功能化碳纳米管/聚合物复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管(碳管)具有优异的力学性能、热学性质及化学稳定性,是聚合物结构复合材料的理想增强体.碳管/聚合物复合材料的力学性能主要取决于碳管和基体间界面作用、碳管在基体中的分散性和取向.但是普通(未功能化)碳管易聚集且不溶于大多数溶剂,难于在基体中分散,而且普通碳管与基体之间界面作用较弱.碳管的功能化可以解决碳管分散性差以及界面作用弱的问题.目前,功能化方法有非共价功能化、共价功能化和混杂功能化三类.碳管功能化及其在聚合物复合材料中的应用是近年来的研究热点.本文旨在研究功能化对碳管断裂寿命的影响,以及功能化对碳纳米管/聚合物复合材料弹性模量和拉伸韧性的影响.主要研究内容和结果如下:
     基于动态断裂模型和分子力学模拟,研究了功能化对碳管拉伸断裂寿命的影响.结果表明:相比未功能化,非共价功能化能有效地增加碳管的断裂寿命,而共价功能化使碳管寿命降低,混杂功能化可以看作是共价功能化和非共价功能化的共同作用,在多数情况下它可以提高碳管的寿命.
     运用分子动力学方法研究了非共价功能化、共价功能化和混杂功能化碳管/聚合物复合材料的拉伸韧性.发现非共价功能化并不能提高复合材料的拉伸韧性,共价功能化和混杂功能化都可以显著地的提高碳管/聚合物复合材料的韧性.
Carbon nanotubes (CNTs) are promising reinforcement material for structural polymer composites due to their extraordinary mechanical and thermal properties. Mechanical properties of CNT/polymer composites depend mainly on the interfacial interactions between CNT and matrix, as well as the dispersion and alignment of CNTs in the matrix. However, pristine CNTs are prone to aggregation, and are insoluble in most solvents, rendering them difficult to be dispersed in the matrix. Moreover, the interfacial interactions between pristine CNT and matrix are rather weak. It was reported that CNT functionalization could be an effective way to improve the dispersion and strengthen the interfacial interactions. There exist three categories of functionalizations: nocovalent, covalent, and hybrid functionalizations. Recently CNT functionalizations and their applications in polymer composites have become a new research interest. The purpose of this thesis is to study the effects of different functionalizations on fracture lifetimes of CNTs, elastic moduli and tenslie toughness of different types of functionalized CNT/polymer composites.
     Based on a kinetic fracture model and using molecular mechanics (MM) simulations, the influence of different functionalizations on lifetime of single-walled carbon nanotubes (SWCNTs) under tension was studied. Three types of functionalizations, namely, covalent, noncovalent, and hybrid, were studied. Comparing with pristine SWCNTs, our results show that noncovalent functionalization can enhance, while covalent functionalization has detrimental effect, on the lifetime of SWCNTs, Effects from covalent and noncovalent functionalizations superimpose in hybrid functionalization, and in most cases it has positive effect on the lifetime of SWCNTs.
     Using molecular dynamics (MD) method, tensile toughness of noncovalent, covalent, and hybrid functionalized CNT/polymer composites were studied. Results show that noncovalent functionalization can not enhance the tensile toughness of composites, covalent functionalization and hybrid functionalization can markedly enhance the toughness of CNT/polymer composites.
引文
[1] Iijima S, Helical microtubules of graphitic carbon. Nature, 1991, 354: 56.
    [2] Yu M F, Lourie O, Dyer M J, Moloni K, Kelly T F, Ruoff R S. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science, 2000, 287: 637.
    [3] Treacy M M J, Ebbesen T W, Gibson J M. Exceptionally high young’s modulus observed for individual carbon nanotubes. Nature, 1996, 381: 678.
    [4] Iijima S, Maiti C B A, Bernholc J. Structural flexibility of carbon nanotubes. Journal of Chemical Physics, 1996, 104:2089.
