东海北部外陆架海底底形特征及其成因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东海陆架以宽平的地形、充分的陆源沉积物供应、快速沉降和强动力场为特征,东海中外陆架广泛分布着脊槽相间的海底底形,有研究称之为冰消期海侵以来的潮流沙脊。国内外研究人员对东海陆架脊槽相间的海底底形进行了深入广泛研究,取得了大量有意义的研究成果,但其研究区域主要集中在东海中南部海域。本研究选定的区域位于东海北部外陆架靠近济州岛西南海域,是黄海槽向冲绳海槽延伸的部分,属于黑潮分支黄海暖流的通道入口,对其海底底形形态、沉积物分布及其成因机制的分析研究,有助于全面了解该通道的地形地貌特征及其形成演变规律。
     本研究基于东海北部外陆架海域获取的高精度多波束声纳数据、地质取样数据、浅地层数据以及水文数据,结合前人的研究成果,利用现代数据处理技术、定量化分析方法以及潮流动力地貌理论,详细系统地分析了海底波状冲刷洼地(Rippled Scour Depressions,RSDs)、海底沙脊三维形态结构及其海底沉积物分布特征,探讨了较强水动力条件下东海北部外陆架海域脊槽相间底形形成原因、演变过程。围绕这个主题,主要论述了下面几个方面:
     基于研究区获取的高精度多波束声纳数据,构建高精度的海底数字地形模型及声纳影像镶嵌图,生成高分辨率的海底三维形态图、坡度坡向图、特殊地形剖面图以及表层纹理图,准确获取海底RSDs及沙脊的高度、宽度、长度及走向等特征参数。分析发现,研究区东北角存有一个深达153.2m的海底沟壑,其相对高差最大达32m,海底地形变化剧烈,属强侵蚀洼地地形;研究区分布十余条规模较大的直脊型海底RSDs及沙脊,长度从几公里,十几公里到最长40公里左右,脊、槽之间高差一般5m左右,最大达到10m左右,总体走向NW-SE。
     基于前人的研究成果及在该区域获取的海底地质取样数据,详细分析了37个表层沉积物粒度特征,将研究区沉积物分为细砂(FS)、粉砂质砂(TS)、粘土质砂(YS)、砂-粉砂-粘土(STY)、粘土质粉砂(YT)和粉砂质粘土(TY)等六种类型,结合沉积物厚度分布状况,阐述了研究区沉积物分布规律。同时,基于多波束反向散射强度数据,结合19组海底地质取样数据,建立研究区海底反向散射强度与沉积物粒度特征之间的统计关系模型,并以自组织特征映射神经网络方法以及改进的学习向量量化神经网络方法,实现对海底粉砂质砂、粘土质砂以及砂-粉砂-粘土等三种底质类型的快速自动识别。
     基于POM(Princeton Ocean Model)海洋数值计算模式,获得研究区M2分潮的流速、流向以及其他相关的数据;通过收集整理日本海洋数据中心的实测海流资料,计算获取研究区的海流流速、流向等数据;应用数据分析方法揭示海洋动力环境要素与RSDs及沙脊形成分布之间的关联,进而详细探讨现代较强水动力与这一区域RSDs以及沙脊之间的作用关系。研究发现,该区潮流方向基本为NW-SE,这一方向基本上与海底底形走向一致,但是其底层流速很小,一般只有30cm/s左右,这一流速很难起动粉砂质或更小粒径的海底沉积物,现代潮流对该区域的海底底形影响已经很小。研究还发现,该区域实测底层最大海流流速达到69cm/s左右,这一流速有能力起动、搬运细砂或粉砂质砂等海底沉积物,对海底底形形态产生一定的动力作用,可能会形成一定程度的侵蚀和堆积地貌,现代水动力仍然改造和维持冰消期海侵以来形成的海底RSDs及沙脊。
     基于前人的研究成果,获取研究区冰消期海侵以来各时期M2分潮潮流场演变过程,同时结合前人对东海潮流沙脊的相关研究成果,深入细致地研究古代水动力环境与这一区域RSDs及沙脊底形形成、分布及演变的关系。研究得出,冰消期海侵以来,海水由济州岛两侧进入黄海,东海北部外陆架海底受到强烈的水流侵蚀冲刷作用,海底砂质或粉砂质沉积物被较强潮流起动、搬运,在海平面上升停顿期,在较强往复潮流作用下,形成与古潮流NW-SE方向一致的海底RSDs侵蚀地貌及侵蚀-堆积潮流沙脊地貌。
The East China Sea shelf has three characteristics as follows: a wide and flat terrain; a variety of land-based sources for sediment; a rapid subsidence and strong power causes. On the outer shelf of the East China Sea undersea ridges and troughs are widely distributed consecutively, the study referred to as tidal sand ridges shaped by the postglacial transgression process. A lot of researches on the submarine bedforms of the East China Sea continental shelf ridges have been done by both domestic and foreign scholars, and a large number of meaningful results have been obtained. But the study area mainly concentrated in the southern part of the East China Sea. The selected area in this paper is located in the outer shelf of the north of the East China Sea near Cheju Island. It’s an extension part of the Yellow Sea Trough turns towards the Okinawa Trough. It’s in the pathway of the Yellow Warm Current which is one of the branches of the Kuroshio Warm Current. The analysis about the seabed morphology, sediment distribution and formation mechanism will contribute to an overall understanding of the formation, evolution and the characteristics of the pathway.
