聚变堆材料钒合金和铍固体辐照效应的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相比传统能源,核聚变能具有原料储量丰富、反应可控和清洁无污染等优点,被认为是解决人类未来能源的终极方案。为了在聚变装置中成功实现核聚变能,聚变堆面向等离子体材料和结构材料必须能在长期高温和14MeV中子辐照下保持高的热机械稳定性、低的中子活化特性、优良的热力学性能,特别是抗中子辐照性能。微观上,中子与材料的作用包括弹性碰撞造成的离位损伤和核嬗变反应产生氢、氦杂质;宏观上则表现为材料的肿胀、蠕变、起泡、硬化和脆化。这就成为物理学、材料科学、化学等多个学科的研究热点。虽然国内外对聚变堆关键材料已经开展了大量的研究,积累了丰富的实验数据,但对于中子辐照损伤效应的微观机理仍存在许多亟待深入研究的问题。因此澄清聚变环境下中子辐照材料引起的各种物理过程和微观机理,并加以有效地控制,是未来核聚变能实现的重要环节之一。
     目前,低活化钒合金和低原子序数铍分别被作为聚变堆候选结构材料和面向等离子体材料,对它们的深入研究有助于揭示材料从微观行为到宏观性能的演变规律,为高性能聚变材料的设计和改进提供科学依据。本论文主要选取聚变堆关键材料——体心立方钒和钒合金固体,密排六方铍固体作为研究对象,采用基于密度泛函理论的计算机模拟研究了在原子尺度下H、He、O和C杂质的滞留、扩散和偏聚行为;H/He杂质与空位缺陷的相互作用、氢-空位/氦-空位复合物的团簇化和解离机制;氢泡和氦泡形成的物理起源和微观机理。最后采用有限元方法宏观模拟了聚变堆第一壁材料服役行为。
     对于结构材料钒合金,聚变环境下材料体内有大量的嬗变产物H和He杂质形成,对材料的性能和稳定性产生严重的影响。首先采用随机固溶体模型和第一性原理方法研究了聚变堆结构材料钒、V-4Cr-4Ti和V-5Cr-5Ti中点缺陷(H、He、自缺陷和空位)的优先占位和扩散行为,以及H-H、He-He、He-空位和自缺陷-自缺陷相互作用。He-空位存在很强的吸引作用,我们认为空位为H和He杂质聚集提供了场所。合金元素Ti和Cr对V-Cr-Ti合会中H和He的扩散起到抑制作用。其次,为了解释He-空位作用与氦泡形成之间的关系,采用第一性原理方法考察了He和空位的扩散行为,He、空位和He-空位团簇的稳定性。He的高扩散速率和He在空位处的低形成能解释了He杂质向空位聚集的根源。基于第一性原理结果,采用经验方法评估了He的扩散率。最后,为理解钒空位对H杂质的捕获行为,采用第一性原理方法研究了钒固体中H-空位和H-H的相互作用、H-空位团簇的结构和稳定性,给出了每捕获一个H对应H-空位复合团簇的稳定结构。空位处存在更低的电子密度解释了为什么H更容易被空位捕获。进而讨论了为什么空位能够捕获多个H杂质和氢泡形成的成核机理。
     对于面向等离子体材料铍,聚变环境下H和He杂质将通过反应等离子体的直接轰击和核嬗变反应而引入,严重影响了材料的性能和稳定性。为了理解H/He与金属铍的相互作用和解释氢泡或氦泡形成的物理起源,通过第一性原理计算考察了密排六方铍中四种杂质(H、He、O和C)的热力学稳定性和动力学扩散行为、H-空位和He-空位相互作用和空位对H/He的捕获行为。能量热力学上,O原子的固溶是一个放热过程,而H、He和C的固溶都是吸热过程。我们发现空位的存在明显降低了氢或氦杂质的固溶能,为H和He聚集提供了场所,铍单空位最多能捕获5个H原子或12个He原子,这就为实验上观测到气泡通常会在空位型缺陷附近形成提供合理的解释。当前结果也为进一步理解这些杂质的聚集和辐照损伤过程中早期的气泡行为提供了初步的物理图像。
     最后,为了评估正常国际热核聚变堆(ITER)运行下第一壁材料的宏观热力学行为,我们考虑到第一壁材料的热沉积来自等离子体面加热和中子体加热,采用有限元方法对等离子体和中子共同热负载下第一壁材料的响应进行了宏观模拟,通过温度场和应力场分析对第一壁材料的热力学性能进行了评估。模拟结果显示较高热应力存在于Be层与CuCrZr层的界面处,是导致材料失效的主要原因之一,我们建议在这两层之间加入一个有效过渡层,以降低热应力产生
Fusion energy compared to traditional energy sources, which has rich raw-materials, reaction safe and controlled, clean, economical energy with nearly infinite resource, is considered as a ultimate scheme to solve mankind's future energy. To successfully achieve fusion energy in fusion devices, plasma-facing materials and structural materials under long-term high temperature and14MeV neutron irradiation must be able to maintain high thermo-mechanical stability, low-activation properties, and excellent thermodynamic properties, especially resistance to neutron irradiation performance. For microcosmic behavior, the neutron-material interactions include dispacement damage caused by the elastic collision and H/He impurities produced by nuclear transmutation reactions. For macroscopic behavior, the materials appear swelling, creep, blistering, hardening and embrittlement phenomena. This is a comprensive and complicted issue of physics, materials science, and chemical. Until now large amounts of work have been carried out for key materials of fusion reator and accumulated a great number of experimental data; however, the microscopic mechanism of effect of neutron irradiation damage is still unclear and need intensive studies. Therefore, elucidating the physical process and microscopic mechanism during neutron irradiating ma terials is one of important steps to realize the use of fusion power in the future.
     Low-activation vanadlium alloys have considered as structural materials of future fusion reactor, wihle low-Z beryllium has been used as plasma-facing materials in fusion reactor. Thus intensive studies for them are helpful for revealing the evolution laws of the materials from microscopic to macroscopic, privding the basis for design and improvement of fusion materials. In this thesis, we choose two key fusion materials, i.e., vanadium/vanadlium alloys, and beryllium solid, as research topics. Density functional theory caculations have studied (1) retention, diffusion and aggregation beahaior of H, He, O, C impurities;(2) interaction bewteen H/He impurities and vacancy defects, stability and dissociation mechanism of H-vacancy and He-vacancy complex clusters;(3) physical mechanism of H bubble and He bubble formations. In addition, we simulated macroscopic service behavior of first wall under operation of fusion reactor using finite element method.
