石英保偏光纤在辐照环境下性能退化规律与机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤陀螺仪作为精确定位和导航仪器在航天技术中被广泛应用,空间辐照环境效应能够影响其正常工作状态,其中光纤在空间辐照条件下的性能退化是影响光纤陀螺仪定位精度的重要原因。本文针对国产“熊猫”型和“一”字型两种石英保偏光纤,系统研究了在不同剂量率伽马射线、不同能量电子和质子辐照条件下辐照诱导损耗的变化规律,以及光纤中辐照缺陷的形成和演化机制,揭示了石英保偏光纤辐照诱导损耗增加的本质,建立了辐照条件下石英保偏光纤辐照诱导损耗变化的数学模型,研究结果可以为提高国产石英保偏光纤空间环境适应性及在轨运行的可靠性评价提供数据支持和理论参考。
     试验结果表明,辐照粒子在一定的能量范围内,两种石英保偏光纤的辐照诱导损耗均有明显增加。对于带电粒子辐照,只有射程达到纤芯位置时才对光传输特性产生影响,电子和质子的最低能量阈值分别为100keV和2.5MeV。石英保偏光纤辐照诱导损耗随辐照剂量(或注量)增加呈含有e指数的变化规律:开始阶段增加较快,然后趋缓,最后达到饱和。光纤的辐照诱导损耗与辐照粒子类型、能量、剂量率(或束流密度)、通光条件及光纤类型等因素密切相关。大剂量率条件下辐照诱导损耗比小剂量率时大,通光辐照条件下辐照诱导损耗比不通光时小,在相同辐照条件下,“熊猫”型石英保偏光纤辐照诱导损耗明显低于“一”字型石英保偏光纤,表现出更优异的抗辐照特性。
     辐照在纤芯中生成Si-OH缺陷对光的吸收是导致工作波长为1310nm的石英光纤损耗增加的主要原因。在试验数据的基础上,利用电子顺磁共振、X射线光电子能谱、损耗谱和傅里叶变换红外光谱等分析方法,对两种光纤中缺陷的形成机制进行研究,结果表明,纤芯中Si-OH缺陷生成依赖于两个过程:首先入射粒子使石英结构中的Si-O-Si键断裂,形成非桥氧缺陷Si-O-;其次,涂覆层PMMA发生辐照降解反应,同时形成粒子H和C=C,H通过扩散机制运动到纤芯内部。当粒子H与Si-O-相遇时,发生化学反应生成Si-OH结构。在质子辐照条件下,如果其射程达到纤芯的位置,可以直接提供反应所需的H,对Si-OH的形成有一定的促进作用。“熊猫”型光纤的石英纤芯和包层中有一定量的F,它能够与Si-OH反应,生成稳定的HF和SiO2,减少了纤芯中的Si-OH缺陷浓度,使“熊猫”型光纤的辐照诱导损耗远低于“一”字型光纤。石英光纤辐照诱导损耗的变化取决于纤芯内部Si-OH缺陷的累积过程,而这一过程又与光纤内部吸收剂量的分布相关。利用SRIM和CASINO软件进行计算的结果表明,以不同能量的带电粒子入射,其在路径上的能量损失不同,导致光纤各部位吸收剂量存在差异,从而影响纤芯中Si-OH缺陷的形成和累积过程。
     在石英光纤辐照缺陷形成机理的研究基础上,运用数学建模方法,将纤芯中缺陷累积过程与光纤辐照诱导损耗联系在一起,建立了辐照条件下石英光纤辐照诱导损耗变化的两个数学模型。模型一针对伽马射线辐照条件,给出了光纤辐照诱导损耗随辐照剂量变化呈含有e指数的关系,并考虑了辐照剂量率的影响,能够反映出剂量率对辐照诱导损耗增长速率和饱和值的影响;模型二给出了光纤辐照诱导损耗随辐照注量变化呈含有e指数的规律,反映出在带电粒子辐照条件下石英光纤辐照诱导损耗变化主要取决于辐照总注量和粒子能量。模型计算结果与试验结果对比表明,两个模型很好地反映了石英光纤在不同辐照条件下辐照诱导损耗的变化规律。
The fiber optical gyroscope has wide applications in space technology asaccurate positioning and navigation device. Its normal operation will be influencedby the space radiation environment. The major reason for that is due to theperformance degradation of its optic fiber under space radiation. The variation ofirradiation-induced loss was thus systematically investigated under irradiation of
     -ray different dose rates, electrons and protons with different energies for twodomestic silica polarization-maintaining optical fibers of "Panda" type and"Capsule" type. The mechanism for formation and evolution of irradiation-induceddefects was also studied to reveal the nature of the increase in irradiation-inducedloss of silica polarization-maintaining optical fiber. Mathematical model was thenestablished for describing the irradiation-induced loss of silica fiber. The resultsprovide data support and theoretical reference in order to improve the spaceenvironment applicability and the on-orbit operation reliability of the domesticpolarization-maintaining optical fibers.