    [5] Collins P G, Avouris P. Nanotubes for electronics. Scientific American, 2000, 283: 62.
    [6] Kim P, Shi L, Majumdar A, and McEuen P L. Thermal transport measurements of individual multiwalled nanotubes. Physical Review Letters, 2001, 87: 215502.
    [7] Wagner H D, Lourie O, Feldman Y, and Tenne R. Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix. Applied Physics Letters, 1998, 72:188.
    [8] Lourie O, and Wagner H D. Transmission electron microscopy observations of fracture of single-wall carbon nanotubes under axial tension. Applied Physics Letters, 1998, 73:3527.
    [9] Walters D A, Ericson L M, Casavant M J, Liu J, Colbert D T, Smith K A, and Smalley R E . Elastic strain of freely suspended single-wall carbon nanotube ropes. Applied Physics Letters, 1999, 74:3803.
    [10] Pan Z W, Xie S S, Lu L, Chang B H, Sun L F, Zhou W Y, Wang G, and Zhang D L. Tensile tests of ropes of very long aligned multiwall carbon nanotubes. Applied Physics Letters, 1999, 74:3152.
    [11] Yu M F, Dyer M J, Skidmore G D, Rohrs H W, Lu X K, Ausman K D, Her J R V, Ruoff R S. Three-dimensional manipulation of carbon nanotubes under a scanning electron microscope. Nanotechnology, 1999, 10:244.
    [12] Yu M F, Files B S, Arepalli S, and Ruoff R S. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Physical Review Letters, 2000, 84:5552.
    [13] Yu M F, Yakobson B I, and Ruoff R S. Controlled sliding and pullout of nested shells in individual multiwalled carbon nanotubes. Journal of Physical Chemistry B, 2000, 104: 8764.
    [14] Li F, Cheng H M, Bai S, Su G, and Dresselhause M S. Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes. Applied Physics Letters, 2000, 77:3161.
    [15] Bozovic D, Bockrath M, Hafner J H, Lieber C M, Park H, and Tinkham M. Plastic deformations in mechanically strained single-walled carbon nanotubes. Physical Review B, 2003, 67:033407.
    [16] Ren Y, Fu Y Q, Liao K, Li F, and Cheng H M. Fatigue failure mechanisms of single-walled carbon nanotube ropes embedded in epoxy. Applied Physics Letters, 2004, 84:2811.
    [17] Ye H, Lam H, Titchenal N, Gogotsi Y, and Ko F. Reinforcement and rupture behavior of carbon nanotubes-polymer nanofibers. Applied Physics Letters, 2004, 85:1775.
    [18] Huang J Y, Chen S, Wang Z Q, Kempa K, Wang Y M, Jo S H, Chen G, Dresselhaus M S, Ren Z F. Superplastic carbon nanotubes. Nature, 2006, 439:281.
    [19] Yakobson B I, Campbell M P, Brabec C J, and Bernholc J. High strain rate fracture and c-chain unraveling in carbon nanotubes. Computational Materials Science, 1997, 8:341.
    [20] Nardelli M B, Yakobson B I, and Bernholc J. Brittle and ductile behavior in carbon nanotubes. Physical Review Letters, 1998, 81:4656.
    [21] Xia Y, Zhao M, Ma Y, Ying M, Liu X, Liu P, and Mei L. Tensile strength of single-walled carbon nanotubes with defects under hydrostatic pressure. Physical Review B, 2002, 65:155415.
    [22] Xiao T and Liao K. Nonlinear elastic properties of carbon nanotubes subject to axial deformations. Physical Review B, 2002, 66:153407.
    [23] Wei C, Cho K, Srivastava D. Tensile yielding of multiwall carbon nanotubes. Applied Physics Letters, 2003, 82:2512.
    [24] Marques M A L, Troiani H E, Miki-Yoshida M, Jose-Yacaman M, and Rubio A. On the breaking of carbon nanotubes under tension. Nano Letters, 2004, 4:811.
