用户名: 密码: 验证码:
碳纤维复合材料界面超声表面改性技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纤维增强复合材料(CFRP)是目前最先进的复合材料之一,它在航天器结构上已得到广泛的应用,但界面中存在较多的缺陷,直接影响了复合材料的力学性能,尤其层间剪切强度较弱,限制了碳纤维高性能的发挥。功率超声的机械效应和空化效应能显著提高复合材料的相关性能。本文通过功率超声作用来改善碳纤维复合材料的界面性能,提高其层间剪切强度。通过对复合材料界面形成原理和超声作用影响因素的分析,本文总结了
     复合材料界面超声表面处理的主要作用:超声除气除渣、超声气蚀、超声分散、提高结合界面表面能,为振动系统及实验参数的确定提供了参考依据。本文研制了一套超声振动系统,振速比为25。在阶梯变幅杆粗端与细端连接处进行最佳圆弧过渡处理,防止变幅杆振裂;在工作端添加挡板防止脱丝现象。通过分析与计算得出振动系统谐振频率变化对节面位置影响的一般规律,确定固定节面的厚度和位置。振动系统的设计频率为21KHz,实际测量频率为20.76 KHz,误差为1.1%,达到设计要求。
     通过超声振幅、纤维缠绕速度、环境温度对复合材料层间剪切强度及变异系数的研究,结果表明:在30-40μm振幅情况下,层间剪切强度提高10%,变异系数降低50%,复合材料稳定性大大增强;超声作用将碳纤维缠绕速度从5m/min提高到10m/min,提高了工作效率;20℃超声作用的效果与50℃原工作条件下的效果相当,大大降低工作能耗。
CFRP(Carbon Fiber Reinforcement Plastic) is one of the most advanced composites, it has been widely used in the field of spaceflight. But there are many disadvantage on the interface of composites, which effect in the mechanics capability directly, especially the ILLS(Interlaminar shearing stress), which restricts high-powered using of carbon fibers. It can enhance the correlative capability of composite effectively by mechanical and cavitation effects of power ultrasonic. We use power ultrasonic treating the interface of CFRP to enhance its ILLS.
     By learning the basic theory of composites` interface and ultrasonic effect factor, we concluded the main point of ultrasonic surface treatment for composites: ultrasonic degassing, cavitation corrosion, ultrasonic separating and so on. It provides us theoretical reference for vibratory system and experiment.
     We manufactured an ultrasonic vibrancy system, whose vibratory speed rate reached 25. We made a optimal round transition at the unequal section joint of stepped ultrasonic transformer to avoid its break; at the end of the solid horn, we made baffle to avoid carbon fiber fall off while working. We analyzed and calculated the variation law of the node position due to the variation of resonance frequency, and ascertained the thickness and position of fixed node. The design frequency of ultrasonic vibrancy system is 21 KHz, the measured frequency is 20.76 KHz, the distinction is 1.1%, which achieved the design request well.
     Study on the law of ILSS and variation coefficient on swing of ultrasonic, the twist speed of carbon fiber, and environment temperature, show that: when the ultrasonic swing during 30-40μm, the ILLS of CFRP enhanced 10%, variation coefficient reduced 50%, and the stability of composites elevated; the twist speed of carbon fiber increased from 5m/min to 10m/min, which increased work efficiency; that ultrasonic effect on composites at the temperature of 20℃, equivalent to originally effect at the temperature of 50℃, which reduced the working energy consume.
引文
1陈绍杰,申屠年.先进复合材料的近期发展趋势.高科技纤维与应用. 2004, 29(1):1~7
    2张晓虎,孟宇,张炜.碳纤维增强复合材料技术发展现状及趋势.纤维复合材料. 2004, 30(1):50~58
    3钱伯章译.碳纤维复材市场进入快增期.合成纤维.2007, 2:54
    4 J.Kalantar, L.T.Drzal.The Bonding Machanism of Aramid Fibers to Epoxy Matrices.Journal of Materials Science. 1990, 25(2):4186~4193
    5赵玉庭,姚希曾.复合材料基体与界面.华东化工学院出版社, 1991:163~197
    6邱求元,邢素丽.碳纤维增强树脂基复合材料界面优化研究进展.材料导报. 2006, 20(Ⅶ):436~439
    7黄玉栋,曹海琳.碳纤维复合材料界面性能研究.宇航材料导报.2002, 1:19~26
    8于祺.纤维增强复合材料的界面研究进展.绝缘材料. 2005, 2:50~56
    9 Young R J, Bannister D J, Cervenka A J, et a1.Effect of Surface treatment upon the Pull—out Behaviour of Aramid Fibres from epoxy resins [J].J Mater Sci, 2000, 35(8):1939
    10 Banduryan S I, Iovleva M M, Zhuravleva A I, et a1.Genesis of the Surface Structure of Armos Fibre [J]. Fibre Chemistry. 2002, 34(6):422
    11王应彪,刘传绍,赵波.功率超声技术的研究现状及其应用进展.机械研究与应用. 2006, l9(4):41~43
    12 TANG L G, et al. A Review of Methods for Improving the Interfacial Adhesion between Carbon Fiber and Polymer Matrix[J]. Polymer Composites. 1997, 118:100~113
    13 Xu C, Mark F, Yuming G, et a1.Mechanisms of Surfactant Adsorption on Non—polar. Air—oxidized and Ozone—treated Carbon Surfaces. Carbon. 2003, 4 l:1489~1500
    14 Febo Severini, Leonardo Formaro, Mario Pegoraro and Luca Posca, Chemical Modification of Carbon fiber Surfaces. Carbon. 2002, 40:735~741
    15张志谦,魏月贞.碳纤维冷等离子体连续接枝工艺研究.宇航材料工艺.1991,21(2), 41
    16邱军,张志谦,黄玉栋.γ射线辐照APMOC纤维对AFRP层间剪切强度的影响哈尔滨工业大学工学硕士学位论文[J].材料科学与工艺,1999,7(1):48~50.