     Vanadium alloys as structural materials in fusion environment, large amounts of H and He impurities in bulk produced by transmutation reactions have a serious effect on the performance of the material. Using random solid solution model and first-principles methods we studied occpuaying and diffusion behavior of point defects (H, He, self-defect and vacancy) in vanadium, V-4Cr-4Ti and V-5Cr-5Ti alloys; H-H, He-He, He-vacancy and self-defects-self-defect interactions. Since He-vacancy exists a strong attractive interaction, we believe that vacancy privde a location for H and He aggregation, and the incorporation of Ti and Cr alloy elements can restrain H and He diffusion. Secondly, to explain the relationship between He-vacancy interactions and He bubble formation, first-principles calculations studied diffusion behavior of He and vacancy, stability of He, vacancies and of He-vacancy clusters. He high diffusion rate and low formation energy at vacancy is physical origin of He aggregating to vacancy. Based on first-principles results, we evaluate He diffusion rate in vanadium using empirical methods. Finally, to understand vacancy trapping for H in vanadium, we computed the interactions of H-vacancy and H-H, and the stability of H-vacancy clusters using first-principles methods. Lower electron density at vacancy explains why H is easier to be trapped by vacancy. And then we discuss why single vacancy can accommodate multiple H and nucleation mechanism of H bubble.
     For plasma-facing materials beryllium in fusion environment, H and He impurities from direct plasma bombardment and transmutation reactions seriously influence on the performance of the material. To understand H/He-Be interactions and elucidate the physical origin of H bubble and He bubble formation, we investigated energetics and diffusion behavior of H, He, O, and C impurities in hcp beryllium, H-vacancy and He-vacancy interactions, and H or He trapping at vacancy using first-principles methods. Overall, the O solution in bulk is an exothermic process, while the solution of H, He and C is an endothermic process. We found that the presence of vacancy markedly decreased solution energy of H or He, and a momovacancy can trapp up to5H or12He atoms. This gives an explanation for why H and He bubbles were experimentally observed at vacancy defects in materials. Theoretical results provide an elementary physical picture for H/He aggregation and blister formation in the early stage of irradiation damage.
     Finally, to assess the macroscopic thermodynamic behavior of first wall materials under normal operation for International Thermonuclear Experimental Reactor (ITER), we considered thermal deposition in first wall from plasma surface heating and neutron body heating, and simulated the combined effects of plasma heating and neutron heating loads in first wal by temperature and stress analysis using finite element method. The results show that high thermal stress exists in the interface of Be layer and CuCrZr layer, we suggest adding an effective buffer layer between two layers to reduce the thermal stress.
引文
[1]王乃彦.聚变能及其未来[M],清华大学出版社,北京,2001.
    [2]Cook I. Materials research for fusion energy, Nat Mater[J],2006,5:77.
    [3]邱励俭.聚变能及其应用[M],科学出版社,北京,2008.
    [4]Perkins L J. The role of inertial fusion energy in the energy marketplace of the 21st century and beyond, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment[J],1998,415:44.
    [5]Konishi S. Use of fusion energy as a heat for various applications, Fusion Engineering and Design[J],2001,58-59:1103.
    [6]Chen Y. Energy Science & Technology in China:A Roadmap to 2050 [J], Science Press, Beijing, 2009.
    [7]D'haeseleer W D. The importance of fusion development towards a future energy source, Fusion Engineering and Design[J],2003,66-68:3.
    [8]Lechon Y, Cabal H, Varela M, et al. A global energy model with fusion, Fusion Engineering and Design[J],2005,75-79:1141.
    [9]Varandas C. EURATOM strategy towards fusion energy, Energy Conversion and Management[J], 2008,49:1803.
    [10]冯开明.可控核聚变与国际热核实验堆(ITER)计划,核电研发[J],2009,3:212.
    [11]郝嘉琨.聚变堆材料[M],化学工业出版社,北京,2007.
    [12]Roth J R著,李兴中泽.聚变能引论[M],清华大学出版社,北京,1993.
    [13]徐国盛. “人造太阳”人类未来能源的希望[R],2011.
    [14]ITER Technical Basis, ITER EDA Documentation Series No 24[M], IAEA, Vienna 2002.
    [15]吴宜灿.聚变核技术与交义应用[R],2011.
    [16]郁金南.材料辐照效应[M],化学工业出版社,北京,2007.
    [17]Stoneham A M and Et A1. Innovative materials for fusion power plant structures: separating functions, Journal of Physics:Condensed Matter[J],2004,16:S2597.
    [18]万发荣.金属材料的辐照损伤[M],科学出版社,北京,1993.
    [19]Baluc N. Materials for fusion power reactors, Plasma Physics and Controlled Fusion[J], 2006,48:B165.
    [20]Suri A K, Krishnamurthy N and Batra I S. Materials issues in fusion reactors, Journal of Physics:Conference Series[J],2010,208:012001.
    [21]Huang Q Y, Wu Y C, Li J G, et al. Status and strategy of fusion materials development in China, Journal of Nuclear Materials[J],2009,386-388:400.
    [22]Muroga T, Nagasaka T, Chen J M, et al. Characterization for fusion candidate vanadium alloys, Plasma Science & Technology[J],2004,6:2395.
    [23]Gilbert M R and Sublet J-C. Neutron-induced transmutation effects in W and W-alloys in a fusion environment, Nuclear Fusion[J],2011,51:043005.
    [24]Klueh R L and Bloom E E. Radiation facilities for fusion reactor first wall and blanket structural materials development, Nuclear Engineering and Design[J],1982,73:101.
    [25]Chernov V M, Leonteva-Smirnova M V, Potapenko M M, et al. Structural materials for fusion power reactors—the RF R&D activities, Nuclear Fusion[J],2007,47:839.
    [26]Loomis B A and Smith D L. Vanadium alloys for structural applications in fusion systems: a review of vanadium alloy mechanical and physical properties, Journal of Nuclear Materials[J],1992,191-194:84.
    [27]Kirillov I R, Danilov I V, Sidorenkov S I, et al. Liquid lithium self-cooled breeding blanket design for ITER, Fusion Engineering and Design[J],1998,39-40:669.
    [28]Smith D L, Chung H M, Loomis B A, et al. Development of vanadium-base alloys for fusion first-wall--blanket applications, Fusion Engineering and Design[J],1995,29:399.
    [29]Chung H M, Loomis B A and Smith D L. Properties of V-4Cr-4Ti for application as fusion reactor structural components, Fusion Engineering and Design[J],1995,29:455.
    [30]Budilkin N I, Alekseev A B, Golikov I V, et al. Comparison of mechanical properties and structure of vanadium alloys relevant to DEMO conditions of the first wall and blanket, Journal of Nuclear Materials[J],1996,233:431.
    [31]Chung H M, Loomis B A and Smith D L. Development and testing of vanadium alloys for fusion applications, Journal of Nuclear Materials[J],1996,239:139.
    [32]Matsui H, Fukumoto K, Smith D L, et al. Status of vanadium alloys for fusion reactors, Journal of Nuclear Materials[J],1996,233-237:92.
    [33]Smith D L, Chung H M, Loomis B A, et al. Reference vanadium alloy V-4Cr-4Ti for fusion application, Journal of Nuclear Materials[J],1996,233-237:356.
