甲醇燃料电池的质子交换膜。合成了一种分子量可控的氨基封端的聚苯并咪唑齐聚物,将其与同时含有羧酸和磺酸基团的SPAEK-C溶液共混,利用PBI齐聚物中高反应活性的二氨基与SPAEK-C中的羧酸基团之间的偶联反应,制备一种新型的共价交联质子交换膜。由于PBI与SPAEK-C之间形成了交联网络结构,使制备得到的膜具有高的热稳定性和尺寸稳定性。交联体系中的PBI链段也可作为吸收H3PO4的选择性位点,进一步促进共价交联膜的质子传导率。
     通过NBS的自由基链转移反应,成功制备了三个比例的溴甲基化聚芳醚酮。分别利用1-甲基咪唑,1-丁基咪唑和1-乙烯基咪唑与溴甲基化聚芳醚酮反应,制备含有咪唑鎓阳离子的离子交换膜。研究不同结构的咪唑鎓阴离子交换膜的性能的差异,如吸水率,离子传导率等,着重探讨其耐碱性的影响因素,为高耐碱稳定性的阴离子聚合物电解质膜的设计提高新的思路。
The fuel cell is receiving tremendous attention as an alternative to existing powerconversion systems because of its high efficiency and environmental friendly nature.Among several types of fuel cells, proton exchange membrane fuel cells (PEMFCs)have attracted major research activities in the past decade due to their promise fortransportation, residential appliance and portable power applications. Superior protonconductivity, thermal and chemical durability, and oxidative stability have madeperfluorinated sulfonic acid containing ionomers (Nafion) as commonly usedelectrolytes in PEMFCs. However, their high cost, loss in proton conductivity atelevated temperatures or low relative humidity (RH) and high methanol permeabilityhinder their applications in fuel cells. Hence, great efforts have been devoted to thedevelopment of alternative proton exchange membranes. Among these potentialalternatives, sulfonated poly(arylene ether ketone)s (SPAEKs) have beenextensively studied. SPAEKs have also been explored as one of alternative PEMmaterials due to their relatively low production costs, excellent chemical and thermalproperties, as well as low methanol crossover. However, the membranes require ahigh sulfonation level to obtain high proton conductivity. Too high loading of acidicgroups could lead to undesirable large swelling and thus result in a dramatic loss ofmechanical properties. Cross-linking is a powerful and simple method to preparesemi-interpenetrating polymer network membranes by mixing two polymers. In thisway, after a cross-linking treatment the polymer matrix forms a network in which themacromolecular chains of the polyelectrolyte are immobilized and compacted.
     The polymer electrolyte material is divided into two categories: proton exchangemembranes (PEMs) and anion exchange membranes (AEMs). The proton exchangemembrane is usually a sulfonic acid type, with a fixed group and detachable ions-protons. The dissociation of sulfonic acid in cation exchange membrane requireswater, then the protons travels with water molecules as carrier. Therefore the sulfonicacid type membranes can only be used under low temperature conditions. Unlike theacid PEMs, benefiting from the alkaline media, the electrocatalysis properties ofAEMs were greatly improved. The opposite direction of electro-osmosis reduces themethanol crossover efficiently. These advantages of AEMs can result in higherefficiency and enable the usage of non-precious metal catalysts, greatly reducing thecost of the device.
     In the second chapter, we chose poly (arylene ether ketone)s bearing carboxylicacid groups (SPAEK-C) with high DS as polymer backbones. Then the SPAEK-C canbe cross-linked at the-COOH site with PVA. The advantage of this system is that thesulfonic acid groups are not involved in the cross-linking reaction. Thus, thecross-linked membranes not only exhibit low water swelling and low methanolcrossover, but also achieve reasonable proton conductivity. Fourier transform infraredspectroscopy is used to characterize and confirm the structure of SPAEK-C and thecross-linked membranes. The proton conductivity of the cross-linked membrane with15%PVA in weight reaches up to0.18S cm-1at80oC (100%relative humidity),which is higher than that of Nafion membrane, while the methanol permeability isnearly five times lower than Nafion. The ion-exchange capacity, water uptake andthermal stability are investigated to confirm their applicability in fuel cells.
     In the third chapter, we report a new approach for obtaining covalentlycross-linked PEM materials based on a coupling reaction between highly reactiveo-diamino functional PBI oligomers and SPAEK-C. Then the SPAEK-C/PBI blendmembranes were dried at110C for3h to induce cross-links between amino groupsof PBI oligomer and carboxylic acid groups of SPAEK-C.1H NMR measurementsand Fourier transform infrared spectroscopy were used to characterize and confirm the structures of SPAEK-C, PBI oligomers and the cross-linked membranes. Thecross-linked membranes were immersed in various concentrations of phosphoric acidsolution to enhance proton conductivity. These H3PO4doped SPAEK-C/PBImembranes displayed comparable or even higher proton conductivity than that ofNafion117, especially under low humidity conditions. Moreover, the water uptake,acid uptake, mechanical and thermal stability were also investigated in detail.