     Around the study region high-precision multibeam sonar data, geological sampling data, shallow stratigraphic data and hydrological data are all collected, applied with modern data processing technology,quantitative analysis methods and tidal power geomorphologic theory, a detailed report including Rippled Scour Depressions (RSDs), three-dimensional morphology of the seabed sand ridges and distribution of seafloor sediment is characterized. Under such a strong hydrodynamic condition, the formation cause and evolution process of the ridge-trough submarine bedforms in this area are analyzed. On this theme, following aspects are mainly discussed:
     Based on the high-precision multibeam sonar data on the study area, a high-precision seabed Digital Terrain Model (DTM) and sonar mosaic image are built to generate high-resolution three-dimensional seabed morphologic maps, as well as slope and aspect maps, special terrain profiles and other surface texture maps. Among those maps accurate seabed RSDs and sand ridges’height, width, length, direction and other characteristic parameters can be measured. A deep submarine gully with the depth of 153.2 meters is found in the northeast corner of the study area. The relative height difference is up to 32 meters indicates strong erosion with dramatic changes in seabed topography. There are more than ten large-scale straight ridge RSDs and sand ridges in the study area. They are all NW-SE direction, in length from a few kilometers to 40 kilometers, between ridge and trough the general elevation difference is about 5 meters, the maximum reach up to10 meters.
     According to previous research and seabed geological sampling data from the seabed, a detailed analysis of granularity characteristic belonged to thirty seven surface sediment is conducted, the sediment can be divided into six categories: Fine Sand (FS), Silty Sand (TS), Clayey Sand (YS), Sand - Silt - Clay (STY), Clayey Silt (YT) and Silty Clay (TY), combined with the distribution of sediment thickness on the study area the distribution discipline is revealed. Based on multibeam backscatter intensity data and 19 geological seafloor sediment sample data, a statistical model which presents the relationship between seabed backscatter signal and sediment type is set up. Using Self-Organizing Feature Map (SOFM) and improved Learning Vector Quantization (LVQ) neural network methods, a fast and accurate automatic identification for three seabed sediment types (TS, YS, STY) implementation is feasible.
     Applied with the Princeton Ocean Model, the M2 tidal current velocity, direction and other relevant data in the study region are calculated. And the surveying ocean current information is collected from Japan Oceanographic Data Center (JODC). Advanced data analysis methods are applied to explore the relationship between marine dynamic environment and the submarine bedforms formation. The relationship between modern hydrodynamic and RSDs is the further study. The study found that the basic tidal current direction NW-SE is consist to the seabed shape. But the bottom tidal current rate is generally about 30cm/s, too weak to transport sandy or smaller particle of seabed sediments. The impact of the modern hydrodynamic to the submarine beforms in this region has been quite debilitated. In the other hand, the largest ocean current velocity in the seabed could reach to about 69cm/ s, so it’s possible to stir-up and move marine sediments such as fine sand or silty sand. That might lead to a certain erosional and depositional morphology. So, the modern hydrodynamic still have the power to transform and maintain the seabed RSDs and sand ridges.
     Based on the previous research results, the evolution processes of the M2 tidal current fields can be obtained since the postglacial transgression. Combined with the previous tidal sand ridges research in the East China Sea, a thorough research is conducted to find out how the ancient hydrodynamic environment shapes the formation, distribution and evolution of the RSDs and sand ridges bedforms. It comes to a conclusion that shows submarine beforms on the outer shelf of the north of the East China Sea has been strongly eroded since the postglacial transgression, the seabed material like sandy or silty sediments are started and transported. The seabed erode RSDs and erode-deposit tidal sand ridges morphologies which have the same NW-SE direction coincided with the ancient tidal current are shaped by a strong reciprocating tidal current during the standstill period of the sea level ascending.
引文
[1]程和琴,王宝灿.波、流联合作用下的近岸海底沙波稳定性研究进展.地球科学进展, 1996, 11(4): 367~371.
    [2]杜德文,王宁,周兴华.声学与海洋沉积学交叉领域的研究.海洋科学进展, 2006, 24(3): 392~396.
    [3]冯文科,黎维峰,石要红.南海北部海底沙波地貌动态研究.海洋学报, 1994, 16(6): 92~99.
    [4]冯应俊.东海四万年来海平面变化与最低海面.东海海洋, 1983, 1(2) : 36~42.
    [5]高大治,王宁,林俊轩.基于相平面轨迹方法的海底底质分类研究.声学学报, 2005, 30(5): 447~451.