    [34]Smith D L, Chung H M, Matsui H, et al. Progress in vanadium alloy development for fusion applications, Fusion Engineering and Design[J],1998,41:7.
    [35]Zinkle S J, Matsui H, Smith D L, et al. Research and development on vanadium alloys for fusion applications, Journal of Nuclear Materials[J],1998,258-263:205.
    [36]Smith D L, Billone M C and Natesan K. Vanadium-base alloys for fusion first-wall/blanket applications, International Journal of Refractory Metals and Hard Materials [J],2000, 18:213.
    [37]Muroga T, Gasparotto M and Zinkle S J. Overview of materials research for fusion reactors, Fusion Engineering and Design[J],2002,61-62:13.
    [38]Muroga T, Nagasaka T, Abe K, et al. Vanadium alloys-overview and recent results, Journal of Nuclear Materials[J],2002,307:547.
    [39]Tsai H, Johnson W R, Yan Y, et al. Performance of V-4Cr-4Ti material exposed to the DIII-D tokamak environment, Journal of Nuclear Materials[J],2002,307-311, Part 1: 605.
    [40]许增裕.聚变材料研究的现状和展望,原子能科学技术[J],2003,37:105.
    [41]Chen J M, Muroga T, Qiu S Y, et al. The development of advanced vanadium alloys for fusion applications, Journal of Nuclear Materials[J],2004,329-333, Part A:401.
    [42]Chuto T, Yamamoto N, Nagakawa J, et al. Creep rupture properties of helium implanted V-4Cr-4Ti alloy NIFS-HEAT-2, Journal of Nuclear Materials[J],2004,329-333, Part A:416.
    [43]Kurtz R J, Abe K, Chernov V M, et al. Recent progress on development of vanadium alloys for fusion, Journal of Nuclear Materials[J],2004,329-333, Part A:47.
    [44]李增德,崔舜,林晨光,等.聚变用 V-Cr-Ti合金的研究现状与展望,稀有金属[J],2007,31:840.
    [45]Chen J M, Chernov V M, Kurtz R J, et al. Overview of the vanadium alloy researches for fusion reactors, Journal of Nuclear Materials[J],2011,417:289.
    [46]Tsai H, Bray T S.Matsui H, et al. Effects of low-temperature neutron irradiation on mechanical properties of vanadium-base alloys, Journal of Nuclear Materials[J],2000, 283-287, Part 1:362.
    [47]Chen J M, Xu Z Y and Yang L. The influence of hydrogen on tensile properties of V-base alloys developed in China, Journal of Nuclear Materials [J],2002,307:566.
    [48]Seletskaia T, Osetsky Y N, Stoller R E, et al. Calculation of helium defect clustering properties in iron using a multi-scale approach, Journal of Nuclear Materials[J],2006, 351:109.
    [49]Hatakeyarma M,Tamura S,Muroga T, et al. The diffusion behaviors of interstitial impurities in V-4Cr-4Ti alloys under ion irradiation, Journal of Nuclear Materials[J],2007,367-370, Part A:882.
    [50]Kulsartov T, Shestakov V, Chikhray Y, et al. Studies of reactor irradiation effect on hydrogen isotope release from vanadium alloy V4Cr4Ti, Journal of Nuclear Materials[J], 2007,367-370, Part A:844.
    [51]Masuda J, Hashizume K, Otsuka T, et al. Diffusion and trapping of tritium in vanadium alloys, Journal of Nuclear Materials[J],2007,363-365:1256.
    [52]Nita N, Miyawaki K and Matsui H. Effects of interstitial impurity on behavior of helium-defect complexes in vanadium studied by THDS, Journal of Nuclear Materials[J], 2007,367-370:505.
    [53]Oku D, Yamada T, Hirohata Y, et al. Retention and desorption behavior of helium in oxidized V-4Cr-4Ti alloy, Journal of Nuclear Materials[J],2007,367-370, Part A: 864.
    [54]Fukumoto K,Narui M, Matsui H, et al. Environmental effects on irradiation creep behavior of highly purified V-4Cr-4Ti alloys (NIFS-Heats) irradiated by neutrons, Journal of Nuclear Materials [J],2009,386-388:575.
    [55]Kuroiwa H, Fukumoto K-I, Narui M, et al. Mechanical properties of neutron-irradiated vanadium alloys in a liquid-sodium environment, Journal of Nuclear Materials[J],2009, 386-388:594.
    [56]Suzuki T and Takata K. Permeation of hydrogen in vanadium:II:Theoretical details, Materials Science and Engineering:A[J],1993,163:99.
    [57]Tanaka M and Matsui H. Effects of implanted helium on the mechanical-properties of vanadium-based binary-alloys, Materials Transactions Jim[J],1993,34:1083.
    [58]Budylkin N, Voloschin L, Mironova E, et al. Hydrogen isotopes mobility and trapping in V-Cr-Ti alloys, Journal of Nuclear Materials[J],1996,233:1160.
    [59]Fedorov A V,Van Veen A and Ryazanov A I. Nucleation and growth of helium-vacancy clusters in vanadium and vanadium alloys:V-5Ti, V-3Ti-1Si, V-5Ti-5Cr, Journal of Nuclear Materials[J],1996,233-237:385.
    [60]Medvedev O A, Ryazanov A I, Lyubimov A N, et al. Mechanical properties of oxygen-injected vanadium alloy for application as structural component material for international thermonuclear experimental reactor, Journal of Nuclear Materials[J],1996,233-237, Part 1:460.
    [61]Natesan K,Soppet W K and Uz M. Effects of oxygen and oxidation on tensile behavior of V-4Cr-4Ti alloy, Journal of Nuclear Materials[J],1998,258-263, Part 2:1476.
    [62]Rohrig H D, Distefano J R and Chitwood L D. Effect of hydrogen and oxygen on the tensile properties of V-4Cr-4Ti, Journal of Nuclear Materials[J],1998,258:1356.
    [63]Serra E, Benamati G and Ogorodnikova 0 V. Hydrogen isotopes transport parameters in fusion reactor materials, Journal of Nuclear Materials[J],1998,255:105.
    [64]Aoyagi K,Torres E P, Suda T, et al. Effect of hydrogen accumulation on mechanical property and microstructure of V-Cr-Ti alloys, Journal of Nuclear Materials[J],2000, 283:876.
    [65]Bray T S, Tsai H, Nowicki L J, et al. Tensile and impact properties of V-4Cr-4Ti alloy heats 832665 and 832864, Journal of Nuclear Materials [J],2000,283-287, Part 1:633.
    [66]Chen J M, Qiu S Y, Yang L, et al. Effects of oxygen, hydrogen and neutron irradiation on the mechanical properties of several vanadium alloys, Journal of Nuclear Materials[J],2002,302:135.
    [67]Torres P, Aoyagi K, Suda T, et al. Hydride formation and fracture of vanadium alloys, Journal of Nuclear Materials[J],2002,307:625.