     In the fourth chapter, a poly(arylene ether ketone) with3,3′,5,5′-tetramethyl-4,4′-dihydroxybipheny moiety (PAEK-TM) was firstly synthesized. Asa class of engineering thermoplastic materials, PAEK-TM displays high thermalstability, advanced mechanical properties, and excellent resistance to hydrolysis andoxidation. The preparation of anion exchange membranes comprised convertingbenzylic methyl groups to bromomethyl groups by a radical reaction, followed byfunctionalization of the bromomethylated PAEK with alkyl imidazoles, i.e. methyl,butyl and vinyl imidazoliums. The structure of imidazolium functionalized PAEK wasproved by1H NMR spectra. A class of flexible and tough membranes was thenachieved by subsequent film-forming and anion exchange processes. The membranesshowed water uptake and hydroxide conductivity that are comparable or superior tothose of quaternary ammonium (QA) anion exchange membranes. This workdemonstrated a new route for non-QA anion exchange membrane design, avoiding thechloromethylation reagent and precisely controling over the degree and location ofimidazolium groups.
引文
[1] International Energy Outlook, United States Energy InformationAdministration.
    [2] O’Hayre R, Cha S-W, ColellaW, Prinz FB.Fuelcell fundamentals[M].John Wileyand Sons Inc.,2009.
    [3] SrinivasanS, MosdaleR, Stevens P, YangC.Fuel cells: reaching the era of clear andefficient power generation in the twenty-first century [J].Annu. Rev. Energ. Env.1999,24:281-328.
    [4] McNicol BD, RandDAJ, WilliamsKR. Fuel cells for road transportation purposes-yes or no[J]. J. Power Sources,2001,100:47-59.
    [5] Yang B, Ph.D. dissertation, The University of Texas at Austin, August,2004.
    [6] McIntosh S, GorteRJ.Direct hydrocarbon solid oxide fuel cells[J].Chem.Rev.,2004,104:4845-4865.
    [7] Russell HJ, George JT. Materials for theHydrogen Economy (Hardcover)[M],CRC press.
    [8] Ren XM, Zelenay P, Thomas S, Davey J, Gottesfeld S. Recent advances in directmethanol fuel cells at Los Alamos National Laboratory[J].J. Power Sources,2000,86:111-116.
    [9] Lin J, Lee JK, Kellner M, Wycisk R, Pintauro PN.Nafion-FlourinatedEthylene-Propylene Resin Membrane Blends for Direct Methanol Fuel Cells[J]. J.Electrochem. Soc.,2006,153: A1325-A1331.
    [10] US Patent No.3061658.
    [11] Wilson MS, Gottesfeld S.Thin-film catalyst layers for polymer electrolyte fuelcell Electrodes[J]. J. Appl. Electrochem.,1992,22:1-7.
    [12] Ticianelli EA, Derouin CR, Redondo A, Srinivason S.Methods to AdvanceTechnology of Proton-Exchange Membrane Fuel-Cells[J].J. Electrochem.Soc.,1988,135:2209-2214.
    [13] Wilson MS, Gottesfeld S. High performance catalyzed membranes of ultra-lowPt loadings for polymer electrolyte fuel cells[J].J. Electrochem. Soc.1992,139:L28-L30.
    [14] Wilson MS, Valerio JA, Gottesfeld S. Low platinum loading electrodes forpolymer electrolyte fuel cells fabricated using thermoplastic ionomers[J].Electrochim.Acta,1995,40:355-363.
    [15] Mukerjee S, Srinivasan S. Enhanced Electrocatalysis of Oxygen Reduction onPlatinum Alloys in Proton Exchange Membrane Fuel Cells[J].J. Electroanal.Chem.,1993,357:201-224.
    [16] Shim J, Yoo DY, Lee J-S, Characteristics for electrocatalytic properties andhydrogen–oxygen adsorption of platinum ternary alloy catalysts in polymerelectrolyte fuel cell[J].Electrochim. Acta,2000,45:1943-1951.
    [17] Antolini E, Passos RR, Ticianelli EA. Electrocatalysis of oxygen reduction on acarbon supported platinum–vanadium alloy in polymer electrolyte fuelcells[J].Electrochim. Acta,2002,48:263-270.
    [18] NeergatM, ShuklaAK, GandhiKS.Platinum-based alloys as oxygen-reductioncatalysts for solid-polymer-electrolyte direct methanol fuel cells[J].J. Appl.Electrochem.2001,31:373-378.
    [19] Shukla AK, Raman RK, Choudhury NA, Priolkar KR, Sarode PR, Emura S,Kumashiro R. Carbon-supported Pt–Fe alloy as a methanol-resistantoxygen-reduction catalyst for direct methanol fuel cells[J]. J. Electroanal. Chem.,2004,563:181-190.
    [20] Yang J, Xu JJ. Nanoporousamorphousmanganese oxide as electrocatalyst foroxygen reduction in alkaline solutions[J].Electrochem.Commun.,2003,5:306-311.
    [21] Restovic A, Rios E, Barbato S, Ortiz J, Gautier JL.Oxygen reduction in alkalinemedium at thin MnxCo3xO4(0≤x≤1) spinel films prepared by spray pyrolysis.Effect of oxide cation composition on the reaction kinetics[J]. J. Electroanal.Chem.,2002,522:141-151.