    [25] Sammalkorpi M, Krasheninnikov A, Kuronen A, Nordlund K, and Kaski K. Mechanical properties of carbon nanotubes with vacancies and related defects. Physical Review B,2004, 70:245416.
    [26] Xiao S and Hou W. Fracture of vacancy-defected carbon nanotubes and their embedded nanocomposites. Physical Review B, 2006, 73:115406.
    [27] Barber A H, Kaplan-Ashiri I, Cohen S R, Tenne R, Wagner H D. Stochastic strength of nanotubes: an appraisal of available data. Composites Science and Technology, 2005, 65: 2380.
    [28] Barber A H, Andrews R, Schadler L S and Wagner H D. On the tensile strength distribution of multiwalled carbon nanotubes. Applied Physics Letters, 2005, 87:203106.
    [29] Pugno N M, Ruoff R S. Nanoscale Weibull statistics. Journal of Applied Physics, 2006, 99: 024301.
    [30] Xiao T, Ren Y, Wu P and Liao K. Force-strain relation of bundles of carbon nanotubes. Applied Physics Letters, 2006, 89:033116.
    [31] Gojny FH, Nastalczyk J, Roslamiec Z, Schulte K. Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites. Chemical Physics Letters, 2003, 370: 820.
    [32] Zhu J, Kim J D, Peng H Q, Margrave J L, Khabashesku V N, Barrera E V. Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization. Nano Letters, 2003, 3: 1107.
    [33] Jin L, Bower B, Zhou O. Alignment of carbon nanotubes in a polymer matrix by mechanical stretching. Applied Physics Letters, 1998, 73: 1197
    [34] Eitan A, Jiang K Y, Dukes D, Andrews R, Schadler L S. Surface modification of multiwalled carbon nanotubes: toward the tailoring of the interface in polymer composites. Chemistry of Materials, 2003, 15: 3198.
    [35] O’Connell M J, Boul P, Ericson L M, Huffman C, Wang Y H, Haroz E, Kuper C, Tour J, Ausman K D, Smally R E. Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chemical Physics Letters, 2001, 342: 265.
    [36] Liu J Q, Xiao T, Liao K, Wu P. Interfacial design of carbon nanotube polymer composites: hybrid system of noncovalent and covalent functionalizations. Nanotechnology, 2007, 18: 165701.
    [37] Tsang S C, Chen Y K, Harris P J F, and Green M L H. A simple chemical method of opening and filling carbon nanotubes. Nature, 1994, 372: 159.
    [38] Liu J, Rinzler A G, Dai H, Hafner J H, Bradley R K, Boul P J, Lu A, Iverson T, Shelimov K, Huffman C B, Rodriguez-Macias F, Shon Y S, Lee T R, Colbert D T, Smalley R E. Fullerene pipes. Science, 1998, 280: 1253.
    [39] Hamon M A, Hui H, Bhowmik P, Itkis H M E, Haddon R C. Ester-functionalized soluble single-walled carbon nanotubes. Applied Physics A, 2002, 74: 333.
    [40] Chen J, Hamon M A, Hu H, Chen Y S, Rao A M, Eklund P C, Haddon R C. Solution properties of single-walled carbon nanotubes. Science, 1998, 282: 95.
    [41] Hamon M A, Chen J, Hu H, Chen Y S, Itkis M E, Rao A M, Eklund P C, and Haddon R C. Dissolution of single-walled carbon nanotubes. Advanced Materials, 1999, 11: 834.
    [42] Pompeo F, Resasco D E. Water solubilization of single-walled carbon nanotubes by functionalization with glucosamine. Nano Letters, 2002, 2: 369.
    [43] Hamwi A, Alvergnat H, Bonnamy S, and Beguin F. Fluorination of carbon nanotubes. Carbon, 1997, 35: 723.