     The test results show that both the irradiation-induced loss of twopolarization-maintaining silica optical fibers is increased under certain energy range.Only the charged particles that reach optical fiber core show effect on the opticaltransmission of fiber. The minimum energy threshold is100keV for electrons and2.5MeV for protons. The irradiation-induced loss of the polarization maintainingsilica optical fibers shows a natural exponential increase with irradiation dose (orfluence), which rises up sharply at beginning, then slowly and finally reaches tosaturate state. The irradiation-induced losses are depending on many factors such asthe type, energy, and dose rate (or flux) of irradiation, the light conditions, and thetype of optical fiber etc. The irradiation-induce optical loss is greater under higherdose rates or without light than that under lower dose rates or with light. Under thesame irradiation conditions, the "Panda" type silica polarization-maintainingexhibits better radiation resistance in contrast with the "Capsule" type silicapolarization-maintaining, which shows significantly lower irradiation-induced lossthan that of "Capsule" type silica polarization-maintaining.
     The main reason for the optical loss at1310nm is due to the absorption by theSi-OH defect which forms induced by irradiation in the fiber core. Based on the testdata and by aid of Electron Paramagnetic Resonance (EPR), X-ray PhotoelectronSpectroscopy (XPS), Broadband Optical Spectrum Analysis (BOSA) and FourierTransform Infrared Spectrometer (FTIR), the formation mechanism of the irradiation-induced defects was analyzed. It shows that the formation of Si-OHdefect is related with two processes in the optical fiber core. Firstly, the incidentcharged particles break the Si-O-Si bonds of silica, forming the non-bridgingoxygen defect of Si-O-. Secondly, there is irradiation-induced degradation reactionoccurring in PMMA of clad, producing H and C=C. The hydrogen atom will moveinto fiber core through diffusion mechanism. The hydrogen reacts with Si-O-whenmeets it and forms Si-OH structure. The proton irradiation provides hydrogen thatthe above reaction needs, which promotes formation of Si-OH to a certain extent.Since a certain amount of F doped in the silica fiber core and clad of the "Panda"type optical fiber, they react with Si-OH and forms stable HF and SiO2, decreasingconcentration of Si-OH defects. In this way, the irradiation-induced loss of the"Panda" type optical fiber is far lower than that of the "Capsule" type.
     The variation of irradiation-induced loss of silica optical fiber depends on theaccumulation of Si-OH defects in the fiber core, of which is related to thedistribution of the absorbed dose in the fiber. The calculation by the SRIM and theCASINO software shows that, the energy loss of the penetrating charged particlesvaries with the incident energy resulting in difference of absorbed dose distribution,of which influences the formation and accumulation of the Si-OH defects in theoptical fiber core.
     Based on the formation mechanism of irradiation-induced defect for silicaoptical fiber, two mathematical models on irradiation-induced loss were establishedby mathematical modeling the connection between the defect accumulation inoptical fiber core and the irradiation-induced loss of optical fiber. One model allowsfor-ray radiation and gives the irradiation-induced loss as a natural exponentialfunction of irradiation dose, which takes irradiation dose rate into consideration. Itreflects the effect of dose rate on the increasing rate and the saturated valve of theirradiation-induced loss of silica optical fiber. The other model provides a naturalexponential relationship between the irradiation-induced loss and irradiation fluencewithout flux term. It describes that the irradiation-induced loss of the silica dependson total fluence and energy under charged particles irradiation. The comparisonbetween calculation by the models and the test results shows that, two models welldescribe the variation of the irradiation-induced loss of silica optical fiber underdifferent irradiation conditions.