    [22] Muller S, Stiebel K, HaasO.La0.6Ca0.4CoO3: a stable and powerful catalyst forbifunctional air electrodes[J].Electrochim. Acta,1994,39:1661-1668.
    [23] Kishi T, Shimizu F, Nagai T. Cathodic reduction of oxygen on transition metalsulphides[J].Surf. Technol.,1984,21:109-115.
    [24] Reeve RW, Christensen PA, Hamnett A, Haydock SA, Roy SC. Method tolerantoxygen reduction catalysts based on transition metal sulfides[J].J.Electrochem.Soc.,1998,145:3463-3471.
    [25] McIntyre DR, Vossen A, Wilde JR, Burstein GT. Electrocatalytic properties of anick-tantalum-alloy in an acidic electrolyte[J]. J. Power Sources,2002,108:1-7.
    [26] Fernandez JL, Raghuveer V, Manthiram A, Bard AJ. Pd-Ti and Pd-Co-Auelectrocatalysts as a replacement for platinum for oxygen reduction in protonexchange membrane fuel cells[J]. J. Am. Chem. Soc.,2005,127:13100-13101.
    [27] Raghuveer V, Manthiram A, Bard AJ. J. Phys. Chem., Pd-Co-Mo electrocatalystfor the oxygen reduction reaction in proton exchange membrane fuel cells[J].2005,109:22909-22912.
    [28]Raghuveer V, Ferreira PJ, Manthiram A. Comparison of Pd–Co–Auelectrocatalysts prepared by conventional borohydride and microemulsion methodsfor oxygen reduction in fuel cells[J].Electrochem.Commun.,2006,8:807-814.
    [29] Liu H, Manthiram A. Tuning the electrocatalytic activity and durability of lowcost Pd70Co30nanoalloy for oxygen reduction reaction in fuelcells[J].Electrochem.Commun.,2008,10:740-744.
    [30] Roth C, Martz N, Hahn F, Leger JM, Lamy C, Fuess H,Characterization ofDifferently Synthesized Pt-Ru Fuel Cell Catalysts by Cyclic Voltammetry, FTIRSpectroscopy, and in Single Cells[J].J. Electrochem.Soc.,2002,149: E433-E439.
    [31] Dickinson AJ, Carrette LPL, Collins JA, Friedrich KA, Stimming U.Preparationof a PtRu/C catalyst from carbonyl complexes for fuel cell applications[J].Electrochim.Acta,2002,47:3733-3739.
    [32] White JH, Sammells AF, Perovskite, Anode Electrocatalysis for DirectMethanol Fuel Cells[J]. J. Electrochem. Soc.1993,140:2167-2177.
    [33] Shukla AK, Bavikumar MK, Arico AS, Candino G, Antonucci V, Giordano N,Hamnett A. Methanol electrooxidation on carbon-supported Pt-WO3-x electrodes insulphuric acid electrolyte[J]. J. Appl. Electrochem.,1995,25:528-532.
    [34] Zhang H, Wang Y, Fachini ER, Cabrera CR. Electrochemically CodepositedPlatinum/Molybdenum Oxide Electrode for Catalytic Oxidation of Methanol in AcidSolution[J]. Electrochem. Solid-StateLett.,1999,2:437-439.
    [35] Lasch K, Jorissen L, Garche J, The effect of metal oxides as co-catalysts for theelectro-oxidation of methanol on platinum-ruthenium[J]. J. Power Sources1999,84:225-230.
    [36] Neburchilov V, Martin J, Wang HJ, Zhang JJ. A review of polymer electrolytemembranes for direct methanol fuel cells[J]. J. Power Sources,2007,169:221-238.
    [37] Hickner MA, Ghassemi H, Kim YS, Einsla BR, McGrath JE. AlternativePolymer Systems for Proton Exchange Membranes (PEMs)[J].Chem.Rev.,2004,104:4587-4611.
    [38] Hsu WY, Gierke TD. Ion Transport and Clustering in Nafion PerfluorinatedMembrane [J].J. Membr. Sci.,1983,13:307-326.
    [39] Gavach C, Pamboutzouglou G, Nedyalkov M, Pourcelly G. AC impedanceinvestigation of the kinetics of ion transport in Nafion perfluorosulfonicmembranes[J]. J. Membr. Sci.,1989,45:37-53.
    [40] Gierke TD, Munn GE, Wilson FC. Morphology of PerfluorosulfonatedMembrane Products: Wide-Angle and Small-Angle X-Ray Studies[J]. J. Polym. Sci.Polym. Phys. Ed.,1981,19:1687-1704.
    [41] Adjemian KT, Lee SJ, Srinivasan S, Benziger J, Bocarsly AB, Silicon OxideNafion Composite Membranesfor Proton-Exchange Membrane Fuel Cell Operationat80-140°C[J]. J.Electrochem.Soc.,2002,149: A256-A261.
    [42] Verbrugge MW.Methanol diffusion in perfluorinated ion-exchangemembranes[J]. J. Electrochem. Soc.,1989,136:417-423.