    [44] Mickelson E T, Chiang I W, Zimmerman J L, Boul P J, Lozano J, Liu J, Smalley R E, Hauge R H, and Margrave J L. Solvation of fluorinated single-wall carbon nanotubes in alcohol solvents. Journal of Physical Chemistry B, 1999, 103: 4318.
    [45] Khabashesku V N, Billups W E, Margrave J L. Fluorination of single-wall carbon nanotubes and subsequent derivatization reactions. Accounts of Chemical Research. 2002, 35:1087.
    [46] Stevens J L, Huang A Y, Peng H Q, Chiang I W, Khabashesku V N, and Margrave J L. Sidewall amino-functionalization of single-walled carbon nanotubes through fluorination and subsequent reactions with terminal diamines. Nano Letters, 2003, 3: 331.
    [47] Peng H, Alemany L B, Margrave J L, and Khabashesku V N. Sidewall carboxylic acid functionalization of single-walled carbon nanotubes. Journal of American Chemical Society, 2003, 125: 15174.
    [48] Nikolaev P, Bronikowski M J, Bradley R K, Rohmund F, Colbert D T, Smith K A, Smalley R E. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chemical Physics Letters, 1999, 313: 91.
    [49]郭金学,李宇国,吴胜伟,李文新.多壁碳纳米管γ辐照后的化学修饰.辐照研究与辐射工艺学报, 2005, 23: 155.
    [50] Garg A, Sinnott S B. Effect of chemical functionalization on the mechanical properties ofcarbon nanotubes. Chemical Physics Letters, 1998, 295: 273.
    [51] Namilae S, Chandra N, Shet C. Mechanical behavior of functionalized nanotubes. Chemical Physics Letters, 2004, 387: 247.
    [52]刘演新,杜中杰,励杭泉.多壁碳纳米管的表面乙烯基功能化.材料科学与工程学报, 2005, 23: 495.
    [53] Steuerman D W, Star A, Narizzano R, Choi H, Ries R S, Nicolini C, Stoddart J F, and Heath J R. Interaction between conjugated polymers and single-walled carbon nanotubes. Journal of Physical Chemistry B, 2002, 106: 3124.
    [54] Coleman J N, Dalton A B, Curran S, Rubio A, Davey A P, Drury A, McCarthy B, Lahr B, Ajayan P M, Roth S, Barklie R C, and Blau W J. Phase separation of carbon nanotubes and turbostratic graphite using a functional organic polymer. Advanced Materials, 2000, 12: 213.
    [55] Xia H S, Wang Q, Qiu G H. Polymer-encapsulated carbon nanotubes prepared through ultrasonically initiated in situ emulsion polymerization. Chemistry of Materials, 2003, 15: 3879.
    [56] Ajayan P M, Schadler L S, Giannaris C, and Rubio A. Single-walled carbon nanotube polymer composites: strength and weakness. Advanced Materials, 2000, 12: 750.
    [57]袁观明,李轩科,张铭金,吕早生,张光德.碳纳米管对环氧树脂力学性能的影响.宇航材料工艺, 2005, 2: 38.
    [58] Barber A H, Cohen S R, Wagner H D. Measurement of carbon nanotube-polymer interfacial strength. Applied Physics Letters, 2003, 82: 4140.
    [59] Lau K T, Shi S Q. Failure mechanisms of carbon nanotube/epoxy composites pretreated in different temperature environments. Carbon, 2002, 40: 2961.
    [60] Sinnott S B. Chemical functionalization of carbon nanotubes. Journal of Nanoscience and Nanotechnology, 2002, 2: 113.
    [61] Hirsch A. Functionalization of single-walled carbon nanotubes. Angewandte Chemie International Edition, 2002, 41: 1853.
    [62] Mitchell C A, Bahr J L, Arepalli S, Tour J M, and Krishnamoorti R. Dispersion of functionalized carbon nanotubes in polystyrene. Macromolecules, 2002, 35: 8825.