引文
[1]张桂才.光纤陀螺原理与技术[M].北京:国防工业出版社,2008:2-3.
    [2] Kearsley A T and Graham G A. Multi Layered Foil Capture ofMicrometeoroids and Orbital Debris in Low Earth Orbit[J]. Advances in SpaceResearch,2004,34:939-943.
    [3] Upadhya K M and Udayashankar N K. Electron Irradiation Effects on OpticalProperties of Semiorganic Antimony Thiourea Bromide Monohydrate SingleCrystals J]. Journal of Luminescence,2010,130:2424-2428.
    [4] Upadhya K M, Udayashankar N K and Ganesh S. Electron Irradiation Effectson Optical Properties of Semiorganic Sntimony Thiourea Tetra Chloride SingleCrystals[J]. Spectrochimica Acta Part A: Molecular and BiomolecularSpectroscopy,2012,97:38-44.
    [5] Verma R, Dhar R, Rath M C, Sarkar S and Dabrowski K R. Electron BeamIrradiation Induced Changes in the Dielectric and Electro-optical Properties ofa Room Temperature Mematic Display Material4-(Trans-4′-n-hexylcyclohexyl)Isothiocyanatobenzoate (6CHBT)[J]. Journal of Physics and Chemistry ofSolids,2012,73:288-295.
    [6] Hashim S, Bradley D A, Peng N, Ramli A T and Wagiran H. The Thermo-luminescence Response of Oxygen-doped Optical Fibres Subjected to Photonand Electron Irradiations[J]. Nuclear Instruments and Methods in PhysicsResearch B,2010,619,291-294.
    [7] Shi J W, Gong C Z, Tian X B, Yang S Q and Chu P K. Optical Properties andChemical Structures of Kapton-H Film after Proton Irradiation by Immersionin a Hydrogen Plasma[J]. Applied Surface Science,2012,258:3829-3834.
    [8] Buis E J, Berkhout G C G, Love G D, Kirby A K, Taylor J M, Hannemann Sand Collon M J. Proton Irradiation of Liquid Crystal Based Adaptive OpticalDevices[J]. Nuclear Instruments and Methods in Physics Research Section B,2012,270:157-161.
    [9] Mikhailov M M, Neshchimenko V V, Li C D and Ye B J. Influence of ProtonIrradiation on the Photoluminescence Spectra of Zinc Oxide Modified by ZrO2and ZrO2·Yb2O3Nanopowders[J]. Journal of Luminescence,2010,130:1671-1675.
    [10] Tortech B, Girard S, Régnier E, Ouerdane Y, Boukenter A, Jean P, Uffelen M V,Gusarov A, Berghmans F and Thienpont H. Core Versus Cladding Effects ofProton Irradiation on Erbium-doped Optical Fiber: Micro-LuminescenceStudy[J]. IEEE Transactions on Nuclear Science,2008,55:2223-2228.
    [11] Richard H B, Warren F W Terrence S L, Ralph M S, David J A, Kevin M K,Jason L G and Gregory J G. Proton-induced Degradation in InterferometerFiber Optic Gyroscopes[J]. Optlcs Engineering,1996,35:955-976.
    [12] Pillai V R V, Khamari S K, Dixit V K, Ganguli T, Kher S and Oak S M. Effectof Gamma Ray Irradiation on Breakdown Voltage, Ideality Factor, DarkCurrent and Series Resistance of GaAs p–i–n Diode[J]. Nuclear Instrumentsand Methodsin Physics Research A,2012,685:41–45.
    [13] Murray K A, Kennedy J E, Mcevoy B, Vrain O, Ryan D, Cowman R andHigginbotham C L. Effects of Gamma Ray and Electron Beam Irradiation onthe Mechanical, Thermal, Structural and Physicochemical Properties of PolyEther-block-amide) Thermoplastic Elastomers[J]. Journal of the MechanicalBehavior of Biomedical Materials,2013,17:252–268.