    [68]谌继明.中子辐照对钒合金强塑性的影响及其温度效应,核聚变与等离子体物理[J],2002,22:209.
    [69]谌继明.合金元素和氢、氧对钒合金拉伸性能的影响,材料科学与工艺[J],2002,10:366.
    [70]谌继明,室贺健夫,许增裕,等.聚变应用钒合金抗氢脆性能的合金化设计,金属学报[J],2002,38:839.
    [71]Chen J M, Muroga T, Nagasaka T, et al. Precipitation behavior in V-6W-4Ti, V-4Ti and V-4Cr-4Ti alloys, Journal of Nuclear Materials[J],2004,334:159.
    [72]Chen J M, Muroga T, Qiu S Y, et al. Hydrogen embrittlement of a V4Cr4Ti alloy evaluated by different test methods, Journal of Nuclear Materials[J],2004,325:79.
    [73]Chen J M, Qiu S Y, Muroga T, et al. The hydrogen-induced ductility loss and strengthening of V-base alloys, Journal of Nuclear Materials[J],2004,334:143.
    [74]Ohnuki S, Yasuda T, Suda T, et al. Effect of alloying elements and neutron-irradiation on hydrogen behavior in V alloys, Journal of Nuclear Materials[J],2004,329:481.
    [75]Yamauchi Y,Yamada T, Hirohata Y, et al. Deuterium retention in V-4Cr-4Ti alloy after deuterium ion irradiation, Journal of Nuclear Materials[J],2004,329-333, Part A: 397.
    [76]Liu X, Tsuyoshi Y, Yuji Y, et al. Investigation on Retention and Release Behaviors of Hydrogen and Helium in Vanadium Alloy, Plasma Science and Technology[J],2005,7:2835.
    [77]邱绍宇,谌继明,陈勇,等.钒合金的氢致硬化和氢脆,原子能科学技术[J],2005,39:24.
    [78]Fukumoto K-I,Matsui H, Candra Y, et al. Radiation-induced precipitation in V-(Cr, Fe)-Ti alloys irradiated at low temperature with low dose during neutron or ion irradiation, Journal of Nuclear Materials[J],2000,283-287, Part 1:535.
    [79]Hatano Y, Nanjo Y, Hayakawa R, et al. Permeation of hydrogen through vanadium under helium ion irradiation, Journal of Nuclear Materials[J],2000,283-287, Part 2:868.
    [80]Hirohata Y, Yamada T, Yamauchi Y, et al. Deuterium and helium retentions of V-4Cr-4Ti alloy used as first wall of breeding blanket in a fusion reactor, Journal of Nuclear Materials[J],2006,348:33.
    [81]Hirohata Y, Yamada T, Yamauchi Y, et al. Helium thermal desorption and retention properties of V-4Cr-4Ti alloy used for first wall of breeding blanket, Fusion Engineering and Design[J],2006,81:193.
    [82]Distefano J R and Devan J H. Reactions of oxygen with V-Cr-Ti alloys, Journal of Nuclear MaterialstJ],1997,249:150.
    [83]Distefano J R, De Van J H, Rohrig D H, et al. Reactions of hydrogen with V-Cr-Ti alloys, Journal of Nuclear Materials[J],1999,273:102.
    [84]Distefano J R, Pint B A, Devan J H, et al. Effects of oxygen and hydrogen at low pressure on the mechanical properties of V-Cr-Ti alloys, Journal of Nuclear Materials[J], 2000,283-287, Part 2:841.
    [85]Billone M C, Donne M D and Macaulay-Newcombe R G. Status of beryllium development for fusion applications, Fusion Engineering and Design[J],1995,27:179.
    [86]Khomutov A M, Davydov D A, Gorokhov V A, et al. Status of beryllium materials for fusion application, Journal of Nuclear Materials[J],1996,233-237:111.
    [87]Conn R W, Doerner R P and Won J. Beryllium as the plasma-facing material in fusion energy systems--experiments, evaluation, and comparison with alternative materials, Fusion Engineering and Design[J],1997,37:481.
    [88]Deksnis E B,Peacock A T, Altmann H, et al. Beryllium plasma-facing components:JET experience, Fusion Engineering and Design[J],1997,37:515.
    [89]Raffray A R, Federici G, Barabash V, et al. Beryllium application in ITER plasma facing components, Fusion Engineering and Design[J],1997,37:261.
    [90]Roth J, Eckstein W and Guseva M. Erosion of Be as plasma-facing material, Fusion Engineering and Design[J],1997,37:465.
    [91]Kupriyanov I B,Gorokhov V A, Melder R R, et al. Investigation of ITER candidate beryllium grades irradiated at high temperature, Journal of Nuclear Materials[J],1998, 258-263:808.
    [92]Janeschitz G. Plasma-wall interaction issues in ITER, Journal of Nuclear Materials[J], 2001,290-293:1.
    [93]Barabash V, Peacock A,Fabritsiev S, et al. Materials challenges for ITER-Current status and future activities, Journal of Nuclear Materials[J],2007,367-370:21.
    [94]Andreev D V,Biryukov A Y, Danelyan L S, et al. Studies of tritium desorption from beryllium and characterization of erosion products under plasma-beryllium interaction, Fusion Engineering and Design[J],1998,39-40:465.
    [95]Ishitsuka E, Kawamura H, Terai T, et al. Microstructure and mechanical properties of neutron irradiated beryllium, Journal of Nuclear Materials[J],1998,258-263:566.
    [96]Vagin S P, Chakrov P V,Utkelbayev B D, et al. Microstructural study of hydrogen-implanted beryllium, Journal of Nuclear Materials[J],1998,258-263:719.
    [97]Chakin V P, Kazakov V A, Teykovtsev A A, et al. High dose neutron irradiation damage in beryllium as blanket material, Fusion Engineering and Design[J],2001,58-59:535.
    [98]Causey R A. Hydrogen isotope retention and recycling in fusion reactor plasma-facing components, Journal of Nuclear Materials[J],2002,300:91.
    [99]Chakin V P, Kazakov V A,Melder R R, et al. Effects of neutron irradiation at 70-200 "C in beryllium, Journal of Nuclear Materials[J],2002,307-311:647.
    [100]Kesternich W and Ullmaier H. Mechanical properties and microstructure of helium-implanted beryllium, Journal of Nuclear Materials[J],2003,312:212.
    [101]Snead L L. Low-temperature low-dose neutron irradiation effects on beryllium, Journal of Nuclear Materials[J],2004,326:114.
    [102]Brooks J N, Allain J P, Alman D A, et al. Erosion, transport, and tritium codeposition analysis of a beryllium wall tokamak, Fusion Engineering and Design[J],2005,72: 363.
    [103]Kupriyanov I B, Nikolaev G N, Vlasov V V, et al. Desorption of tritium and helium from high dose neutron irradiated beryllium, Journal of Nuclear Materials[J],2007, 367-370:511.