    [63] Velasco-Santos C, Martínez-Hernández A L, Fisher F T, Ruoff R, and Castano V M.Improvement of thermal and mechanical properties of carbon nanotube composites through chemical functionalization. Chemistry of Materials, 2003, 15: 4470.
    [64] Shi D L, Lian J, He P, Wang L M, Ooij W J, Schulz M, Liu Y J, Mast D B. Plasma coating of carbon nanofibers for enhanced dispersion and interfacial bonding in polymer composites. Applied Physics Letters, 2003, 83: 5301.
    [65]贾志杰,王正元,徐才录,梁吉,魏秉庆,吴德海,张增民.原位法制取碳纳米管/尼龙-6复合材料.清华大学学报(自然科学版), 2000, 40: 14.
    [66] Ding W, Eitan A, Fisher F T, Chen X, Dikin D A, Andrews R, Brinson L C, Schadler L S, and Ruoff R S. Direct observation of polymer sheathing in carbon nanotube-polycarbonate composites. Nano Letters, 2003, 3: 1593.
    [67] Gojny F H, Nastalczyk J, Roslamiec Z, Schulte K. Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites. Chemical Physics Letters, 2003, 370: 820.
    [68] Broza G, Kwiatkowska M, Roslaniec Z, Schulte K. Processing and assessment of poly (butylenes terephthalate) nanocomposites reinforced with oxidized single wall carbon nanotubes. Polymer, 2005, 46: 5860.
    [69] Tong X, Liu C, Cheng H M, Zhao H C, Yang F, Zhang X Q. Surface modification of single-walled carbon nanotubes with polyethylene via in situ Ziegler-Natta polymerization. Journal of Applied Polymer Science, 2004, 92: 3697.
    [70] Frankland S J V, Caglar A, Brenner D W, and Griebel M. Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube-polymer interfaces. Journal of Physical Chemistry B, 2002, 106: 3046.
    [71] Griebel M, Hamaekers J, Wildenhues R. Molecular dynamics simulations of the influence of chemical cross-links on the elastic moduli of polymer-carbon nanotube composites. In J. Sanchez, editor, Proceedings 1st Nanoc-Workshop, LABEIN, Bilbao, Spain, 2005, to appear. Also as INS Preprint No. 0503.
    [72] Guo P, Chen X H, Gao X C, Song H H, Shen H Y. Fabrication and mechanical properties of well-dispersed multiwalled carbon nanotubes/epoxy composites. Composites Science and Technology, 2007, 67:3331.
    [73] McClory C, McNally T, Brennan G P, Erskine J. Thermosetting Polyurethane Multiwalled Carbon Nanotube Composites. Journal of Applied Polymer Science, 2007, 105:1003.
    [74] Fidelus J D, Wiesel E, Gojny F H , Schulte K, Wagner H D. Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites. Composites: Part A, 2005, 36:1555.
    [75] Ma R. Z, Wu J, Wei B Q, Liang J, Wu D H. Processing and properties of carbon nanotubes–nano-SiC ceramic. Journal of Materials Science, 1998, 33:5243.
    [76] Hirota K, Takaura Y, Kato M, Miyamoto Y. Fabrication of carbon nanofiber (CNF)-dispersed Al2O3 composites by pulsed electric-current pressure sintering and their mechanical and electrical properties. Journal of Materials Science, 2007, 42:4792.
    [77] Meng Y H, Tang C Y, Tsui C P, Chen D Z. Fabrication and characterization of needle-like nano-HA and HA/MWNT composite. Journal of Materials Science: Materials in Medicine, 2008, 19:75.
    [78] Ma P C, Kim J K, Tang B Z. Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites. Composites Science and Technology, 2007, 67:2965.
    [79] Moniruzzaman M, Chattopadhyay J, Billups W E, and Winey K I. Tuning the mechanical properties of SWNT/Nylon 6,10 composites with flexible spacers at the interface. Nano Letters, 2007, 7:1178.