    [14] Li M C, Liu L H, Xiao T P, Xue J J, Liang L T, Wang H L and Xiong M.Single-polarization Polarization Maintaining Optical Fiber with Large StressBirefringence and High Homogeneity[J]. Applyied Physics Letters,2006,89:101101.
    [15] Sagnac G. La Démonstration de L’existence de L’éther Lumineux a Travers LesMesures D’un Interferometer en Rotation[J]. Académie Des Sciences-comptesRendus De I’academie Des Sciences,1913,157:708-718.
    [16] Lu P, Men L and Chen Q. Wavelength Control with Grating Imprinted FiberSagnac Loop Mirror by Polarization and Strain Tuning[J]. Journal of AppliedPhysics,2009,106:013111.
    [17] Vedam H and Venkatasubramanian V. A Wavelet Theory-based Adaptive TrendAnalysis System for Process Monitoring and Diagnosis[J]. American ControlConference,1997,1:309-313.
    [18] Bergh R A, Lefevre H C and Shaw H J. An Overview of Fiber-opticGyroscopes[J]. Lightwave Technol,1984,2:91-10.
    [19]朱蕊蘋,刘玉昕,陈娅冰,赵尚弘.干涉型光纤陀螺仪的关键技术[J].现代防御技术,2004,32:43-48.
    [20]王巍,杨清生,王学锋.光纤陀螺的空间应用及其关键技术[J].红外与激光工程,2006,35:509-512.
    [21] Sorensen T C and Spudis P D. The Clementine Mission-A10YearPerspective[J]. Earth sust,2005,114:645-668.
    [22] Leferve H C. The Fiber-optic Gyroscope[M]. Boston-London: Artech House,1993,20-25.
    [23] Wililemenot E, Urgell A and Hardy G O. Very High Performance FOG forSpace Use[C]. Symposium Gyro Technology,2002,11:1-11.
    [24] Soo D N, Vuilleumier P and Weinberger M. New European Gyroscopes forSpaceuse[J]. Preparing to the future,1998,8:4-5.
    [25]刘付成,夏永江.惯性技术发展趋势惯性技术发展动态发展方向研讨会文集[C].北京:中国科学出版社,2004,22-42.
    [26]廖延彪.光纤光学[M].北京:清华大学出版社出版,2000,67-68.
    [27] Yu S J, Suzuki M, Ohki Y, Fujimaki M, Awazu K, Yamaguchi E and Okude S.Birefringence in Optical Fibers Formed by Proton Implantation[J]. NuclearInstruments and Methods in Physics Research B,2007,265:490-494.
    [28] Trufanov, A N, Smetannikov Y and Trufanov A. Numerical Analysis ofResidual Stresses in Preform of Stress Applying Part for PANDA-typePolarization Maintaining Optical Fibers[J]. Optical Fiber Technology,2010,16:156-161.
    [29]饶云江.光纤技术[M].北京:科学出版社出版,2008,103-115.
    [30] Brichard B, Tomashuk A L, Bogatyrjov V A, Fernandez A F, Klyamkin S N,Girard S and Berghmans F. Reduction of the Radiation-induced Absorption inHydrogenated Pure Silica Core Fibres Irradiated in Situ with Gamma-rays[J].Journal of Non-crystalline Solids,2007,353:466-472.
    [31]杨生胜,牛小乐.光纤的总剂量效应分析研究[J].真空与低温,2005,11:154-158.
    [32] Velazco R and Reis R. Radiation Effects on Embedded Sustems[M]. New York:Springer Verlag,2007:1-68.
    [33]王同权,沈永平,王尚武,张树发.空间辐射环境中的辐射效应[J].国防科技大学学报,1999,21:36-39.
    [34] James B F, Norton C O W and Alexander M B. The Natural Space Environment:Effects on Spacecraft[J]. NASA Reference Publcation,1994,1350:6-8.
    [35]李桃生,陈军,王志强.空间辐射环境概述[J].辐射防护通讯,2008,28:1-9.
    [36]何世禹,杨德庄,焦正宽.空间材料手册(第1卷)空间环境物理状态[M].北京:中国宇航出版社出版,2012,373-402.
    [37] Ozawa T. Temperature Control Modes in Thermal Analysis[J]. Journal ofThermal Analysis and Calorimetry,2001,64:109-126.
