用户名: 密码: 验证码:
SAPMAC法蓝宝石光学窗口的辐照效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蓝宝石光学窗口在空间环境服役时,将会受到不同射线(如γ射线、X射线)以及离子流(如电子、质子等)的辐照作用,使其光学性质及结构发生变化,影响使用性能。本文选取了有代表性的γ射线及电子,研究了SAPMAC法蓝宝石窗口经γ射线及电子辐照后的光学性能及结构的变化。
     SAPMAC法蓝宝石成分分析结果显示,晶体杂质含量较低,质量较高。原子力显微镜(AFM)实验表明,γ射线辐照对蓝宝石表面粗糙度影响不大,而电子辐照使得蓝宝石表面粗糙度增加。通过对蓝宝石辐照前后的吸收光谱及荧光光谱分析,发现蓝宝石光学窗口经γ射线和电子辐照后在紫外可见波段表现出较强的吸收,以206nm、238nm和256nm为中心的紫外吸收带对应着410nm、480nm和506nm的发光。结合γ射线和电子的辐照效应我们认为这是晶体中F和F+色心引起的。电子顺磁共振(EPR)实验结果表明,经γ射线及电子辐照后蓝宝石中产生了F+色心,由于蓝宝石中F3+色心浓度较小,电子顺磁共振谱上未发现明显信号。同时由于SAPMAC法蓝宝石质量较高,EPR谱图上未出现Fe3+和Cr3+等其它生长方法常见的杂质离子峰值。热释光(TL)实验结果显示,经γ射线辐照后蓝宝石在219℃、223℃和216℃产生新的吸收峰值,而电子辐照后在223℃和242℃产生新的吸收峰值,结合文献报道得出这几处峰值是由于F型色心所引起的,同时发现这几处吸收峰值强度较大,而且是稳定的热释光峰值。通过对辐照前后蓝宝石的正电子湮灭(PAT)寿命谱分析,发现蓝宝石经γ射线辐照后,正电子寿命τ1变化不大,而经电子辐照后,正电子寿命τ1变化较大。随着γ射线及电子辐照剂量的增加,其正电子寿命增大,说明蓝宝石缺陷浓度随着辐照剂量的增加而增加。
     对比蓝宝石在1200℃空气炉中保温3h前后的吸收光谱显示,在紫外可见波段未出现明显的吸收峰值,说明退火后蓝宝石中的色心浓度基本消失。
The optical window of sapphire will be irradiated by rays and ion beam during it’s service, such asγ-ray and electron flow. The optical capability will be reduced. We choose the typicalγ-ray and electron flow to irradiate optical window of sapphire grown by SAPMAC method and changes in optical and structural properties were investigated in this paper.
     The PIXE result indicates that the sapphire grown by SAPMAC method has low impurity content. AFM showsγ-ray has a little impact on the surface roughness of sapphire, however electron flow damage the surface roughness of sapphire more greatly. The absorption spectra and fluorescence spectra of large sapphire irradiated byγ-ray and electron flow was measured. The experimental results show there are some absorption peaks of 206 nm, 238 nm and 256 nm; the fluorescence spectra correspond to these peaks are 410nm, 480nm and 506nm. Further study suggests the color centers are cause by the presence of oxygen vacancy (F and F+). The EPR display that there are F+ color centers in sapphire after irradiated byγ-ray and electron flow. Because of the concentration of F3+ in sapphire is low, so there isn’t any signal in the EPR spectra. And Fe3+ and Cr3+ signal was also not detected in EPR spectra. The results of TL reveal that there are new peaks at 216℃、219℃and 223℃induced byγ-ray and new peaks at 223℃and 242℃are induced by electron flow. The peaks at these temperatures are due to F color centers in sapphire and the intensity of these peaks is high and stabilized. The analysis of PAT announces that after irradiated byγ-ray and electron flow the positron life ofτ1 changes a little, whereas after irradiated by electron flow the positron life ofτ1 changes greatly. Along with the increase of the dose ofγ-ray and electron flow, the concentration of defects in sapphire also increased.
     Measures to bring down the concentration of color centers in sapphire are also proposed. After 3h of annealing in air, there is no obvious signal detected in the absorption spectra.
引文
1李世清,鄢和平.空间辐照效应.核物理动态. 1995, 12(3): 40-42
    2齐亚范.空间光学材料.材料导报. 1993, (4): 39-42
    3 M.Viswanathan, G. K. M. Thutupalli. Development and Characterization of High Efficiency Metallic Reflectors. Proceedings of SPIE on Space Optical Materials and Space Qualification of Optics. 1989, 1118: 120-123.