    [6]耿秀山.中国东部晚更新世以来的海水进退.海洋学报, 1981, 3(1): 114~130.
    [7]海洋图集编委会.渤海、黄海、东海图集-水文部分.北京:海洋出版社, 1992.
    [8]胡敦欣,丁宗信,熊庆成.东海北部一个气旋型涡旋的初步分析.科学通报, 1980, 25 (1): 29~31.
    [9]胡敦欣,丁宗信,熊庆成.东海北部一个夏季气旋型涡旋的初步分析.海洋科学集刊, 1984, 21: 87~99.
    [10]金庆明.对东海沉积与地貌若干问题的认识.海洋实践, 1980, 2: 3~9.
    [11]季文赟,林亦俊,张叔英.地质声纳记录的图像处理与地层识别技术研究.声学学报, 2001, 26(4): 365~371.
    [12]井上尚文.东シナ海大陸棚上の海底付近の流動.海と空, 1975, 51(1): 5~12.
    [13]金翔龙.东海海洋地质.北京:海洋出版社, 1992.
    [14]李从先,郭蓄民,许世远,王靖泰,李萍.全新世长江三角洲地区砂体的特征和分布.海洋学报, 1979, 1(2): 252~268.
    [15]李广雪,杨子赓,刘勇.中国东部海域海底沉积环境成因研究.北京:科学出版社, 2005. 11~12.
    [16]李绍全,刘健,王圣洁,杨子赓.黄东海东侧陆架冰消期以来的海侵沉积特征.海洋地质与第四纪地质, 1997, 17(4): 1~12.
    [17]李绍全,刘健,王圣洁,杨子赓.黄东海东侧陆架冰消期以来的沉积层序与环境演化科学通报, 1998, 43(8): 876~880.
    [18]李志林,朱庆.数字高程模型.武汉:武汉测绘科技大学出版社, 2000.
    [19]林珲,闾国年,宋志尧等著.中国海潮波系统与海岸演变模拟研究.北京:科学出版社, 2000.
    [20]卢博.海底浅层沉积物声速与物理性质.科学通报, 1994, 39(5): 435~437.
    [21]卢博,梁元博.中国东南沿海海洋沉积物物理参数与声速的统计相关.中国科学B辑(化学), 1994, 24(5): 556~560.
    [22]卢博,李赶先,黄韶健,张福生.中国黄海东海和南海北部海底浅层沉积物声学物理性质之比较.海洋技术, 2005, 24(2): 28~33.
    [23]卢博,李赶先,孙东怀,黄韶健,张福生.中国近海海底沉积物声学物理性质及其相关关系.热带海洋学报, 2006, 25(2): 12~17.
    [24]卢博,李赶先,黄韶健.用声学三参数判别海底沉积物性质.声学技术, 2007, 26(1): 6~14.
    [25]卢博,李赶先,刘强,黄韶健,张福生.海南岛东南外海海底沉积物特征及其声学物理性质研究.海洋学报, 2007, 29(4): 34~42.
    [26]闾国年,林珲,宋志尧,贾建军.末次冰期最盛时期以来中国东部边缘海潮波系统演变过程的模拟研究.海洋地质与第四纪地质, 2000, 20(4): 1~7.
    [27]吕海龙,杜德文,石学法.基于测深数据的胶州湾底质类型估计方法.海洋科学进展, 2004, 22(3): 328~333.
    [28]吕新刚,乔方利,夏长水,袁业立.长江口外及浙江沿岸夏季上升流的潮生机制.中国科学D辑(地球科学), 2007, 37(1): 133~144.
    [29]刘振夏,夏东兴.潮流脊的初步研究.海洋与湖沼, 1983, 14(3): 286~295.
    [30]刘振夏.渤海东部的潮流地貌体系研究成果丰硕.海洋信息, 1994, 5: 15~16.
    [31]刘振夏,夏东兴,汤毓祥,王揆洋.渤海东部全新世潮流沉积体系.中国科学(B辑), 1994, 24(12): 1331~1338.
    [32]刘振夏,夏东兴.潮流沙脊的水力学问题探讨.黄渤海海洋, 1995, 13(4): 23~29.
    [33]刘振夏,汤毓祥,王揆洋,夏东兴, Berne S, Marsset T, Bourillet J F.渤海东部潮流动力地貌特征.黄渤海海洋, 1996, 14(1): 7~21.
    [34]刘振夏.中国陆架潮流沉积研究新进展.地球科学进展, 1996, 11(4): 414~416.
    [35]刘振夏,夏东兴,王揆洋.中国陆架潮流沉积体系和模式.海洋与湖沼, 1998, 29(3): 141~147.
    [36]刘振夏,印萍, Berne S, Trentesaux A,庄克琳,李朝新.第四纪东海的海进层序和海退层序.科学通报, 2001, 46(增刊): 74~79.
    [37]刘振夏,夏东兴.中国近海潮流沉积沙体.北京:海洋出版社, 2004.
    [38]刘振夏,余华,熊应乾,李朝新.东海和凯尔特海潮流沙脊的对比研究.海洋科学进展, 2005, 23(1): 35~42.