    [38] Srour J R and Mcgarrity J M. Radiation Effects on Microelectronics in Space[J].Proceedings of the IEEE,1988,76:1443-1469.
    [39] He G H, Guo J D and Zhang Y Y. Measurement of Thermal Diffusivity ofThermal Control Coatings by the Flash Method Using Two-layer CompositeSample[J]. International Journal of Thermophysics.2000,21:535-542.
    [40]黄本诚,马有礼.航天器空间环境实验技术[M].北京:国防工业出版社出版,2002,35-36.
    [41] Miroslav C. Efficient Suppression of Thermally Induced Nonreciprocity inFiber-optic Sagnac Interferometers with Novel Double-layer Winding[J].Applied Optics,1993,32:2289-2291.
    [42]朱奎宝,张春熹,宋凝芳.光纤陀螺随机漂移模型[J].北京航空航天大学学报,2006,32:1354-1357.
    [43] Okamoto K, Toh K, Nagata S, Tsuchiya B, Suzuki T, Shamoto N and ShikamaT. Temperature Dependence of Radiation Induced Optical Transmission Lossin Fused Silica Core Optical Fibers [J]. Journal of Nuclear Materials,2004:329:1503-1506.
    [44] Mi J, Zhang C X, Li Z and Wu Z J. Bias Phase and Light Power Dependence ofthe Random Walk Coefficient of Fiber Optic Gyroscope[J]. Chinese OpticsLetters,2006,4:379-381.
    [45] Holmes S A and Adams L. Handbook of Radiation Effects[M]. New York:Oxford University Press,2002,311-326.
    [46] Wang Q Y, Geng H B, Sun C Y, Zhang Z H and He S Y. Evolution of Defects ina Multicomponent Glass Irradiated by1MeV Electrons[J]. Nuclear Instrumentsand Methods in Physics Research B,2010,268:1478-1481.
    [47]马任德,王政平,王峰,张国生,王成.辐照电子在光纤芯处能量沉积的计算[J].光学与光电技术,2006,4:55-58.
    [48] Pfeffer R L. Damage Center Formation in SiO2Thin Films by Fast ElectronIrradiation [J]. Journal of Applied Physics,1985,57:5176-5180.
    [49] Li X J, Geng H B, Lan M J, Yang D Z, He S Y and Liu C M. DegradationMechanisms of Current Gain in NPN Transistors[J]. Chinese Physics B,2010,19:0661031.
    [50] Friebele E J, Ginther R J and Sigel G H. Radiation Protection of Fiber OpticMaterials: Effects of Oxidation and Reduction[J].Applied Physics Letters,1974,24:412-414.
    [51] Friebele E J. Optical Fiber Waveguides in Radiation Environments[J].OpticalEngineering,1979,18:552-561.
    [52]梁珣,刘德文.石英保偏光纤电离辐射效应研究[J].核技术,2010,33:854-856.
    [53] Uffelen M V, Girard S, Goutaland F, Gusarov A, Brichard B and Bergbmans F.Gamma Radiation Effects in Er-doped Silica Fibres[J]. IEEE Transactions onNuclear Science,2004,51:2763-2769.
    [54] Paul M C, Bohra D, Dhar A, Sen R, Bhatnagar P K and Dasgupta K. RadiationResponse Behavior of High Phosphorous Doped Step-index Multimode OpticalFibers under Low Dose Gamma Irradiation[J]. Journal of Non-crystallineSolids,2009,355:1496-1505.
    [55]王艳红,郭磐,倪国强.射频光纤链路γ射线辐致损伤特性实验研究[J].光学技术,2012,38:357-361.
    [56] Kamala S K, Lahti D G, Smith W D and Averett T M. Optical Fiber Attenuationin Proton Radiation[J]. Proc. of SPIE. Photonics for Space Environments,1996,2811:95-104.
    [57] Girard S, Tortech B, R′egnier E, Van M, Gusarov A, Ouerdane Y, Baggio J,Paillet P, Ferle C V, Boukenter A, Meunier J P, Berghmans F, Schwank J R,Shaneyfelt M R, Felix J A, Blackmore EW and Thienpont H. Proton andGamma Induced Effects on Erbium-Doped Optical Fibers[J]. IEEETransactions on Nuclear Science,2007,54:2426-2434.