    4齐亚范,方敬忠.轻型结构石英反射光学稳定性的研究.光电工程. 1994, 21(6): 12-19
    5蒋成勇.不同射线对高温氧化物晶体辐照效应的研究.中国科学院上海光机所. 2004:3-5
    6王崇鲁.白宝石单晶.天津科学技术出版社, 1982:10-12
    7聂辉,陆炳哲.蓝宝石及在军用光电设备上的应用.舰船电子工程. 2005, 25(2): 131-133
    8廖毅.空间辐照环境及红外光子探测器的辐照效应.红外. 2006, 27(5): 125-128
    9李虎侯.结晶固体的辐射损伤与释光.核技术. 1999, 22(10): 583
    10陈国珍,林国成.低地球轨道带电粒子辐射环境对航天器的影响.中国空间科学技术. 1994, (6): 43-48
    11刘海,何世禹等.空间辐照环境对光学材料作用效应的模拟研究.光学技术. 2002, 28(1): 44-45
    12 V. V. Abraumov, N. N. Agashkova, et al. Investigation of Blistering Flaking Effect and VUV-radiation Creep at Sspace Systems. International Symposium on Materials in a Space Environment. Toulou, France. 1997: 78-86
    13 D. R. Schmitt, G. Ringel,et al. Hampe Degradation Effects of Optical Components in the Low Orbit 7th International Symposium on Materials in Space Environment, Toulou, France, 1997,16-20: 257-263
    14 C. A. Nicolettn, A. G. Eubanks. Effect of Simulated Space Radiation on Selected Optical Materials. NASA TN D-6758, N72-24836: l-14
    15 F. John. Kircher Effects of Radiation on Materials and Components Chapman&Hall, Ltd, London 1964: 11-22
    16曹建中等.半导体材料的辐射效应.北京:科学出版社, 1993: 18-45
    17复旦大学,清华大学,北京大学合编.原子核物理实验方法(上册),北京:原子能出版社, 1981: 36-74
    18李承华.辐射技术基础.北京:原子能出版社, 1988: 1-46
    19樊程芳,吴茂良.核辐射装置及其应用,四川成都:四川大学出版社, 1988: 59-62, 193-205
    20王广厚.粒子同固体相互作用物理学(上册),北京:科学出版社, 1988:12-15
    21王广厚.粒子同固体相互作用物理学(下册),北京:科学出版社, 1988:116-118
    22黄光琳,冯雨丁,吴茂良.高分子辐射化学基础,成都:四川大学出版社, 1993: 1-55
    23万发荣.金属材料的辐射损伤,北京:科学出版社, 1993:32-35
    24 A. J.斯奥罗.辐射化学导论,北京:原子能出版社, 1985: 1-50
    25 A. A.巴巴特一扎赫里亚宾等著,何大智译.辐射受激化学热处理,北京:国防工业出版社, 1988:85-88
    26杨福家,王炎森.陆福全.原子核物理.复旦大学出版社, 1993:73-76
    27张通和,吴瑜光.离子束材料改性科学和应用.科学出版社, 1999:32-38
    28 B. D. Evans, M. Stapelbroek. Optical Properties of the F+ Center in Crystalline Al2O3. Phys. Rev. B. 1978, 18(12): 7089-7098
    29 G. P. Summers. Defects in Unirradiatedα-Al2O3. Phys. Rev.1979,19(2): 1172-1177
    30韩杰才等.泡生法制备大尺寸蓝宝石单晶体.人工晶体学报. 2005, 34(1)
    31 R. A.劳迪斯著,刘光照译,单晶生长.北京:科学技术出版社. 1979, 205
    32 A. E. Palpdino, B. D. Roiter. Czochralski Growth of Sapphire. Journal of American Ceramic Society. 1964, 47: 465 -468
    33 D. Viechnicki, F. Schmid . Crystal Growth Using the Heat Exchanger Method.Journal of Crystal Growth. 1974, 26:162-165
    34 P. K. Chandra, S. Frederick.Growth of the World’s Largest Sapphire Crystals.Journal of Crystal Growth. 2001, 225: 572-575
    35 C. P. Khattak, F. Schmid.Production of Near-net-shaped Sapphire Domes Using the Heat Exchanger Method. SPIE. 1992, 1760: 41-43
    36 J. S. HAN. The Development of Crystal Growth Technology. Crystal Growth Technology. John Wiley & Sons, Ltd. 2003: 4-8
    37 R. T. Cox. Electron Spin Resonace Studies of Holes Trapped at Mg2+,L+ and Cation Vacancies in Al2O3. Solid State Communication. 1971, 9: 1989-1992
    38 B. G. Draeger, G. P. Summers. Defects in Unirradiatedα-Al2O3. Physical Review B.1979, 19(2): 1172-1177
    39 G. J. Pogatshnik, Y. Chen, Enhancement of Color Center Luminescence in Neutron Irradiatedα- Al2O3. Journal of Luminescence. 1998, 40: 315-31
    40 M. Aizengendler, I. Dolindo. Hole-burning Induced Spectral-spatial Gratings in Neutron-colored Sapphire. SPIE.1990, 1319: 144-145