    [104]Reinelt M and Et Al. Retention mechanisms and binding states of deuterium implanted into beryllium, New Journal of Physics[J],2009,11:043023.
    [105]Chakin V P,Posevin A 0 and Kupriyanov I B. Swelling, mechanical properties and microstructure of beryllium irradiated at 200"C up to extremely high neutron doses, Journal of Nuclear Materials[J],2007,367-370:1377.
    [106]Wampler W R. Retention and thermal release of deuterium implanted in beryllium, Journal of Nuclear Materials[J],1984,123:1598.
    [107]Anderl R A, Hankins M R, Longhurst G R, et al. Hydrogen transport behavior of beryllium, Journal of Nuclear Materials[J],1992,196-198:986.
    [108]Chernikov V N,Ullmaier H and Zakharov A P. Gas bubbles in beryllium implanted with He ions at temperatures<700 K and after post-implantation annealing, Journal of Nuclear Materials[J],1998,258-263:694.
    [109]Abramov E,Riehm M P,Thompson D A, et al. Deuterium permeation and diffusion in high-purity beryllium, Journal of Nuclear Materials[J],1990,175:90.
    [110]Morishita K, Inoue T and Yoshida N. Microstructural evolution in beryllium by fusion-relevant low energy helium ion irradiation, Journal of Nuclear Materials[J], 1999,266-269:997.
    [111]Chakin V P and Ye Ostrovsky Z. Evolution of beryllium microstructure under high-dose neutron irradiation, Journal of Nuclear Materials[J],2002,307-311:657.
    [112]Wirth B D, Odette G R,Marian J, et al. Multiscale modeling of radiation damage in Fe-based alloys in the fusion environment, Journal of Nuclear Materials[J],2004, 329-333, Part A:103.
    [113]Samaras M and Victoria M. Modelling in nuclear energy environments, Materials Today[J],2008,11:54.
    [114]Becquart C and Domain C. Modeling Microstructure and Irradiation Effects, Metallurgical and Materials Transactions A[J],2011,42:852.
    [115]Hao W and Geng W T. Gold might slow down the growth of helium bubble in iron, Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms[J],2011,269:1428.
    [116]Hao W and Geng W T. Understanding Cr segregation at the He bubble surface in Fe, Journal of Physics-Condensed Matter[J],2012,24:
    [117]Tian Z X, Yan J X, Xiao W, et al. Effect of lateral contraction and magnetism on the energy release upon fracture in metals:First-principles computational tensile tests, Physical Review B[J],2009,79:
    [118]Yan J X, Tian Z X, Xiao W, et al. Interaction of He with Cu, V, and Ta in bcc Fe:A first-principles study, Journal of Applied Physics[J],2011,110:
    [119]Zhang L, Zhang Y, Geng W-T, et al. Towards theoretical connection between tensile strength of a grain boundary and segregated impurity concentration:Helium in iron as an example, Epl[J],2012,98:
    [120]Hao W and Geng W T. Impeding effect of Ce on He bubble growth in bcc Fe, Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms[J],2012,280:22.
    [121]Tian Z X,Xiao W, Wan F R, et al. Binary effect of He and H on the intra-and inter-granular embrittlement in Fe, Journal of Nuclear Materials [J],2010,407:200.
    [122]Fu C-C and Willaime F. Ab initio study of helium in α-Fe:Dissolution, migration, and clustering with vacancies, Physical Review B[J],2005,72:064117.
    [123]Fu C-C and Willaime F. Interaction between helium and self-defects in a-iron from first principles, Journal of Nuclear Materials[J],2007,367-370:244.
    [124]Fu C-C, Willaime F and Ordejon P. Stability and Mobility of Mono- and Di-Interstitials in α-Fe, Physical Review Letters[J],2004,92:175503.
    [125]Morishita K, Sugano R, Wirth B D, et al. Thermal stability of helium-vacancy clusters in iron, Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms[J],2003,202:76.
    [126]Vincent E, Becquart C S and Domain C. Solute interaction with point defects in a Fe during thermal ageing:A combined ab initio and atomic kinetic Monte Carlo approach, Journal of Nuclear Materials[J],2006,351:88.
    [127]Li X, Zhao J and Xu J. Mechanical properties of bcc Fe-Cr alloys by first-principles simulations, Frontiers of Physics[J],2012,7(3):360.
    [128]Jin S, Liu Y-L, Zhou H-B, et al. First-principles investigation on the effect of carbon on hydrogen trapping in tungsten, Journal of Nuclear Materials[J],2011,415:S709.
    [129]Li W-Y, Zhang Y,Zhou H-B, et al. Stress effects on stability and diffusion of H in W:A first-principles study, Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms[J],2011,269:1731.
    [130]Liu Y-L, Zhang Y, Zhou H-B, et al. Vacancy trapping mechanism for hydrogen bubble formation in metal, Physical Review B[J],2009,79:
    [131]Liu Y-L, Zhou H-B, Jin S, et al. Effects of H on Electronic Structure and Ideal Tensile Strength of W:A First-Principles Calculation, Chinese Physics Letters[J],2010,27:
    [132]Liu Y-L, Zhou H-B, Jin S, et al. Dissolution and diffusion properties of carbon in tungsten, Journal of Physics-Condensed Matter[J],2010,22:
    [133]Liu Y-L, Zhou H-B, Zhang Y, et al. Effect of He on the structure and bonding properties of W:A first-principles computational tensile test, Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms[J],2009, 267:3193.
    [134]Liu Y-L, Zhou H-B, Zhang Y, et al. Interaction of C with vacancy in W:A first-principles study, Computational Materials Science[J],2011,50:3213.
    [135]Zhou H B, Jin S, Shu X L, et al. Stress tensor:A quantitative indicator of effective volume and stability of helium in metals, Epl[J],2011,96:
    [136]Zhou H-B, Liu Y-L, Duan C, et al. Effect of vacancy on the sliding of an iron grain boundary, Journal of Applied Physics[J],2011,109:
    [137]Zhou H-B, Liu Y-L, Jin S, et al. Towards suppressing H blistering by investigating the physical origin of the H-He interaction in W, Nuclear Fusion[J],2010,50:
    [138]Zhou H-B,Liu Y-L, Jin S, et al. Investigating behaviours of hydrogen in a tungsten grain boundary by first principles:from dissolution and diffusion to a trapping mechanism, Nuclear Fusion[J],2010,50:
    [139]Zhou H-B, Liu Y-L, Zhang Y, et al. First-principles investigation of energetics and site preference of He in a W grain boundary, Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms[J],2009,267:3189.
    [140]Liu Y-L, Zhang Y, Zhou H-B, et al. Vacancy trapping mechanism for hydrogen bubble formation in metal, Physical Review B[J],2009,79:172103.
    [141]Xu J C and Zhao J J. First-principles study of hydrogen in perfect tungsten crystal, Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms[J],2009,267:3170.
    [142]Kong X-S, You Y-W, Liu C S, et al. First principles study of hydrogen behaviors in hexagonal tungsten carbide, Journal of Nuclear Materials[J],2011,418:233.