    [58] Klose H A, Krause M, Pfeiffer W, Rauchfub J, Sinn G, Fink D and Wilhelm M.High Fluence Effects in Scintillating Plastic Fibres by16MeV ElectronIrradiation[J]. Nuclear Instruments and Methods in Physics Research B,1996,116:235-341.
    [59] Jose′L C, Francoise L V, Miguel V A and Jose′P C. Induced Attenuation inCe3+and Nd3+Doped Fibers Irradiated with Electron Beams Under Low DoseRegime[J]. Optics Communications,2005,252:286-291.
    [60] Hashim S, Ahbabi S A, Bradley D A, Webb M, Jeynes C, Ramli A T andWagiran H. The Thermoluminescence Response of Doped SiO2Optical FibresSubjected to Photon and Electron Irradiations[J]. Applied Radiation andIsotopes2009,67:423-427.
    [61]李荣玉,殷宗敏,王建华,刘锐.石英光纤抗辐照加固的研究[J].上海交通大学学报,2000,34:215-217.
    [62]肖文,张玉艳,刘德文.光纤陀螺中石英保偏光纤Co60辐照效应及光褪色特性[J].北京航空航天大学学报,2006,32:966-969.
    [63]韩艳玲,肖文,伊小素,张运春.辐照光纤的主动恢复效应[J].红外与激光工程,2008,37:128-131.
    [64]刘德文,肖文,梁珣.光退色在光纤陀螺抗辐加固中的应用研究[J].宇航学报,2009,30:609-612
    [65] Yaakob N H, Wagiran H, Hossain M I, Ramli A T, Bradley D A and Ali H.Low-dose Photon Irradiation Response of Ge and Al-doped SiO2OpticalFibres[J]. Applied Radiation and Isotopes,2011,69:1189-1192.
    [66] Hashim S, Bradley D A, Saripan M I, Ramli A T and Wagiran H. TheThermoluminescence Response of Doped SiO2Optical Fibres Subjected to FastNeutrons[J]. Applied Radiation and Isotopes,2010,68:700-703.
    [67] Yaakob N H, Wagiran H, Hossain I, Ramli A T, Bradley D A, Hashim S and AliH. Electron Irradiation Response on Ge and Al-doped SiO2Optical Fibres[J].Nuclear Instruments and Methods in Physics Research A,2011,637:185-18.
    [68]刘德文,肖文,魏博,光纤陀螺受辐照影响机理分析[J].光学学报,2008,28:419-422.
    [69] Friebele E J, Gingerich M E, Brambani L A, Harrington C C, Hickey S J,Onstott J R and Paul S. Radiation effects in polarization-maintaining fibers[J].SPIE Vol. Fibre Optics,1990,1314:146-154.
    [70]常国龙,周彦平,李福巍,周健强,冯立坤.星用光纤辐射性能实验研究[J].哈尔滨工业大学学报,2008,40:1036-1039.
    [71] Wang X Q, Zhang C X, Jin J and Song N F. Radiation-induced Effects inPolarization-maintaining Optical Fibers for Interferometer Gyroscope[J].Chinese Optics Letters,2011,9:060601.
    [72]张玉艳,肖文,刘德文.卫星用光纤陀螺中抗辐射光纤的研究[J].光学与光电技术,2005,3:42-45.
    [73] Caldero′n A, Calvoa E, Figueroa C F, Martinez R C, Matorras F, Rodrigo T,Sobron M, Vilaa I, Virto A L, Arce P, Barcala J M, Ferrando A, Josa M I,Luque J M, Molinero A, Navarrete J, Oller J C and Yuste C. Effects of theGamma-ray Irradiation on the Optical Absorption of Pure Silica CoreSingle-mode Fibres in the Visible and NIR Range[J]. Nuclear Instruments andMethods in Physics Research A,2005,538:810-813.
    [74] Kurbatov A.M, Kurbatov R.A. Radiation Resistant Fibers with DepressedCladdings for Optic Fiber Gyro Sensing Coil[M]. Beijing: InternationalConference on Optical Fiber Sensors,2012,8421:84218O-1-84218O-4.