    [43] Savinell R, Yeager E, Try kD, Landau U, Wainright J, Weng D, Lux K, Litt M,Rogers C.A Polymer Electrolyte for Operation at Temperatures up to200oC [J].J.Electrochem. Soc.,1994,141: L46-L48.
    [44] Wang JT, Wasmus S, Savinell RF. Real-Time Mass Spectrometric Study of theMethanol Crossover in a Direct Methanol Fuel Cell[J].J. Electrochem. Soc.1996,143:1233-1239.
    [45] Colomban P. Proton Conductors: Solids, Membranes and Gels-MaterialsandDevices (Chemistry of Solid State Materials, No2)[M], Cambridge UniversityPress,1992.
    [46] Agro S, DeCarmineT, DeFeliceS, ThomaL.Annual Progress Report for theDOE Hydrogen Program,2005, p.790, US Department of Energy (DOE).
    [47] Howell, Keynote Paper the Fifth International Membrane Science&TechnologyConference (IMSTEC’03), Sydney, Australia, November10–14,2003.
    [48] ColombanP. Proton Conductors: Solids, Membranes and Gels-MaterialsandDevices (Chemistry of Solid State Materials, No2)[M], Cambridge UniversityPress,1992.
    [49] Kreuer KD. On the complexity of proton conduction phenomena[J].Solid StateIonics,2000,136-137,149-160.
    [50] Ueki T, Watanabe M. Macromolecules in ionic liquids: Progress, challenges, andopportunities[J]. Macromolecules,2008,41:3739-3749.
    [51] Fu YZ. Ph.D. dissertation, The University of Texas at Austin, May,2007.
    [52] Ren SZ, Sun GQ, Li CN, Liang ZX, Wu ZM, Jin W, Xin Q, YangX F,Organicsilica/Nafion composite membrane for direct methanol fuel cells[J]. J. Membr.Sci.2006,282:450-455.
    [53] Antonucci PL, Arico AS, Creti P, Ramunni E, Antonucci V., Investigation of adirect methanol fuel cell based on a composite Nafion-silica electrolyte for hightemperature operation[J]. Solid StateIonics1999,125,431-437.
    [54] Yen CY, Lee CH, Lin YF, Lin HL, Hsiao YH, Liao SH, Chuang CY, Ma CCM,Sol-gel derived sulfonated-silica/Nafion (R) composite membrane for direct methanolfuel cell[J]. J. Power Sources,2007,173:36-44.
    [55] Tricoli V. Proton and methanol transport in poly(perfluorosulfonate) membranescontaining Cs+and H+cations[J]. J. Elelectrochem. Soc.,1998,145:3798-3801.
    [56] Jiang RC, Zhang Y, Swler S, Wei X, Erkey C, Kunz HR, Fenton JM, Preparationvia Supercritical Fluid Route of Pd-Impregnated Nafion Membranes which ExhibitReduced Methanol Crossover for DMFC[J]. Electrochem.Solid-State Lett.,2005,8:A611-A615.
    [57] Jung EH, Jun UH, Yang TH, Peak DH, Jun DH, Kim SH. Methanol crossoverthrough PtRu/Nafion composite membrane for a direct methanol fuel cell[J].International Journal of Hydrogen Energy2007,32:903-907.
    [58] Liu J, Wang HT, Cheng SA, Chan KY. Nafion-polyfurfuryl alcoholnanocomposite membranes for direct methanol fuel cells[J].J. Membr. Sci.,2005,246:95-101.
    [59] Deluca NW, Elabd YA. Nafion/Poly(vinyl alcohol) Blends: Effect ofComposition and Annealing Temperature on Transport Properties[J]. J. Membr.Sci.2006,282:217-224.
    [60] LiL, Drillet JF, Mácová Z, Dittmeyer R, Jüttner K,Poly(3,4-ethylenedioxythiophene)-modified nafion membrane for direct methanolfuel cells[J]. Russian Journal ofElectrochemistry,2006,42:1193-1201.
    [61] Easton EB, Langsdorf BL, Hughes JA, Sultan J, Qi ZG, Kaufman A, PickupPG. Characteristics of polypyrrole/Nafion composite membranes in a direct methanolfuel cell[J]. J. Electrochem. Soc.,2003,150: C735-C739.
    [62] Sungpet A. Reduction of alcohol permeation through Nafion by polypyrrole[J].J. Membr. Sci.,2003,226:131-134.
    [63] Smit MA, Ocampo AL, Espinosa-Medina MA, Sebastian PJ. A modified Nafionmembrane with in situ polymerized polypyrrole for the direct methanol fuel cell[J].J.PowerSources2003,124:59-64.
    [64] Shimizu T, Naruhashi T, Momma T, Osaka T. Preparation and MethanolPermeability of Polyaniline/Nafion Composite Membrane [J].Electrochemistry,2002,70:991-993.
    [65] Saarinen V, Himanen O, Kallio T, Sundholm G, Kontturi K, Current distributionmeasurements with a free-breathing direct methanol fuel cell using PVDF-g-PSSAand Nafion117membranes[J]. J. PowerSources,2007,163:768-776.