    [39]刘忠臣,刘保华,黄振宗,朱本铎,傅命佐,阎军,张训华,郑彦鹏.中国近海及邻近海域地形地貌.北京:海洋出版社, 2005.
    [40]毛汉礼,胡敦欣,赵保仁等.东海北部的一个气旋型涡旋.海洋科学集刊, 1986, 27: 23~31.
    [41]沈承德,周明富.中国东海大陆架14C年代学及晚更新世以来海面变化.科学通报, 1981, 26(3): 162~165.
    [42]申顺喜,陈丽蓉,高良,李安春.南黄海冷涡沉积及通道沉积的发现.海洋与湖沼, 1993, 24(6): 563~570.
    [43]申顺喜.南黄海陆架沉积学的研究.海洋科学, 1993, 5: 24~28.
    [44]苏纪兰,袁业立.中国近海水文.北京:海洋出版社, 2005, 207~246.
    [45]孙效功,方明,黄伟.黄、东海陆架区悬浮体输运的时空变化规律.海洋与湖沼, 2000, 31(6): 581~587.
    [46]宋志尧,严以新,薛鸿超,茅丽华.南黄海辐射沙洲形成发育水动力机制研究, II潮流运动立面特征.中国科学D辑(地球科学), 1998, 28(5): 403~410.
    [47]陶春辉,金翔龙,许枫,顾春华,何拥华.海底声学底质分类技术的研究现状与前景.东海海洋, 2004, 22(3): 28~33.
    [48]汤国安,杨玮莹,秦鸿儒. GIS技术在黄土高原退耕还林草工程中的应用.水土保持通报, 2002, 22(5): 46~50.
    [49]汤国安,陈正江,赵牡丹,刘万青,刘咏梅. ArcView地理信息系统空间分析方法.北京:科学出版社, 2002.
    [50]唐秋华,周兴华,刘忠臣.多波束海底底质分类软件Simrad Triton的应用.海洋测绘, 2002, 22(4): 21~24.
    [51]唐秋华,陈义兰,周兴华,杜德文.多波束海底声像图的形成及应用研究.海洋测绘, 2004, 24(5): 9~12.
    [52]唐秋华,周兴华,丁继胜,刘保华.学习向量量化神经网络在多波束底质分类中的应用研究.武汉大学学报·信息科学版, 2006, 31(3): 229~232.
    [53]唐秋华,刘保华,陈永奇,周兴华,丁继胜.结合遗传算法的LVQ神经网络在声学底质分类中的应用.地球物理学报, 2007, 50(1): 313~319.
    [54]唐秋华,刘保华,陈永奇,周兴华,丁继胜.基于自组织神经网络的声学底质分类研究.声学技术, 2007, 26(3): 380~384.
    [55]汤毓祥,姚兰芳,刘振夏.辽东浅滩海域潮流运动特征及其与潮流脊发育的关系.黄渤海海洋, 1993, 11(4): 9~18.
    [56]汤毓祥,刘振夏,姚兰芳.渤海M2潮流及其与辽东浅滩潮流脊发育的关系.海洋通报, 1994, 13(1): 25~30.
    [57]王建,闾国年,林珲,宋志尧,贾建军.江苏岸外潮流沙脊群形成的过程与机制.南京师范大学学报(自然科学版), 1998, 21(3): 95~108.
    [58]王靖泰,汪品先.中国东部晚更新世以来海面升降与气候变化的关系.地理学报, 1980, 35(4): 300~310.
    [59]王凯,方国洪,冯士筰.渤海、黄海、东海M2潮汐潮流的三维数值模拟.海洋学报, 1999, 21(4): 1~13.
    [60]王尚毅,李大鸣.南海珠江口盆地陆架斜坡及大陆坡海底沙波动态分析.海洋学报, 1994, 16(6): 122~132.
    [61]王文介.南海北部的潮波传播与海底沙脊和沙波发育.热带海洋, 2000, 19(1): 1~7.
    [62]王颖,朱大奎,周旋复,王雪瑜,蒋松柳,李海宇,施丙文,张永战.南黄海辐射沙脊群沉积特点及其演变.中国科学D辑(地球科学), 1998, 28(5): 385~393.
    [63]王颖.黄海陆架辐射沙脊群.北京:中国环境科学出版社, 2002.
    [64]王延森,张耆年.江苏近海辐射状沙脊群的泥沙运动与来源.海洋与湖沼, 1985, 16(5): 392~399.
    [65]王振宇.南黄海西部残留砂特征及成因的研究.海洋地质研究, 1982, 2(3): 63~70.
    [66]吴自银,金翔龙,李家彪.中更新世以来长江口至冲绳海槽高分辨率地震地层学研究.海洋地质与第四纪地质, 2002, 22(2): 9~20.
    [67]吴自银,金翔龙,李家彪,郑玉龙,王小波.东海外陆架线状沙脊群.科学通报, 2006, 51(1): 93~103.