    17 Yue Z R,J iang W Wang L,et al.Surface characterization of electro- chemically oxidized carbon fibers carbon[J], Journal of Materials Science, 1999 ,37(11):1785~1796
    18贺福.用气相氧化法对碳纤维进行表面处理[J].复合材料学报,1998,(1):569
    19康永.沥青基碳纤维表面复合处理的研究[J].功能高分子学报,1999,12(4):450~452
    20孙慕瑾,罗道友.界面层性能对碳纤维复合材料(CFRP)性能的影响.复合材料学报, l997,14(1):l~5
    21顾辉,余大书.阳极氧化对高聚物基碳纤维复合材料界面性能的影响[J].宇航材料工艺,200l,(31):1
    22马恒怡,黄玉栋.碳纤维γ射线辐照处理对其复合材料界面性能的影响.材料工程,2000,4:26~29
    23В.Т.Томашевскийидр.Трансверсальноеармированиекомпозитныхматериаловсприменениемультразвуковыхколебаний.Механикакомпозитныхматериалов.1987(6)c:1068~1071
    24А.Е.Колосовидр.Пропиткаволокнистыхнаполнителейполимернымисвязующими.Механикакомпозитныхматериалов.1988(4)c:651~659
    25А.Е.Колосов.Пропиткаволокнистыхнаполнителейполимернымисвязующими.Механикакомпозитныхматериалов.1988(5)c:878~886
    26А.Е.Колосовидр.Пропиткаволокнистыхнаполнителейполимернымисвязующими.Механикакомпозитныхматериалов.1988(3)c:490~496
    27А.Е.Колосовидр.Пропиткаволокнистыхнаполнителейполимернымисвязующими.Механикакомпозитныхматериалов.1989(1)c:96~102
    28 Peng He a, Yong Gao Surface Modification and Ultrasonication Effect on the Mechanical Properties of Carbon Nanofiber/polycarbonate Composites. Composites. 2006,Part A (37):1270~1275
    29 Koshio A, Yudasaka M Zhang M, Iijima S. A Simple Way to Chemically React Single-wall Carbon Nanotubes With Organic Materials Using Ultrasonication Nano Letts. 2001, 1(7):361~365
    30刘丽,张志谦,黄玉栋.超声作用对芳纶/环氧浸润行为的影响.材料科学与工艺, 2002, 10 (1) :69~73
    31 Li Liu, Lu Shao, Yudong Huang. Effect of Ultrasound on Epoxy Resin System and Interface Property[J].The 13th International Conference on Composite Materials , ICCM-13, Beijing , 2001
    32刘丽,张翔,黄玉栋,张志谦.芳纶纤维/环氧复合材料界面超声连续改性处理.航空材料学报. 2003, 23 (1):49~53
    33 Park S J, Seo M K, Rhee K Y. Mater Sci Eng, A:Structural Materials:Properties, Mierostrueture and Processing, 2003, A356(1-2):219
    34 Thomas L S, Donna G S.Wicking Flow in Irregular Capillaries. Colloids and Interface Science. 2002, 20(4):239~250
    35 Aranberri Askargorta I, Lampke T, Bismarck A.Wetting Behavior of Falx Fibers as Reinforcement For Polypropylene[J].Colloid and Interface Science.2003, 263:580~589
    36张佐光,李敏,孙志杰,陈亮.单向纤维集束的树脂浸润影响因素.北京航空航天大学学报. 2004, 30(10):934~938
    37 Wang Jun, Han Jiantao, Zhang Yang. The Application of Ultrasound Technology in Chemical Production [J]. Temporary Chemical Industry. 2002, 12(4):187~189
    38席细平,马重芳,王伟.超声波技术应用现状.山西化工. 2007, 27(1):25~30
    39罗登林,丘泰球,卢群.超声波技术及应用(Ⅰ)—超声波技术.日用化学工业. 2005, 35(5):323~326
    40王阳恩,尚志远.超声降粘实验研究.陕西师范大学学报:自然科学版. 2001, 29(2):48~50
    41 Naji Meidani A R, Hasan M.A Study of Hydrogen Bubble Growth During Ultrasonic Degassing of Al/Cu Alloy Melts [J]. J Mater. Process. Tech. 2004, l47:311~320
    42 Xu H, X. Jian, T.T. Meek, Q. Han: Degassing of Molten Aluminum A356 Using Ultrasonic Vibration [J]. Materials letters. 2004, 58:3669~3673
    43李军文.铸锭底部强制冷却的超声波除气效果.热加工工艺.2007, 36(5):21~24
    44谭伟民.高能超声制备金属基复合材料的研究进展与展望.材料导报.2006, 20 (Ⅶ):258~260
    45陈桂生.超声换能器设计.海洋出版社. 1984:91~152
    46林仲茂.超声变幅杆的原理和设计.科学出版社. 1987:1~121, 239~246
    47廖华丽,胡爱萍.超声能量在超声振动系统中的传递.江苏石油化工学院学报. 1999,11(2):13~16
    48董慧娟.超声旋转加工振动系统及加工过程控制的研究.工学博士学位论文.1999年:29~35

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700