    [66] Hobson LJ, Ozu H, Yamaguchi M, Hayasea S. Modified Nafion117as anImproved Polymer Electrolyte Membrane for Direct Methanol Fuel Cells[J]. J.Electrochem. Soc.,2001,148: A1185-A1190.
    [67] Xing PX, Robertson GP, Guiver MD, Mikhailenko SD, Wang KP, KaliaguineS.Synthesis and characterization of sulfonated poly(ether ether ketone) for protonexchange membranes[J]. J. Membr. Sci.2004,229:95-106.
    [68] Yang B, Manthiram A.Sulfonated poly(ether ether ketone) membranes for directmethanol fuel cells[J]. Electrochem.Solid-StateLett.2003,6: A229-A231.
    [69] Fu YZ, Manthiram A.Synthesis and characterization of sulfonated polysulfonemembranes for direct methanol fuel cells[J]. J. Power Sources,2006,157:222-225.
    [70] Genies C, Mercier R, Sillion B, Cornet N, Gebel G, Pineri M.Soluble sulfonatednaphthalenic polyimides as materials for proton exchange membranes[J].Polymer,2001,42:359-373.
    [71] Fang JH, Guo XX, Harada S, Watari T, Tanaka K, Kita H, Okamoto K. Novelsulfonated polyimides as polyelectrolytes for fuel cell application.1. Synthesis,proton conductivity, and water stability of polyimides from4,4'-diaminodiphenylether-2,2'-disulfonic acid[J]. Macromolecules,2002,35:9022-9028.
    [72] Kerres JA. Development of ionomer membranes for fuel cells[J]. J. Membr.Sci.,2001,185:3-27.
    [73] Nolte R, Ledjeff K, Bauer M, Mulhaupt R. Partially sulfonated poly(aryleneether sulfone)-A versatile proton conducting membrane material for modern energyconversion technologies[J]. J. Membr. Sci.,1993,83:211-220.
    [74] Miyatake K, Chikashige Y, WatanabeM.Sulfonated Poly(arylene ether): AProton ConductivePolymer Electrolyte Designed for Fuel Cells [J].Macromolecules2003,36:9691-9693.
    [75] Guan R, Zou H, Lu DP, Gong CL, Liu YF.Polyethersulfone sulfonated bychlorosulfonic acid and its membrane characteristics[J].European Polymer Journal,2005,41:1554-1560.
    [76] Asano N, Aoki M, Suzuki S, Miyatake K, Uchida H, Watanabe M.Aliphatic/Aromatic Polyimide Ionomers as a Proton Conductive Membrane for FuelCell Applications[J].J. Am.Chem. Soc.,2006,128:1762-1769.
    [77] Xing PX, Robertson GP, Guiver MD, Mikhailenko SD, Kaliaguine S. Sulfonatedpoly(aryl ether ketone)s containing naphthalene moietiesobtained by directcopolymerization as novel polymers for protonexchange membranes[J].J. Polym. Sci.:Part A,2004,42:2866-2876.
    [78] Gao Y, Robertson GP, Guiver MD, Jian XG. Synthesis and characterization ofsulfonated poly(phthalazinone ether ketone) for proton exchange membranematerials[J]. J. Polym. Sci.: Part A,2003,41:497-507.
    [79] Gao Y, Robertson GP, Kim DS, Guiver MD, Mikhailenko SD, Li X, KaliaguineS.Comparison of PEM properties of copoly(aryl ether ether nitrile)scontainingsulfonic acid bonded to naphthalene in structurallydifferentways[J].Macromolecules,2007,40:1512-1520.
    [80] Badami AS, Roy A, Lee HS, Li YX, McGrath JE, Morphological investigationsof disulfonated poly(arylene ether sulfone)-b-naphthalene dianhydride-basedpolyimide multiblock copolymers as potential high temperature proton exchangemembranes[J].J. Membr. Sci.2009,328:156-164.
    [81] Harrison WL, Wang F, Mecham JB, BhanuVA, Hill M, KimYS, McGrathJE.Influence of the bisphenol structure on the direct synthesis of sulfonatedpoly(arylene ether) copolymers[J].J. Polym. Sci.: Part A,2003,41:2264-2276.
    [82] Wang F, Hickner M, Kim YS, Zawodzinski TA, McGrath JE.Directpolymerization of sulfonated poly(arylene ether sulfone) random (statistical)copolymers: candidates for new proton exchange membranes[J]. J.Membr.Sci.,2002,197:231-242.
    [83] Fang JH, Guo XX, Harada S, Watari T, Tanaka K, Kita H, Okamoto K. Synthesis,proton conduc-tivity, and water stability of polyimides from4,4'-diaminodi-phenylether-2,2'-disulfonic acid [J].Macromolecules,2002,35:9022-9028.
    [84] Genies C, Mercier R, Sillion B, Petiaud R, Cornet N, Gebel G, Pineri M.Stability study of sulfonated phthalic and naphthalenic polyimide structures inaqueous medium[J].Polymer,2001,42:5097-5105.
    [85] Woo Y, Oh SY, Kang YS, Jung B. Synthesis and characterization of sulfonatedpolyimide membranes for direct methanol fuel cell[J].J. Membr. Sci.,2003,220:31-45.