    [80] Morisada Y, Miyamoto Y, Takaura Y, Hirota K, Tamari N. Mechanical properties of SiC composites incorporating SiC-coated multi-walled carbon nanotubes. International Journal of Refractory Metals & Hard Materials, 2007, 25:322.
    [81] Wang J G, Fang Z P, Gu A J, Xu L H, Liu F. Effect of Amino-functionalization of multi-walled carbon nanotubes on the dispersion with epoxy resin matrix. Journal of Applied Polymer Science, 2006, 100:97.
    [82] Bhattacharyya S, Salvetat J P, and Saboungi M L. Reinforcement of semicrystalline polymers with collagen-modified single walled carbon nanotubes. Applied Physics Letters, 2006, 88:233119.
    [83] Gorga R E, COHEN R E. Toughness enhancements in poly (methyl methacrylate) by addition of wriented multiwall carbon nanotubes. Journal of Polymer Science: Part B: Polymer Physics, 2004, 42:2690.
    [84] Zhang H, Zhang Z. Impact behaviour of polypropylene filled with multi-walled carbon nanotubes. European Polymer Journal, 2007, 43:3197.
    [85] Ren Y, Li F, Cheng H M, Liao K. Tension-tension fatigue behavior of unidirectionalsingle-walled carbon nanotube reinforced epoxy composite. Carbon, 2003, 41: 2177.
    [86] Ren Y, Xiao T, Liao K. Time-dependent fracture behavior of single-walled carbon nanotubes with and without Stone-Wales defects. Phys Rev B, 2006, 74: 045410.
    [87]李恒德,肖纪美主编.材料表面与界面.北京:清华大学出版社, 1990. 274.
    [1] Ajayan P M, Stephan O, Colliex C, Trauth D. Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science, 1994, 265: 1212.
    [2] Vaccarini L, Desarmot G, Almairac R, Tahir S, Goze C, Bernier P. Reinforcement of an epoxy resin by single walled nanotubes. AIP Conference Proceeding, 2000, 544: 521.
    [3] Qian D, Dickey E C, Andrews R, Rantell T. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Applied Physics Letters, 2000, 76: 2868.
    [4] Ren Y, Li F, Cheng H M, Liao K. Tension-tension fatigue behavior of unidirectionalsingle-walled carbon nanotube reinforced epoxy composite. Carbon, 2003, 41: 2159.
    [5] Ren Y, Xiao T, Liao K. Time-dependent fracture behavior of single-walled carbon nanotubes with and without Stone-Wales defects. Physical Review B, 2006, 74: 045410.
    [6] Gojny F H, Nastalczyk J, Roslamiec Z, Schulte K. Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites. Chemical Physics Letters, 2003, 370: 820.
    [7] Zhu J, Kim J D, Peng H Q, Margrave J L, Khabashesku V N, Barrera E V. Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization. Nano Lett, 2003, 3: 1107.
    [8] Jin L, Bower B, Zhou O. Alignment of carbon nanotubes in a polymer matrix by mechanical stretching. Applied Physics Letters, 1998, 73: 1197.
    [9] Eitan A, Jiang K Y, Dukes D, Andrews R, Schadler L S. Surface modification of multiwalled carbon nanotubes: toward the tailoring of the interface in polymer composites. Chemistry of Materials, 2003, 15: 3198.
    [10] Frankland S J V, Caglar A, Brenner D W, Griebel M. Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube-polymer interfaces. Journal of Physical Chemistry B, 2002, 106: 3046.
    [11] Garg A, Sinnott S B. Effect of chemical functionalization on the mechanical properties of carbon nanotubes. Chemical Physics Letters, 1998, 295: 273.
    [12] Ausman K D, Piner R, Lourie O, Ruoff R S, Korobov M. Organic solvent dispersions of single-walled carbon nanotubes: toward solutions of pristine nanotubes. Journal of Physical Chemistry B, 2000, 104: 8911.