    41张晋,林理彬,林理忠等. V: Al2O3的电子及中子辐照改性的研究.人工晶体学报. 1998, 27(3): 246-250
    42 P. W. Levy. Color Centers and Radiation-induced Defects in Al2O3. Phys. Rev. 1961, 123(4): 1226-1233
    43 T. J. Turner, J. H. Crawford. Nature of the 6.1-eV Band in Neutron Irradiated Single Crystal. Phys. Rev. B. 1976, 13(4): 1735-1740
    44 Lee, J. H. Crawford. Electron Centers in Single-crystal Al2O3, Phys. Rev. B. 1977, 15(8): 4065-4074
    45 J. H. Crawford. Additive Coloration of Sapphire. Appl. Phys. Lett. 1978, 33(4): 273-275
    46 V. A. Borodin, et al. Void Formation upon Annealing of Shaped Sapphire Crystals. Crystal growth. 1990, 104: 157-164
    47 N. A. Kulagin. Radiative Color Centers in Doped Sapphire Crystals. CONDENSED MATTER SPECTROSCOPY. 2006, 101(1): 427-434
    48伍登学等.制备尖晶石超微粉的反应机理及工艺研究.四川大学学报(自然科学版). 1993, 30(1): 57
    49 H. C. Park, et al. Grain Growth in Sintered MgA12O4 Spinel. Mater. Scien. Let. 1997, 16: 1841-1844
    50 S. Furuno,et al. Ion Irradiation and Annealing Effects in Al2O3 and MgA12O4. Nucl. Instr. and Meth in Phys. Res. B. 1997, 127-128: 181-185
    51 K. Tanimura, et al. Volume Change of A12O3 and MgA12O4 Induced by 14-Mev Neutron Irradiation. Nucl. Mater. 1987, 150: 182-185
    52 A. Ibarra, et al. Dose Dependence of Neutron Irradiation Effects on MgAl2O4. J. Nucl. Mat. 1998, 258-263: 1902-1907
    53 G. S. White, K. H. Lee, J. H. Crawford. Effects ofγ-Irradiation upon theOptical Behavior of Spinel. Phys. Stat. Sot. 1977, 42: 137-141
    54 J. M. Buch. Mollwo-Ivey Relation between Peak Color-center Absorption Energy and Average Oxygen Ion Spacing in Several Oxides of Group-II and-III Metals. Physical Review B. 1977, 16: 724- 725
    55 G. P. Summers, et al. Radiation Damage in MgA12O4. Physical Review B. 1980, 21(6): 2578
    56 L. S. Cain , et al. Optical Transitions in Neutron-irradiated Spinel Crystals. Physical Review B. 1988, 37(5): 2645-2652
    57 A. Ibarra, et al. V center in MgA12O4 Spinels. Physical Review B. 1991, 44(14): 7256-7262
    58 A. Ibarra, et al. Thermo luminescence Processes of MgA12O4 Irradiated at Room Temperature. Physical Review B. 1991, 44(22): 12158-12165
    59 D. A. Tossell, et al. Window and Dome Technologies and Materials. SPIE. 1992, 1760: 268-272
    60 C .J. Berierley , M. C. Costello, M.D.Hudson, et al. Diamond Coatings For Large Area IR Windows. SPIE ,1992,2286 :307
    61雷青松,孙亦宁等. ZnS窗口上过渡层的研究.真空与低温. 1999, 5(1): 21-23
    62 H.S. Cheng, et al. Nucl. Instr. Meth. 1996, B118: 377
    63唐强,张纯祥.热释光和光释光发光谱的测量.发光学报. 2006, 27(3): 308-312
    64周国清.温梯法生长蓝宝石晶体和缺陷研究.中国科学院上海光机所. 2000:20-25
    65 M. S. Akselrod, et al. Radiat. Prot. Dosim. 1990,32 (15):211-215
    66 Lin, et al. Defects in Sapphire: Mn Induced by Neutron Irradiation. Nucl Instr and Meth in Phys Res B. 1998, 141: 405-454
    67 K. Atobe, et al. Recombination Luminescence in Reactor and 14MeV Neutron Irradiation Al2O3. Journal of Luminescence. 1988, 40/41: 317-318
    68 J. Zhang, et al. Electron and Neutron Irradiation Effects of Al2O3: V. Nucl Instr and Meth in Physics Research B. 1998, 141: 446-449
    69 K. H. Lee, et al. Optical and ESR Studies of Hole Centers inγ-Irradiated Al2O3. Phys. Stat. Sol. 1977,39: 669

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700