    [86] Ramya K, Dhathathreyan KS. Poly(phenylene oxide)-based polymer electrolytemembranes for fuel-cell applications[J].J. Appl. Polym. Sci.,2003,88:307-311.
    [87] Ramya K, Vishnupriya B, Dhathathreyan KS. Methanol permeability studies onsulphonated polyphenylene oxide membrane for Direct Methanol Fuel Cell[J].J. NewMat. Electrochem.Syst.2001,4:115-120.
    [88] Vishnupriya B, Ramya K, Dhathathreyan KS. Synthesis and characterization ofsulfonated poly(phenylene oxides) as membranes for polymer electrolyte membranefuel cells[J].J. Appl. Polym. Sci.2002,83:1792-1798.
    [89] Elabd YA, Hickner MA. Block Copolymers for Fuel Cells[J]. Macromolecules,2011,44(1),1-11.
    [90] Ghassemi H, McGrath JE, Zawodzinski TA, Multiblock sulfonated-fluorinatedpoly(arylene ether)s for a proton exchange membrane fuel cell[J].Polymer,2006,47:4132-4139.
    [91] Liu BJ, Kim YS, Hu W, Robertson GP, Pivovar BS, GuiverMD.Homopolymer-like sulfonated phenyl-and diphenyl-poly(arylene ether ketone)sfor fuel cell applications[J].J.Power Sources,2008,185:899-903.
    [92] Liu BJ, Robertson GP, Kim DS, Guiver MD, Hu W, Jiang ZH. Aromaticpoly(ether ketone)s with pendant sulfonic acid phenyl groupsprepared by a mildsulfonation method for proton exchangemembranesMacromolecules,2007,4:1934-1944.
    [93] Kreuer KD. On the development of proton conducting polymer membranesforhydrogen and methanol fuel cells[J].J. Membr. Sci.,2001,185:29-39.
    [94] D’Alelio D. Ion-exchanger [P], US Patent2366007,1944.
    [95] Wang F, Hickner M, Ji Q, Harrison W, Mecham JB, Zawodzinski T, McGrathJE.Synthesis of highly sulfonated poly(arylene ether sulfone) random (statistical)copolymers via direct polymerization[J].Macromolecular Symposia,2001,175,387-396.
    [96] Kerres J, Cui W, Schnurnberger W. US Patent08/868943,1997.
    [97] Kerres J, Zhang W, Cui W, New sulfonated engineering polymers via themetalation route. II. Sulfinated/sulfonated poly(ether sulfone) PSU Udel and itscrosslinking[J].J. Polym. Sci.: Part A: Polym. Chem.1998,36:1441-1448.
    [98] Kerres J, Cui W, Junginger M. Development and characterization of crosslinkedionomer membranes based upon sulfinated and sulfonated PSU crosslinked PSUblend membranes by alkylation of sulfinate groups with dihalogenoalkanes[J].J.Membr. Sci.1998,139:227-241.
    [99] Vona ML, Sgreccia E, Licoccia S, Alberti G, Tortet L, Knauth P. Analysis ofTemperature-Promoted and Solvent-Assisted Cross-Linking in SulfonatedPoly(etherether ketone)(SPEEK) Proton-Conducting Membranes[J].J. Phys.Chem. B,2009,113:7505-7512.
    [100] Jeong MH, Lee KS, Lee JS. Cross-Linking Density Effect of FluorinatedAromatic Polyethers on Transport Properties [J]. Macromolecules,2009,42:1652-1658.
    [101] Oh YS, Lee HJ, Yoo M, Kim HJ, Han J, Kim TH. Synthesis of novelcrosslinked sulfonated poly(ether sulfone)s using bisazide and their properties for fuelcell application[J].J. Membr. Sci.,2008,323:309-315.
    [102] Donoso P, Gorecki W, Berthier C, Defendini F, Poinsignon C, Armand MB.NMR, conductivity and neutron scattering investigation of ionic dynamics in theanhydrous polymer protonic conductor PEO(H3PO4)x[J].Solid State Ionics1988,28-30:969-974.
    [103] Przyluski J, Zalewska A, Maron J, Wieczorek W. SELECTED PROBLEMSRELATED TO POLYMERIC ELECTROLYTES FROM THE PEO-H3PO4SYSTEM[J]. Polish J. Chem.1997,71:968-976.
    [104] Daniel MF, Desbat B, Cruege F, Trinquet O, Lassegues JC. Solid state protonicconductors: Poly(ethylene imine) sulfates and phosphates[J]. Solid StateIonics1988,28:637-641.
    [105] Ma YL, Wainright JS, Litt MH, Savinell RF, Conductivity of PBI Membranesfor High-Temperature Polymer Electrolyte Fuel Cells[J]. J. Electrochem.Soc.,2004,151: A8-A16.
    [106] Wainright JS, Wang JT, Weng D, Savinell RF, Litt M. Acid‐DopedPolybenzimidazoles: A New Polymer Electrolyte[J]. J. Electrochem.Soc.1995,142:L121-L123.