    [68]吴自银,曹振轶,王小波,郑玉龙.海底沙脊地貌的研究现状及进展.海洋学研究, 2006, 24(3): 53~63.
    [69]杨长恕.弶港辐射沙脊成因探讨.海洋地质与第四纪地质, 1985, 5(3): 35~44.
    [70]杨词银,许枫.基于分形维的底质分类.海洋测绘, 2004, 24(6): 5~8.
    [71]印萍.东海陆架冰后期潮流沙脊地貌与内部结构特征.海洋科学进展, 2003, 21(2): 181~187.
    [72]杨文达.长江口外陆架砂的形成时代与沉积动力特征.海洋地质与第四纪地质, 1983, 3(2): 41~49.
    [73]杨文达.东海海底沙脊的结构及沉积环境.海洋地质与第四纪地质, 2002, 22(1): 9~16.
    [74]杨子赓.南黄海陆架晚更新世以来的沉积及环境.海洋地质与第四纪地质, 1985, 5(4): 1~19.
    [75]杨子赓,王圣洁,张光威,李绍全,刘健.冰消期海侵进程中南黄海潮流沙脊的演化模式.海洋地质与第四纪地质, 2001, 21(3): 1~10.
    [76]杨作升,郭志刚,王兆祥,徐景平,高文兵.黄东海陆架悬浮体向东部深海区输运的宏观格局.海洋学报, 1992, 14(2): 81~90.
    [77]袁耀初,管秉贤.中国近海及其附近海域若干旋涡研究综述: II.东海和琉球群岛以东海域.海洋学报, 2007, 29(2): 1~17.
    [78]赵保仁, Limeberner R,胡敦欣,崔茂常.黄海南部及东海北部夏季若干水文特征.海洋与湖沼, 1991, 22(2): 132~140.
    [79]赵保仁,方国洪,曹德明.渤、黄、东海潮汐潮流的数值模拟.海洋学报, 1994, 16(5): 1~10.
    [80]张东生,张君伦,张长宽,王震.潮流塑造-风暴破坏-潮流恢复.中国科学D辑(地球科学), 1998, 28(5): 394~402.
    [81]周启鸣,刘学军.数字地形分析.北京:科学出版社, 2006.
    [82]张叔英.地声学:一门研究海底的重要学科.物理, 1997, 26(5): 280~285.
    [83]曾旭平,阳凡林,李陶,赵建虎.基于SOFM网络的声图非监督分类.武汉大学学报·信息科学版, 2004, 29(11): 977~980.
    [84]赵希涛,耿秀山,张景文.中国东部20 000年来的海平面变化.海洋学报, 1979, 1(2): 269~281.
    [85]《专项综合报告》编写组.我国专属经济区和大陆架勘测专项综合报告.北京:海洋出版社, 2002.
    [86]诸裕良,严以新,薛鸿超.南黄海辐射沙洲形成发育水动力机制研究: I.潮流运动平面特征.中国科学D辑(地球科学), 1998, 28(5): 403~410.
    [87]朱永其,李承伊.关于东海大陆架晚更新世最低海面.科学通报, 1979, 7: 317~320.
    [88]朱永其,曾成开,金长茂.东海大陆架晚更新世以来海平面变化.科学通报, 1981, 19: 1195~1198.
    [89]朱永其,曾成开,冯韵.东海陆架地貌特征.东海海洋, 1984, 2(2) : 1~13.
    [90]朱玉荣.线状沙脊形成与维持机制的研究.地球科学进展, 1998, 13(1): 22~26.
    [91]朱玉荣.潮流场对渤、黄、东海陆架底质分布的控制作用.海洋地质与第四纪地质, 2001, 21(2): 7~13.
    [92]朱玉荣.末次盛冰期以来渤、黄、东海陆架底质分布演变过程模拟研究.黄渤海海洋, 2002, 20(1): 11~24.
    [93]朱玉荣.末次冰消期以来渤、黄、东海陆架潮汐、潮流演变过程模拟研究.青岛海洋大学学报, 2002, 32(2): 279~286.
    [94] Alexandrou D, Pantzartzis D. Seafloor classification with neural networks. OCEANS’90 Conference Proceedings, 1990, 1: 18~23.
    [95] Amos G L, King E L. Bedforms of the Canadian Eastern seaboard: a comparison with global occurrences. Marine Geology, 1984, 57: 167~208.
    [96] Anthony D, Leth J O. Large-scale bedforms, sediment distribution and sand mobility in the eastern North Sea off the Danish west coast. Marine Geology, 2002, 182: 247~263.
    [97] Belderson R H, Johnson M A, Kenyon N H. Bedforms. In: Stride A H eds. Offshore tidal sands: processes and deposits. New York: Chapman and Hall, 1982, 27~57.
    [98] Berne S, Vagner P, Guichard F, Lericolais G, Liu Z X, Trentesaux A, Yin P, Yi HI. Pleistocene forced regressions and tidal sand ridges in the East China Sea. Marine Geology, 2002, 188: 293~315.