    [143]Kong X-S,You Y-W,Xia J H, et al. First principles study of intrinsic defects in hexagonal tungsten carbide, Journal of Nuclear Materials[J],2010,406:323.
    [144]Liu W, Wang W-L, Fang Q F, et al. Concise relation of substitution energy to macroscopic deformation in a deformed system, Physical Review B[J],2011,84:224101.
    [145]Chernov V M,Romanov V A and Krutskikh A 0. Atomic mechanisms and energetics of thermally activated processes of helium redistribution in vanadium, Journal of Nuclear Materials[J],1999,271-272:274.
    [146]Alonso E, Caturla M J, DiAz De La Rubia T, et al. Simulation of damage production and accumulation in vanadium, Journal of Nuclear Materials[J],2000,276:221.
    [147]Wu Z C, Peng S M, Yang M N, et al. Calculation of diffusion barriers for helium atom in vanadium by effective medium theory, Acta Metallurgica Sinica[J],2004,40:36.
    [148]Li X and Zhao J. Improved Finnis-Sinclair potential for bcc vanadium solid, Computational Materials Science[J],2012,53:101.
    [149]Li X Q, Zhao J J, Xu J C, et al. Mechanical Properties and Defective Effects of 316LN Stainless Steel by First-Principles Simulations, Journal of Materials Science & Technology[J],2011,27:1029.
    [150]Cayphas J M, Hou M and Coheur L. The behaviour of helium in neutron irradiated beryllium: a molecular dynamics study, Journal of Nuclear Materials[J],1997,246:171.
    [151]Ganchenkova M G and Borodin V A. Ab initio study of small vacancy complexes in beryllium, Physical Review B[J],2007,75:054108.
    [152]Ganchenkova M G,Borodin V A and Nieminen R M. Hydrogen in beryllium:Solubility, transport, and trapping, Physical Review B[J],2009,79:134101.
    [153]Ganchenkova M G, Vladimirov P V and Borodin V A. Vacancies, interstitials and gas atoms in beryllium, Journal of Nuclear Materials[J],2009,386-388:79.
    [154]Allouche A. Density functional study of hydrogen adsorption on beryllium (0001), Physical Review B[J],2008,78:085429.
    [155]Allouche A. Quantum Modeling of Beryllium Surface Oxidation and Hydrogen Adsorption, The Journal of Physical Chemistry C[J],2011,115:8233.
    [156]Allouche A, Oberkofler M, Reinelt M, et al. Quantum Modeling of Hydrogen Retention in Beryllium Bulk and Vacancies, Journal of Physical Chemistry C[J],2010,114:3588.
    [157]Martin R M, ed., Electronic Structure:Basic Theory and Practical Methods, Cambridge University Press, Cambridge,2004.
    [158]Sholl D S, ed., Density functional theory:A practical introduction, John Wiley & Son, INC, hoboken,2009.
    [159]Gross E K U and Kohn W. Local density-functional theory of frequency-dependent linear response, Physical Review Letters[J],1985,55:2850.
    [160]Lichtenstein A I and Katsnelson M I. Ab initio calculations of quasiparticle band structure in correlated systems:LDA++ approach, Physical Review B[J],1998,57: 6884.
    [161]Thomas L H. The calculation of atomic fields [J], Proceedings of the Cambridge Philosophical Society[J],1927,23:542.
    [162]Fermi E. Un Metodo Statistico per la Determinazione di alcune Prioprieto dell'Atomo [J], Rend R Accad Naz Lincei[J],1927,6:602.
    [163]张跃,谷景华,尚家香,等.计算材料学基础[M],北京航空航天大学出版社,北京,2007.
    [164]Born M, Oppenheimer, R. Zur Quantentheorie der Molekeln [J], Annalen der Physik[J], 1927,389:457.
    [165]Hellmann H. Einfuhrung in die Quantumchemie, Franz Duetsche, Leipizig,1937.
    [166]Feynman R P. Forces in molecules, Physical Review[J],1939,56:
    [167]Hohenberg P and Kohn W. Inhomogeneous Electron Gas, Physical Review[J],1964,136: B864.
    [168]Kohn W and Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects, Physical Review[J],1965,140:A1133.
    [169]Perdew J P, Chevary J A, Vosko S H, et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Physical Review B[J],1992,46:6671.
    [170]Perdew J P and Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy, Physical Review B[J],1992,45:13244.
    [171]杜平安,甘娥忠,于亚婷.有限元法-原理、建模及应用[M],国防工业出版社,北京,2006.
    [172]周长城,胡仁喜,熊文波.ANSYS 11.0基础与典型范例[M],电子工业出版社,北京,2007.
    [173]Gohar Y, Majumdar S and Smith D. High power density self-cooled lithium-vanadium blanket, Fusion Engineering and Design[J],2000,49-50:551.
    [174]Mukouda I.Shimomura Y, Yamaki D, et al. Microstructure in vanadium irradiated by simultaneous multi-ion beam of hydrogen, helium and nickel ions, Journal of Nuclear Materials[J],2002,307:412.
    [175]Natesan K and Soppet W K. Performance of V-Cr-Ti alloys in a hydrogen environment, Journal of Nuclear Materials[J],2000,283:1316.
    [176]Farrell K,Maziasz P J, Lee E H, et al. in Radiat. Ef f., Vol.78, in:H. Ullmaier (Ed.), 1983, p.1.
    [177]Vassen R, Trinkaus H and Jung P. Helium desorption from Fe and V by atomic diffusion and bubble migration, Physical Review B[J],1991,44:4206.
    [178]Kresse G and Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Physical Review B[J],1996,54:11169.
    [179]Kresse G and Hafner J. Ab initio molecular dynamics for liquid metals, Physical Review B[J],1993,47:558.
    [180]Blochl P E. Projector augmented-wave method, Physical Review B[J],1994,50:17953.
    [181]Kresse G and Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method, Physical Review B[J],1999,59:1758.
    [182]Monkhorst H J and Pack J D. Special points for Brillouin-zone integrations, Physical Review B[J],1976,13:5188.
    [183]Henkelman G and Jonsson H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points, The Journal of Chemical Physics[J], 2000,113:9978.
    [184]Henkelman G, Uberuaga B P and Jonsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths, The Journal of Chemical Physics[J], 2000,113:9901.
    [185]胡赓祥,蔡珣,戎咏华.材料科学基础[M],上海交通大学出版处,上海,2006.
    [186]Kittlel C. Introduction to Solid State Physics,8th ed, John Wiley & Sons, INC, Wiley, New York,2004.
    [187]Johnson B G, Gill P M W and Pople J A. THE PERFORMANCE OF A FAMILY OF DENSITY FUNCTIONAL METHODS, Journal of Chemical Physics[J],1993,98:5612.
    [188]Lundin C E, Lynch F E and Magee C B. A correlation between the interstitial hole sizes in intermetallic compounds and the thermodynamic properties of the hydrides formed from those compounds, Journal of the Less Common Metals[J],1977,56:19.