    [107] Wainright JS, Wang JT, Savinell R, Litt M, Moaddel H, Rogers C,Srinivasan S,Macdonald DD, Khandkar AC (Eds.), Electrode Materials andProcesses for EnergyCoversion and Storage, Pennington, NJ,1995, p.255.
    [108] Weng D, Wainright JS, Landau U, Savinell RF. Electro‐osmotic DragCoefficient of Water and Methanol in Polymer Electrolytes at ElevatedTemperatures[J]. J. Electrochem.Soc.,1996,143:1260-1263.
    [109] He RH, Li QF, Xiao G, Bjerrum NJ. Proton conductivity of phosphoric aciddoped polybenzimidazole and its composites with inorganic protontic conductors[J]. J.Membr. Sci.,2003,226,169-184.
    [110] Li QF, He RH, Jensen JO, Bjerrum N. J. PBI based polymer membranes forhigh temperature fuel cells-preparation, characterizations and fuel celldemonstrations[J]. Fuel Cells,2004,4,147-159.
    [111] Kosmala B, Schauer J. Development and Characterization ofSulfonated-Unmodified and Sulfonated-Aminated PSU Udel Blend Membranes [J].J. Appl. Polym.Sci.2002,85:1118-1127.
    [112] Bouzek K, Moravcová S, Samec Z, Schauer J. Ion Transport Properties ofSulfonated Poly(2,6-dimethyl-1,4-phenylenoxide) Membranes[J]. J. Electrochem. Soc.2003,150: E329-E336.
    [113] Walker M, Baumg rtner KM, Kaiser M, Kerres J, Ullrich A, R uchle E.Proton-conducting polymers with reduced methanol permeation[J].J. Appl. Polym.Sci.1999,74:67.
    [114] J rissen L, Gogel V, Kerres J, Garche J. New membranes for direct methanolfuel cells[J].J. Power Sources,2002,105:267-273.
    [115] Kerres J, Ullrich A, Meier F, H ring T. Synthesis and characterization of novelacid–base polymer blends for application in membrane fuel cells[J].Solid State Ionics1999,125:243-249.
    [116] KerresJ, UllrichA, H ring Th. Extended Abstracts of the3rdInternationalSymposium on New Materials for Electrochemical Systems, Montreal,Canada,4–8July1999, pp.231–232.
    [117] KerresJ, A. Ullrich, T. H ring, Modifikation von Engineering polymerenmitNbasischen Gruppen und mit Ion enaustauschergruppenin der Seitenkette, D. Patent,19836514.4
    [118] Haile SM, Boysen DA, Chisholm CRI, Merle RB. Solid Acids as FuelCell.Electrolytes. Nature2001,410:910-913.
    [119] BoysenDA, ChisholmCRI, HaileSM, NarayananSR, Polymer Solid AcidComposite Membranes for Fuel Cell Applications[J].J. Electrochem.Soc.2000,147:3610-3613.
    [120] KreuerKD, Proton-conducting oxides[J].Annu. Rev. Mater. Res.2003,33:333.
    [121]Varcoe JR, Slade RCT. Prospects for alkaline anion-exchange membranes inlow temperature fuel cells[J].Fuel Cells,2005.5(2):187-200.
    [122] Yu EH, ScottK, Direct methanol alkaline fuel cell with catalysed metal meshanodes[J].Electrochemistry Communications,2004.6(4):361-365.
    [123] Scott K, Taama WM, Argyropoulos P. Performance of the directmethanol fuelcell with radiation-grafted polymer membranes[J].Journal of Membrane Science,2000,171(1):119-130.
    [124] Yu EH, Scott K. Development of direct methanol alkaline fuel cells using anionexchange membranes. Journal of Power Sources,2004,137(2):248-256.
    [125] Yu EH, Scott K. Direct methanol alkaline fuel cells with catalysed anionexchange membrane electrodes[J]. Journal of Applied Electrochemistry,2005,35(1):91-96.
    [126] Yu E, Scott K, Reeve R. Application of sodium conducting membranes in directmethanol alkaline fuel cells[J]. Journal of Applied Electrochemistry,2006,36(1):25-32.
    [127] Shen M, Roy S, Kuhlmann JW, Scott K, Lovell K, Horsfall JA.Grafted polymerelectrolyte membrane for direct methanol fuel cells[J]. Journal of Membrane Science,2005,251(1-2):121-130.
    [128] Danks TN, Slade RCT, Varcoe JR. Comparison of PVDF-and FEP-basedradiation-grafted alkaline anion-exchange membranes for use in low temperatureportable DMFCs[J].Journal of Materials Chemistry,2002,12(12): p.3371-3373.
    [129] DanksTN, SladeRCT, VarcoeJR. Alkaline anion-exchange radiation-graftedmembranes for possible electrochemical application in fuel cells[J].Journal ofMaterials Chemistry,2003,13(4):712-721.
    [130] Varcoe JR, SladeRCT. An electron-beam-grafted ETFE alkalineanion-exchange membrane in metal-cation-free solid-state alkaline fuelcells[J].Electrochemistry Communications,2006,8(5):839-843.
    [131] Poynton SD, KizewskiJP, SladeRCT, VarcoeJR. Novel electrolyte membranesand non-Pt catalysts for low temperature fuel cells. Solid State Ionics,2010,181(3-4):219-222.