    [99] Blumberg A F, Mellor G L. A description of a three-dimensional coastal ocean circulation model. In: Heaps N S eds. Three-dimensional coastal ocean models. Washington DC: American Geophysical Union, 1987, 1~16.
    [100] Cacchione D A, Drake D E, Grant W D, Tate G B. Rippled scour depressions on the inner continental shelf off Central California. Journal of Sedimentary Petrology, 1984, 54(4): 1280~1291.
    [101] Caston G F. Potential gain and loss of sand by some sand banks in the southern North Sea offnortheast Norfolk. Marine Geology, 1981, 41: 239~250.
    [102] Caston V N D, Stride A H. Tidal sand movement between some linear sand banks in the North Sea off northeast Norfolk. Marine Geology, 1970, 9: 38~42.
    [103] Chakraborty B, Kaustubha R, Hegde A, Pereira A. Acoustic seafloor sediment classification using self-organizing feature maps. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(12): 2722~2725.
    [104] Chakraborty B, Kodagali V, Baracho J. Sea-floor classification using multibeam echo-sounding angular backscatter data: a real-time approach employing hybrid neural network architecture. IEEE Journal of Oceanic Engineering, 2003, 28(1): 121~128.
    [105] Chakraborty B, Mahale V, de Sousa C, Das P. Seafloor classification using echo-waveforms: a method employing hybrid neural network architecture. IEEE Geoscience and Remote Sensing Letters, 2004, 1(3): 196~200.
    [106] Chen Z Y, Saito Y, Hori K, Zhao Y W, Kitamura A. Early Holocene mud-ridge formation in the Yangtze offshore, China: a tidal-controlled estuarine pattern and sea-level implications. Marine Geology, 2003, 198: 245~257.
    [107] Collier J S, Brown C J. Correlation of sidescan backscatter with grain size distribution of surficial seabed sediments. Marine Geology, 2005, 214: 431~449.
    [108] Deleu S, Lancker V V, den Eynde D V, Moerkerke G. Morphodynamic evolution of the kink of an offshore tidal sandbank: the Westhinder Bank (Southern North Sea). Continental Shelf Research, 2004, 24: 1587~1610.
    [109] Dyer K R, Huntley D A. The origin, classification and modeling of sand banks and ridges. Continental Shelf Research, 1999, 19: 1285~1330.
    [110] Edwards J H, Harrison S E, Locker S D, Hine A C, Twichell D. Stratigraphic framework of sediment-starved sand ridges on a mixed siliciclastic/carbonate inner shelf; west-central Florida. Marine Geology, 2003, 200: 195~217.
    [111] Eittrem S L, Anima R J, Stevenson A J. Seafloor geology of the Monterey Bay area continental shelf. Marine Geology, 2002, 181: 3~34.
    [112] Fenies H, Tastet J P. Facies and architecture of an estuarine tidal bar (the Trompeloup bar, Gironde Estury, SW France). Marine Geology, 1998, 150: 149~169.
    [113] Ferrini V L, Flood R D. A comparison of Rippled Scour Depressions identified withmultibeam sonar: evidence of sediment transport in inner shelf environments. Continental Shelf Research, 2005, 25: 1979~1995.
    [114] Ferrini V L, Flood R D. The effects of fine-scale surface roughness and grain size on 300 kHz multibeam backscatter intensity in sandy marine sedimentary environments. Marine Geology, 2006, 228: 153~172.
    [115] Goff J A, Orange D L, Mayer L A, Hughes Clarke J E. Detailed investigation of continental shelf morphology using a high-resolution swath sonar survey: the Eel margin, northern California. Marine Geology, 1999, 154: 255~269.
    [116] Goff J A, Swift D J P, Duncan C S, Mayer L A, Hughes-Clarke J. High-resolution swath sonar investigation of sand ridge, dune and ribbon morphology in the offshore environment of the New Jersey margin. Marine Geology, 1999, 161: 307~337.
    [117] Goff J A, Olson H C, Duncan C S. Correlation of side-scan backscatter intensity with grain-size distribution of shelf sediments, New Jersey Margin. Geo-Marine Letters, 2000, 20: 43~49.
    [118] Goff J A, Mayer L A, Traykovski P, Buynevich I, Wilkens R, Raymond R, Glang G, Evans R L, Olson H, Jenkins C. Detailed investigation of sorted bedforms, or“rippled scour depressions,”within the Martha’s Vineyard Coastal Observatory, Massachusetts. Continental Shelf Research, 2005, 25: 461~484.
    [119] Gonidec Y L, Lamarche G, Wright I C. Inhomogeneous substrate analysis using EM300 backscatter imagery. Marine Geophysical Researches, 2003, 24: 311~327.
    [120] Green M O, Vincent C E, Trembanis A C. Suspension of coarse and fine sand on a wave-dominated shoreface, with implications for the development of rippled scour depressions. Continental Shelf Research, 2004, 24: 317~335.