    [189]Mendelsohn M H, Gruen D M and Dwight A E. The effect of aluminum additions on the structural and hydrogen absorption properties of AB5 alloys with particular reference to the LaNi5-xAlx ternary alloy system, Journal of the Less Common Metals[J],1979, 63:193.
    [190]Somenkov V A and Irodova A V. Lattice structure and phase transitions of hydrogen in intermetallic compounds, Journal of the Less Common Metals[J],1984,101:481.
    [191]Switendick A C. in Sandia Laboratories Internal Report[P],1978:78.
    [192]Janot C, George B and Delcroix P. POINT-DEFECTS IN VANADIUM INVESTIGATED BY MOSSBAUER-SPECTROSCOPY AND POSITRON-ANNIHILATION, Journal of Physics F-Metal Physics[J],1982,12:47.
    [193]Seletskaia T,Osetsky Y, Stoller R E, et al. Magnetic Interactions Influence the Properties of Helium Defects in Iron, Physical Review Letters[J],2005,94:046403.
    [194]De Schepper L, Segers D, Dorikens-Vanpraet L, et al. Positron annihilation on pure and carbon-doped alpha-iron in thermal equilibrium, Physical Review B[J],1983,27: 5257.
    [195]Domain C and Becquart C S. Ab initio calculations of defects in Fe and dilute Fe-Cu alloys, Physical Review B[J],2001,65:024103.
    [196]Morishita K, Sugano R and Wirth B D. MD and KMC modeling of the growth and shrinkage mechanisms of helium-vacancy clusters in Fe, Journal of Nuclear Materials[J],2003, 323:243.
    [197]Ehrlich K, Bloom E E and Kondo T. International strategy for fusion materials development, Journal of Nuclear Materials[J],2000,283-287:79.
    [198]Kurtz R J, Abe K,Chernov V M, et al. Critical issues and current status of vanadium alloys for fusion energy applications, Journal of Nuclear Materials[J],2000,283-287: 70.
    [199]Braski D N. The effect of neutron irradiation on vanadium alloys, Journal of Nuclear Materials[J],2003,141-143:1125.
    [200]Adams J B and Foiles S M. Development of an embedded-atom potential for a bcc metal: Vanadium, Physical Review B[J],1990,41:3316.
    [201]Becquart C S and Domain C. Migration Energy of He in W Revisited by Ab Initio Calculations, Physical Review Letters[J],2006,97:196402.
    [202]Zhou H B, Liu Y L, Jin S, et al. Towards suppressing H blistering by investigating the physical origin of the H-He interaction in W, Nuclear Fusion[J],2010,50:115010.
    [203]Seletskaia T, Osetsky Y, Stoller R E, et al. First-principles theory of the energetics of He defects in bcc transition metals, Physical Review B[J],2008,78:134103.
    [204]Zhang P B, Zhao J J, Qin Y, et al. First-principles study of hydrogen behavior in V-Cr-Ti alloys, Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms[J],2011,269:1735.
    [205]Zhang P B, Zhao J J,Qin Y, et al. Stability and migration property of helium and self defects in vanadium and V-4Cr-4Ti alloy by first-principles, Journal of Nuclear Materials[J],2011,413:90.
    [206]Derlet P M, Nguyen-Manh D and Dudarev S L. Multiscale modeling of crowdion and vacancy defects in body-centered-cubic transition metals, Physical Review B[J],2007,76: 054107.
    [207]Nguyen-Manh D, Horsfield A P and Dudarev S L. Self-interstitial atom defects in bcc transition metals:Group-specific trends, Physical Review B[J],2006,73:020101.
    [208]Jiang D E and Carter E A. Diffusion of interstitial hydrogen into and through bcc Fe from first principles, Physical Review B[J],2004,70:064102.
    [209]Wilson W D, Bisson C L and Baskes M I. Self-trapping of helium in metals, Physical Review B[J],1981,24:5616.
    [210]Becquart C S and Domain C. An object Kinetic Monte Carlo Simulation of the dynamics of helium and point defects in tungsten, Journal of Nuclear Materials[J],2009,385: 223.
    [211]Frauenfelder R. Solution and Diffusion of Hydrogen in Tungsten, Journal of Vacuum Science and Technology[J],1969,6:388.
    [212]Myers S M,Richards P M, Wampler W R, et al. Ion-beam studies of hydrogen-metal interactions, Journal of Nuclear Materials[J],1989,165:9.
    [213]Besenbacher F, Norskov J K, Puska M J, et al. Excitation of Hydrogen Motion inside a Nickel Vacancy, Physical Review Letters[J],1985,55:852.
    [214]Fukai Y and Omacrkuma N. Formation of Superabundant Vacancies in Pd Hydride under High Hydrogen Pressures, Physical Review Letters[J],1994,73:1640.
    [215]Lu G and Kaxiras E. Hydrogen Embrittlement of Aluminum:The Crucial Role of Vacancies, Physical Review Letters[J],2005,94:155501.
    [216]Nordlander P,No/Rskov J K, Besenbacher F, et al. Multiple deuterium occupancy of vacancies in Pd and related metals, Physical Review B[J],1989,40:1990.
    [217]Fukai Y. Superabundant Vacancies Formed in Metal-Hydrogen Alloys, Physica Scripta[J], 2003,2003:11.
    [218]Fukai Y and Hidehiko S. Formation mechanism of defect metal hydrides containing superabundant vacancies, Journal of Physics:Condensed Matter[J],2007,19:436201.
    [219]Tateyama Y and Ohno T. Stability and clusterization of hydrogen-vacancy complexes in alpha -Fe:An ab initio study, Physical Review B[J],2003,67:174105.
    [220]Brouwer R C,Douwes H,Griessen R, et al. Existence of superdiffusion of hydrogen in vanadium, Physical Review Letters[J],1987,58:2551.
    [221]Fujii K, Hashizume K,Hatano Y, et al. Tracer diffusion coefficient of tritium in vanadium and trapping effect due to zirconium impurity, Journal of Alloys and Compounds[J],1998,270:42.
    [222]Nakajima H, Yoshioka M and Koiwa M. Electromigration of hydrogen in vanadium and its alloys, Acta Metallurgica[J],1987,35:2731.
    [223]Zhang P B, Zhao J J, Qin Y, et al. Stability and dissolution of helium-vacancy complexes in vanadium solid, Journal of Nuclear Materials[J],2011,419:1.
    [224]Ouyang C and Lee Y-S. Hydrogen-induced interactions in vanadium from first-principles calculations, Physical Review B[J],2011,83:045111.
    [225]Kofstad P and Wallace W E. Vapor Pressure Studies of the Vanadium-Hydrogen System and Thermodynamics of Formation of Vanadium-Hydrogen Solid Solutionsl, Journal of the American Chemical Society[J],1959,81:5019.