    [132] Wu L, Xu T, Wu D, and Zheng X, Preparation and characterization ofCPPO/BPPO blend membranes for potential application in alkaline direct methanolfuel cell [J]. Journal of Membrane Science,2008,310(1-2):577-585.
    [133] Wu L, Xu T. Improving anion exchange membranes for DMAFCs byinter-crosslinking CPPO/BPPO blends [J]. Journal of Membrane Science,2008,322(2):286-292.
    [134] Wu Y, WuC, XuT, YuF, FuY. Novel anion-exchange organic-inorganic hybridmembranes: Preparation and characterizations for potential use in fuel cells [J].Journal of Membrane Science,2008,321(2):299-308.
    [135] Wu Y, Wu C, Varcoe JR, Poynton SD, Xu T, Fu Y. Novelsilica/poly(2,6-dimethyl-1,4-phenylene oxide) hybrid anion-exchange membranes foralkaline fuel cells: Effect of silica content and the single cell performance [J]. Journalof Power Sources,2010,195(10):3069-3076.
    [136] Lu S, Pan J, Huang A, Zhuang L, Lu J. Alkaline polymer electrolyte fuel cellscompletely free from noble metal catalysts [J]. Proceedings of the National Academyof Sciences of the United States of America,2008,105(52):20611-20614.
    [137] Pan J, Lu S, Li Y, Huang A, Zhuang L, Lu J. High-Performance alkalinepolymer electrolyte for fuel cell applications [J]. Advanced Functional Materials,2010,20(2):312-319.
    [138] Li L, Wang Y. Quaternized polyethersulfone Cardo anion exchange membranesfor direct methanol alkaline fuel cells [J]. Journal of Membrane Science,2005,262(1-2):1-4.
    [139] Fang J, Shen PK. Quaternized poly(phthalazinon ether sulfone ketone)membrane for anion exchange membrane fuel cells [J]. Journal of Membrane Science,2006,285(1-2):317-322.
    [140]Wang G, Weng Y, Chu D, Chen R, Xie D. Developing a polysulfone-basedalkaline anion exchange membrane for improved ionic conductivity [J]. JournalofMembrane Science,2009,332(1-2):63-68.
    [141] Yan J, Hickner MA. Anion exchange membranes by bromination ofbenzylmethyl-containing poly(sulfone)s [J]. Macromolecules,2010,43(5):2349-2356.
    [142] Hwang GJ, Ohya H. Preparation of anion-exchange membrane based on blockcopolymers: Part1. Amination of the chloromethylated copolymers [J].Journal ofMembraneScience,1998.140(2):195-203.
    [143] Park JS, Park SH, Yim SD,Yoon YG, Lee WY, Kim CS.Performance of solidalkaline fuel cells employing anion-exchange membranes [J]. Journal of PowerSources,2008,178(2):620-626.
    [144] Hickner MA, Tudryn GJ, Alam TM, Hibbs MR, Fujimoto CH.Polymers withtethered anionic and cationic groups as membranes for fuel cells.MacromolecularSymposia,2009.279(1):59-62.
    [145] Gu S, Cai R, LuoT, ChenZ, SunM, LiuY, HeG, YanYS.A soluble and highlyconductive ionomer for high-performance hydroxide exchange membrane fuel cells.Angewandte Chemie-International Edition,2009.48(35): p.6499-6502.
    [146] Lin BC, Qiu LH, Lu JM, Yan F. Cross-linked alkaline ionic liquid-basedpolymer electrolytes for alkaline fuel cell applications [J]. ChemMater,2010,22:6718–6725.
    [147] Wang JH, Li SH, Zhang SB. Novel hydroxide-conducting polyelectrolytecomposed of an poly(arylene ether sulfone) containing pendantquaternaryguanidinium groups for alkaline fuel cell applications [J]. Macromolecules,2010,43:3890–3896
    [148] Noonan KJT, HugarKM, KostalikHA, LobkovskyEB, Abru aHD,CoatesGW.Phosphonium-Functionalized Polyethylene: A New Class of BaseStableAlkaline Anion Exchange Membranes [J].J. Am. Chem. Soc.2012,134:1816118164.
    [149] Robertson NJ, Kostalik HA, ClarkTJ, Mutolo PF, Abru a HD, Coates GW.Solvent Processable Tetraalkylammonium-Functionalized Polyethylene for Use as anAlkaline Anion Exchange Membrane [J]. J. Am. Chem. Soc.2010,132,3400–3404.
    [150] Guo M, Fang J, Xu H, Li W, Lu X, Lan C, Li K. Synthesis and characterizationof novel anion exchange membranes based on imidazolium-type ionic liquid foralkaline fuel cells. Journal of Membrane Science,2010.362(1-2): p.97-104.
    [151] Chempath S, Einsla BR, Pratt LR, Macomber CS, BoncellaJM, Rau JA, PivovarBS. Mechanism of Tetraalkylammonium Headgroup Degradation in Alkaline FuelCell Membranes [J].The Journal of Physical Chemistry C,2008.112(9): p.3179-3182.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700