    [13] O’Connell M J, Boul P, Ericson L M, Huffman C, Wang Y H, Haroz E, Kuper C, Tour J, Ausman K D, Smalley R E. Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chemical Physics Letters, 2001, 342: 265.
    [14] Star A, Stoddart J F, Steuerman D, Diehl M, Boukai A, Wong E W, Yang X, Chung S W, Choi H, Heath J R. Preparation and properties of polymer-wrapped single-walled carbon nanotubes. Angewandte Chemie International Edition, 2001, 40: 1721.
    [15] Steuerman D W, Star A, Narizzano R, Choi H, Ries R S, Nicolini C, Stoddart J F, Heath J R. Interactions between conjugated polymers and single-walled carbon nanotubes. Journal of Physical Chemistry B, 2002, 106: 3124.
    [16] Panhuis M, Maiti A, Dalton A B, Noort A, Coleman J N, McCarthy B, and Blau W J. Selective interaction in a polymer-single-wall carbon nanotube composite. Journal of Physical Chemistry B, 2003, 107: 478.
    [17] Ajayan P M, Schadler L S, Giannaris C, Rubio A. Single-walled carbon nanotube-polymer composites: strength and weakness. Advanced Materials, 2000, 12: 750.
    [18] Liu J Q, Xiao T, Liao K, Wu P. Interfacial design of carbon nanotube polymer composites: hybrid system of noncovalent and covalent functionalizations. Nanotechnology, 2007, 18: 165701.
    [19] Andrew R, Jacques D, Qian D, Dickey E C. Purification and structural annealing of multiwalled carbon nanotubes at graphitization temperatures. Carbon, 2001, 39: 1681.
    [20] Chiang I W, Brinson B E, Huang A Y, Willis P A, Bronikowski M J, Margrave J L, Smalley R E, Hauge R H. Purification and characterization of single-wall carbon nanotubes (SWCNTs) obtained from the gas-phase decomposition of CO (HiPco Process). Journal of Physical Chemistry B, 2001, 105: 8297.
    [21] Bom D, Andrews R, Jacques D, Anthony J, Chen B, Meier M S, Selegue J P. Thermo-gravimetric analysis of the oxidation of multiwalled carbon nanotubes: evidence for the role of defect sites in carbon nanotube chemistry. Nano Lett, 2002, 2: 615.
    [22] Xiao T, Ren Y, Liao K. A kinetic model for time-dependent fracture of carbon nanotubes. Nano Lett, 2004, 4: 1139.
    [23] Zhou L G, Shi S Q. Computer simulation of the fracture of carbon nanotubes in a hydrogen environment. Philosophical Magazine A, 2002, 82: 3201.
    [24] Xiao T, Liao K. Nonlinear elastic properties of carbon nanotubes subject to axial deformations. Physical Review B, 2002, 66: 153407.
    [25] Yang M J, Koutsos V, Zaiser M. Interactions between polymers and carbon nanotubes: a molecular dynamics study. Journal of Physical Chemistry B, 2005, 109: 10009.
    [26] Ma G, Ren Y, Guo J, Xiao T, Li F, Cheng H M, Zhou Z R, Liao K. How long can single-walled carbon nanotube ropes last under static or dynamic fatigue. Applied Physics Letters, 2008, 92: 083105.
    [1] Guo P, Chen X H, Gao X C, Song H H, Shen H Y. Fabrication and mechanical properties of well-dispersed multiwalled carbon nanotubes/epoxy composites. Composites Science and Technology, 2007, 67:3331.
    [2] McClory C, McNally T, Brennan G P, Erskine J. Thermosetting polyurethane multiwalled carbon nanotube composites. Journal of Applied Polymer Science, 2007, 105:1003.