    [226]Takata K and Suzuki T. Permeation of hydrogen in vanadium:Ⅰ. Experimental details, Materials Science and Engineering:A[J],1993,163:91.
    [227]Veleckis E and Edwards R K. Thermodynamic properties in the systems vanadium-hydrogen, niobium-hydrogen, and tantalum-hydrogen, The Journal of Physical Chemistry[J],1969, 73:683.
    [228]Luo J,Zhou H-B,Liu Y-L, et al. Dissolution, diffusion and permeation behavior of hydrogen in vanadium:a first-principles investigation, Journal of Physics: Condensed Matter[J],2011,23:135501.
    [229]Puska M J, Nieminen R M and Manninen M. Atoms embedded in an electron gas:Immersion energies, Physical Review B[J],1981,24:3037.
    [230]Besenbacher F, Myers S M and N(?)rskov J K. Interaction of hydrogen with defects in metals, Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms [J],1985,7-8, Part 1:55.
    [231]N(?)rskov J K and Besenbacher F. Theory of hydrogen interaction with metals, Journal of the Less Common Metals[J],1987,130:475.
    [232]Merola M, Loesser D, Martin A, et al. ITER plasma-facing components, Fusion Engineering and Design[J],2010,85:2312.
    [233]Barabash V,Federici G,Linke J, et al. Material/plasma surface interaction issues following neutron damage, Journal of Nuclear Materials[J],2003,313-316:42.
    [234]Roth J, Tsitrone E, Loarte A, et al. Recent analysis of key plasma wall interactions issues for ITER, Journal of Nuclear Materials[J],2009,390-391:1.
    [235]Hirai T,Maier H,Rubel M, et al. R&D on full tungsten divertor and beryl Hum wall for JET ITER-like wall project, Fusion Engineering and Design[J],2007,82:1839.
    [236]Anderl R A, Causey R A, Davis J W, et al. Hydrogen isotope retention in beryllium for tokamak plasma-facing applications, Journal of Nuclear Materials[J],1999,273:1.
    [237]Chernikov V N,Alimov V K, Markin A N, et al. Gas swelling and related phenomena in beryllium implanted with deuterium ions, Journal of Nuclear Materials[J],1996,228: 47.
    [238]Liu M-B, Sheft I and Gruen D M. Deuterium trapping in ion-bombarded beryllium, Journal of Nuclear Materials[J],1979,79:267.
    [239]Lossev V and Kuppers J. Interaction of hydrogen atoms with beryllium (0001) surfaces, Journal of Nuclear Materials[J],1992,196-198:953.
    [240]Wampler W R. Trapping of deuterium in beryllium, Journal of Nuclear Materials[J], 1992,196-198:981.
    [241]Scaffidi-Argentina F, Piazza G and Rolli R. Microstructural analysis of beryllium samples irradiated at high temperature, Fusion Engineering and Design[J],2003,69: 505.
    [242]Krimmel H and Fahnle. M. Properties of hydrogen isotopes in the tokamak plasma-facing material beryllium, Journal of Nuclear Materials[J],1996,231:159.
    [243]Krimmel H and Fahnle. M. Hydrogen and vacancies in the tokamak plasma-facing material beryllium, Journal of Nuclear Materials[J],1998,255:72.
    [244]Ismer L,Park M S.Janotti A, et al. Interactions between hydrogen impurities and vacancies in Mg and A1:A comparative analysis based on density functional theory, Physical Review B[J],2009,80:184110.
    [245]Hirooka Y, Won J, Boivin R, et al. Effect of impurities on the erosion behavior of beryllium under steady-state deuterium plasma bombardment, Journal of Nuclear Materials[J],1996,228:148.
    [246]Rohrer G S. Structure and bonding in crystalline materinals, Cambridge, UK,2001.
    [247]Jiang D E and Carter E A. Carbon dissolution and diffusion in ferrite and austenite from first principles, Physical Review B[J],2003,67:214103.
    [248]Tunde Raji A, Scandolo S,Mazzarello R, et al. Ab initio pseudopotential study of vacancies and self-interstitials in hcp titanium, Philosophical Magazine[J],2009, 89:1629.
    [249]Hu W, Bangwei Zhang, Baiyun Huang, et al. Analytic modified embedded atom potentials for HCP metals, Journal of Physics:Condensed Matter[J],2001,13:1193.
    [250]Giese T J and York D M. High-level ab initio methods for calculation of potential energy surfaces of van der Waals complexes, International Journal of Quantum Chemistry[J],2004,98:388.
    [251]Hirth J. Effects of hydrogen on the properties of iron and steel, Metallurgical and Materials Transactions A[J],1980,11:861.
    [252]Hatano T, Suzuki S, Yokoyama K, et al. High heat flux testing of a HIP bonded first wall panel with built-in circular cooling tubes, Fusion Engineering and Design[J], 1998,39-40:363.
    [253]You J H and Bolt H. Analytical method for thermal stress analysis of plasma facing materials, Journal of Nuclear Materials[J],2001,299:9.
    [254]Castro R G, Stanek P W, Elliott K E, et al. The structure, properties and performance of plasma-sprayed beryllium for fusion applications, Physica Scripta[J],1996, T64: 77.
    [255]Kalinin G and Matera R. Comparative analysis of copper alloys for the heat sink of plasma facing components in ITER, Journal of Nuclear Materials[J],1998,258-263, Part 1:345.
    [256]Kikuchi K, Ue K, Kudo Y, et al. Crack propagation in first wall by thermal fatigue and creep, Fusion Engineering and Design[J],2000,49-50:229.
    [257]Lee D W, Bae Y D, Kim S K, et al. High heat flux test with HIP-bonded Cu/SS mock-ups for the ITER first wall, Fusion Engineering and Design[J],2008,83:1038.
    [258]Preston S D, Bretherton I and Forty C B A. The thermophysical and mechanical properties of the copper heat sink material intended for use in ITER, Fusion Engineering and Design[J],2003,66-68:441.
    [259]Schmalz F, Blom F J, Kamer S, et al. Design for in-pile thermal fatigue of first wall mock-ups under ITER relevant conditions, Fusion Engineering and Design[J],2007,82: 1820.
    [260]Tavassoli A A. Assessment of austenitic stainless steels, Fusion Engineering and Design[J],1995,29:371.
    [261]Tavassoli A a F. Materials design data for fusion reactors, Journal of Nuclear Materials[J],1998,258-263, Part 1:85.
    [262]Wu Y. Design status and development strategy of China liquid lithium-lead blankets and related material technology, Journal of Nuclear Materials[J],2007,367-370, Part B:1410.
    [263]Youchison D L, Natoni G, Narula M, et al. Computational thermo-fluid exploratory design analysis for complex ITER first wall/shield components, Fusion Engineering and Design[J],2008,83:1025.
    [264]Mitin D, Khomyakov S, Razmerov A, et al. ITER blanket module shield block design and analysis, Fusion Engineering and Design[J],2008,83:1188.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700