    [121] Guan B X. Winter counter - wind current off the southeast China coast and a preliminary investigation of its source. Proceedings of the Symposium on the Physical and Chemical Oceanology. China Ocean Press, 1993, 1~9.
    [122] Holland J H. Adaptation in natural and artificial system. Michigan: The University Michigan Press, 1975, 12~27.
    [123] Hodgson M E. What cell size does the computed slope/aspect angle represent? Photogrammetric Engineering and Remote Sensing, 1995, 61(5): 513~517.
    [124] Hunter R E, Dingler J R, Anima R J, Richmond B M. Coarse-sediment bands on the inner shelf of southern Monterey Bay, California. Marine Geology, 1988, 80: 81~98.
    [125] Huthnance J M. On one mechanism forming liner sand banks. Estuarine Costal and Shelf Science, 1982, 14:79~99.
    [126] Huthnance J M. On the formation of sand bank s of finite extent. Estuarine Costal and Shelf Science, 1982b, 15: 277~299.
    [127] Jin J H, Clough S K. Partitioning of transgressive deposits in the southeastern Yellow Sea: a sequence stratigraphic interpretation. Marine Geology, 1998, 149: 79~92.
    [128] Kenyon N H. Sand ribbons of European tidal seas. Marine Geology, 1970, 9: 25~29.
    [129] Kohonen T. Self-organizing maps, 3rd Edition. Berlin: Springer-Verlag, 2001, 88~101.
    [130] Li C X, Zhang J Q, Fan D D, Deng B. Holocene regression and the tidal radial sand ridge system formation in the Jiangsu coastal zone, east China. Marine Geology, 2001, 173: 97~120.
    [131] Lin H, Lu G N, Song Z Y, Gong J H. Modeling the tide system of the East China Sea with GIS. Marine Geodesy, 1999, 22: 115~128.
    [132] Liu Z X. Yangtze Shoal - a modern tidal sand sheet in the northwestern part of the East China Sea. Marine Geology, 1997, 137: 321~330.
    [133] Liu Z X, Xia D X, Berne S, Wang K Y, Marsset T, Tang Y X, Bourillet. Tidal deposition systems of China’s continental shelf, with special reference to the eastern Bohai Sea. Marine Geology, 1998, 145: 225~253.
    [134] Liu Z X, Berne S, Saito Y, Lericolais G, Marsset T. Quaternary seismic stratigraphy and paleoenvironments on the continental shelf of the East China Sea. Journal of Asia Earth Sciences, 2000, 18: 441~452.
    [135] Liu Z X, Berne S, Saito Y, Yu H, Trentesaux A, Uehara K, Yin P, Liu J P, Li C X, Hu G H, Wang X Q. Internal architecture and mobility of tidal sand ridges in the East China Sea. Continental Shelf Research, 2007, 27: 1820~1834.
    [136] Lurton X, Dugelay S, Augustin J M. Analysis of multibeam echo-sounder signals from the deep seafloor. OCEANS’94 Conference Proceedings, 1994, 3: 213~218.
    [137] Macintyre I G, Pilkey O H. Preliminary comments on linear sand-surface features, Onslow Bay, North Carolina continental shelf: problems in making detailed sea-floor observations.Maritime Sediments, 1969, 5(1): 26~29.
    [138] Marsset T, Tessier B, Reynaud J Y, Batist M D, Plagnol D. The Celtic Sea banks: an example of sand body analysis from very high-resolution seismic data. Marine Geology, 1999, 158: 89~109.
    [139] Miller C L, Laflamme R A. The digital terrain model - theory and applications. Photogrammetric Engineering, 1958, 24(3): 433~442.
    [140] Molen J V D, Gerrits J , Swart H E D. Modelling the morphodynamics of a tidal shelf sea. Continental Shelf Research , 2004, 24: 483~507.
    [141] Morang A, Mcmaster R L. Nearshore bedform patterns along Rhode Island from side-scan sonar surveys. Journal of Sedimentary Petrology, 1980, 50(3): 831~840.
    [142] Murray A B, Thieler R T. A new hypothesis and exploratory model for the formation of large-scale inner-shelf sediment sorting and“rippled scour depressions”. Continental Shelf Research, 2004, 24: 295~315.
    [143] Off T. Rhythmic linear sand bodies caused by tidal currents. Bulletin of the America Association of Petroleum Geologists, 1963, 47(2): 324~341.
    [144] Pan S, Macdonald N, Williams J, O’Connor B A, Nicholson J, Davies A M. Modelling the hydrodynamics of offshore sandbanks. Continental Shelf Research, 2007, 27: 1264~1286.
    [145] Park S C, Han H, Yoo D G. Transgressive sand ridges on the mid-shelf of the southern sea of Korea (Korea Strait): formation and development in high-energy environments. Marine Geology, 2003, 193: 1~18.
    [146] Parker G, Lanfredi N W, Swift D J P. Seafloor response to flow in southern Hemisphere sand ridge field: Argentine Inner shelf. Sedimentary Geology, 1982, 33: 195~216.