    [3] Fidelus J D, Wiesel E, Gojny F H , Schulte K, Wagner H D. Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites. Composites: Part A, 2005, 36:1555.
    [4] Qian D, Dickey E C, Andrews R, Rantell T. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Applied Physics Letters, 2000, 76: 2868.
    [5] Ye H H, Lam H, Titchenal N, Gogotsi Y, and Ko F. Reinforcement and rupture behavior of carbon nanotubes-polymer nanofibers. Applied Physics Letters, 2004, 85: 1775.
    [6] Lourie O, Wanger H D. Evidence of stress transfer and formation of fracture clusters in carbon nanotube-based composites. Composites Science and Technology, 1999, 59: 975.
    [7] Ma P C, Kim J K, Tang B Z. Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites. Composites Science and Technology. 2007, 67:2965.
    [8] Moniruzzaman M, Chattopadhyay J, Billups W E, and Winey K I. Tuning the mechanical properties of SWNT/Nylon 6,10 composites with flexible spacers at the interface. Nano Lett, 2007, 7:1178.
    [9] Morisada Y, Miyamoto Y, Takaura Y, Hirota K, Tamari N. Mechanical properties of SiC composites incorporating SiC-coated multi-walled carbon nanotubes. International Journal of Refractory Metals & Hard Materials, 2007, 25:322.
    [10] Wang J G, Fang Z P, Gu A J, Xu L H, Liu F. Effect of amino-functionalization ofmulti-walled carbon nanotubes on the dispersion with epoxy resin matrix. Journal of Applied Polymer Science, 2006, 100:97.
    [11] Gorga R E, COHEN R E. Toughness enhancements in poly (methyl methacrylate) by addition of oriented multiwall carbon nanotubes. Journal of Polymer Science: Part B: Polymer Physics, 2004, 42:2690.
    [12] Zhang H, Zhang Z. Impact behaviour of polypropylene filled with multi-walled carbon nanotubes. European Polymer Journal, 2007, 43:3197.
    [13] Eitan A, Jiang K Y, Dukes D, Andrews R, Schadler L S. Surface modification of multiwalled carbon nanotubes: toward the tailoring of the interface in polymer composites. Chemistry of Materials, 2003, 15: 3198.
    [14] O’Connell M J, Boul P, Ericson L M, Huffman C, Wang Y H, Haroz E, Kuper C, Tour J, Ausman K D, Smalley R E. Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chemical Physics Letters, 2001, 342: 265.
    [15] Liu J Q, Xiao T, Liao K, Wu P. Interfacial design of carbon nanotube polymer composites: hybrid system of noncovalent and covalent functionalizations. Nanotechnology, 2007, 18: 165701.
    [16]傅政编著.高分子材料强度及破坏行为.北京:化学工业出版社, 2005. 19.
    [17] Sun H. COMPASS: an ab initio force-field optimized for condensed-phase applications- overview with details on alkane and benzene compounds. Journal of Physical Chemistry B, 1998, 102: 7338.
    [18] Gou J H, Minaie B, Wang B, Liang Z Y, Zhang C. Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites. Computational Materials Science, 2004, 31: 225.
    [19] Lifson S, Halger A T, Dauber P. Consistent force field studies of intermolecular forces in hydrogen-bonded crystals (1.Carboxylic acids, amides, and the C = O…H-hydrogen bonds.2.A benchmark for the objective comparison of alternative force fields.3.The C = O…H-O hydrogen bond and the analysis of the energetics and packing of carboxylic acids). Journal of American Chemistry Society, 1979, 101: 5111.
    [20] Waldman M, Hagler A T. New combining rules for rare gas van der Waals parameters. Journal of Computational Chemistry, 1993, 14: 1077.
    [21] Frankland S J V, Harik V M, Odegard G M, Brenner D W, Gates T S. The stress-strainbehavior of polymer-nanotube composites from molecular dynamics simulation. Composites Sceince and Technology, 2003, 63:1655.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700