    [147] Parsons D R, Best J L, Orfeo O, Hardy R J, Kostaschuk R, Lane S N. Morphology and flow fields of three-dimensional dunes, Rio Parana, Argentina: Results from simultaneous multibeam echo sounding and acoustic Doppler current profiling. Journal of Geophysical Research, 2005, 110: F04S03.
    [148] Reimnitz E L, Toimil L J, Shepard F P, Gutierrez M. Possible rip current origin for bottom ripple zones to 30-m depth. Geology, 1976, 4: 395~400.
    [149] Simrad. Instruction manual of Simrad EM950. Norway: Kongsberg Simrad Company, 1997.
    [150] Simrad. Instruction manual of simrad triton seabed classification. Norway: Simrad Company,1998, 1~5.
    [151] Snedden J W, Dalrymple R W. Modern shelf sand ridges: from historical perspective to a unified hydrodynamic and evolutionary model. SEPM Spec. Publ., 1999, 64: 13~28.
    [152] Stride A H. North-east trending ridges of celtic sea. Proceedings Ussber Society, 1963, 1: 62~63.
    [153] Stride A H. Offshore tidal sands: processes and deposits. New York: Chapman and Hall, 1982.
    [154] Swift D J P. Barrier Island genesis: Evidence from the central Atlantic shelf of North America. Sedimentary Geology, 1975, 14: 1~43.
    [155] Swift D J P. Tidal sand ridges and shoal retreat massifs. Marine Geology, 1975, 18: 105~134.
    [156] Swift D J P, Freeland G L. Current lineations and sand waves on the inner shelf, Middle Atlantic Bight of North America. Journal of Sedimentary Petrology, 1978, 48(4): 1257~1266.
    [157] Swift D J P, Field M E. Evolution of a classic sand ridges field: Maryland sector, North American inner shelf. Sedimentology, 1981, 28: 461~482.
    [158] Swift D J P and Field M E. Storm-built sand ridges on the inner shelf: New evidence concerning their origin from the Maryland shelf. Geo-Marine Letters, 1981, 1: 33~7.
    [159] Tanner W F. Origin of beach ridges and swales. Marine Geology, 1995, 129: 149~161.
    [160] Thieler E R, Brill A L, Cleary W J, Hobbs C H, Gammisch R Al. Geology of the Wrightsville Beach, North Carolina shoreface: implications for the concept of shoreface profile of equilibrium. Marine Geology, 1995, 126: 271~287.
    [161] Thieler E R, Pilkey, O H, Cleary W J, et al. Modern sedimentation on the shoreface and inner continental shelf at Wrightsville Beach, North Carolina, USA. Journal of Sedimentary Research, 2001, 71: 958~970.
    [162] Twichell D, Brooks G, Gelfenbaum G, Paskevich V, Donahue B. Sand ridges off Sarasota, Florida: A complex facies boundary on a low-energy inner shelf environment. Marine Geology, 2003, 200: 243~262.
    [163] Uehara K, Saito Y, Hori K. Paleo tidal regime in the Changjiang (Yangtze) Estuary, the East China Sea, and the Yellow Sea at 6 ka and 10 ka estimated from a numerical model. Marine Geology, 2002, 183: 179~192.
    [164] Uehara K, Saito Y. Late Quaternary evolution of the Yellow/East China Sea tidal regime and its impacts on sediments dispersal and seafloor morphology. Sedimentary Geology, 2003, 162:25~38.
    [165] Venditti J G, Church M, Bennett S J. Morphodynamics of small-scale superimposed sand waves over migrating dune bed forms. Water Resources Research, 2005, 41: W10423.
    [166] Yang C S. Active, moribund and buried tidal sand ridges in the East China Sea and the Southern Yellow Sea. Marine Geology, 1989, 88: 97~116.
    [167] Yang F L, Liu J N. Seabed Classification Using BP Neural Network Based on GA. ACTA OCEANOLOGICA SINICA, 2003, 22(4): 523~531.
    [168] Yin P, Berne S, Vagner P, Loubrieu B, Liu Z X. Mud volcanoes at the shelf margin of the East China Sea. Marine Geology, 2003, 194: 135~149.
    [169] Yoo D G, Lee C W, Kim S P. Late Quaternary transgressive and high stand systems tracts in the northern East China Sea mid-shelf. Marine Geology, 2002, 187: 313~328.
    [170] Zhou X H, Chen Y Q. Seafloor classification of multibeam sonar data using neural network approach. Marine Geodesy, 2005, 28(2): 201~206.
    [171] Zhou X H, Chen Y Q, Emerson N, Du D W. Fuzzy ARTMAP neural network for seafloor classification from multibeam sonar data. High Technology Letters, 2006, 12(2): 219~224.
    [172] Zietz S, Satriano J H, Geneva A. Development of physically-based ocean bottom classification analysis system using multibeam sonar backscatter. IEEE OCEANS’94 Conference Proceedings, 1996, 3: 1058~1063.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700