    [75] Chamorovskii Y K, Butov O V, Ivanov G I, Kolosovskii A A, Voloshin V V,Vorob'ev I L and Golant K M. N-doped-silica-core Polarization MaintainingFibre for Gyros and other Sensors for Application in Space Industry[M].Edinburgh:20th International Conference on Optical Fibre Sensors October,2009,75036T-1-75036T-4.
    [76] Brian P F, Kelly S P, William J T J and Dahv A V K. Gamma-radiation-inducedPhotodarkening in Unpumped Optical Fibers Doped With Rare-earthConstituents[J]. IEEE Transactions on Nuclear Science,2010,57:1618-1625.
    [77]胡恺生,李宗祥,宁鼎,李浩,周建平,刘为民.掺Er3+光纤的γ射线辐射特性[J].物理学报,1992,41:890-897.
    [78] Zabezhailov M O. The Role of Fluorinr-doped Cladding in Radiation InducedAbsorpion of Silica Optical Fibers[J].IEEE Transation on Nuclear Science,2002,49:1410-1413.
    [79] Origlio G, Girard S, Cannas M, Ouerdane Y, Boscaino R and Boukenter A.Paramagnetic Germanium-related Centers Induced by Energetic Radiation inOptical Fibers and Preforms[J]. Journal of Non-crystalline Solids,2009,355:1054-1056.
    [80] Girard S, Keurinck J, Boukenter A, Meunier J P, Ouerdane Y, Aza s B, Charre Pand Vie M. Gamma-rays and Pulsed X-ray Radiation Responses of Nitrogen,Germanium-doped and Pure Dilica Core Optical Fibers[J]. Nuclear Instrumentsand Methods in Physics Research B,2004,215:187-195.
    [81] Toh K, Shikama T, Nagata S, Tsuchiya B, Suzuki T, Okamoto K and ShamotoN. Optical Characteristics of Aluminum Coated Fused Silica Core FibersUnder14MeV Fusion Neutron Irradiation[J]. Journal of Nuclear Materials,2004,333:1495-1498.
    [82] Dumanoglu I, Akchurin N, Akgun U, Ayan S, Bruecken P, Eskut E, Fenyvesi A,Kayis Topkasu A, Koca N, Makonyi K, Merlo J P, Novak D, Onel Y, OnengutG, Polatoz A, Schmidt I, Serin M and Zeyrek M. Radiation-hardness Studies ofHigh OH-Content Quartz Fibres Irradiated with500MeV Electrons[J].Nuclear Instruments and Methods in Physics Research A,2002,490:444-455.
    [83] Tsuchiya B, Kondo S, Tsurui T, Toh K, Nagata S and Shikama T. CorrelationBetween Radiation-induced Defects and Optical Properties of Pure FusedSilica-core Optical fiber, Under Gamma-ray Irradiation in Air at1273K[J].Journal of Nuclear Materials,2011,417:810-813.
    [84] Sporea D and Sporea A. Dynamics of the Radiation-induced Color Centers inOptical Fibers for Plasma Diagnostics[J]. Fusion Engineering and Design,2007,82:1372-1378.
    [85]李宗民,张辰华,汪勇.光纤γ辐照损耗效应及缺陷机制的研究[J].半导体光电,1993,12:76-81.
    [86] Bravo D, Lagomacini J C. León M, Martín P, Martín A, López F J and Ibarra A.Comparison of Neutron and Gamma Irradiation Effects on KU1Fused SilicaMonitored by Electron Paramagnetic Resonance[J]. Fusion Engineering andDesign,2009,84:514-517.
    [87] Girard S, Marcandella C, Origlio G, Ouerdane Y, Boukenter A and Meunier J P.Radiation-induced Defects in Fluorine-doped Silica-based Optical Fibers:Influence of a Pre-loading with H2[J]. Journal of Non-crystalline Solids,2009,355:1089-1091.
    [88]胡恺生,李宗祥,宁鼎,李浩,周建平,刘全民.电子辐照对掺铒单模光纤损耗特性的影响[J].物理学报,1991,40:560-566.
    [89] Kakuta T, Shikama T, Nishitani T, Brichard B, Krassilinikov A, Tomashuk A,Yamamoto S and Kasai S. Round-robin Irradiation Test of Radiation ResistantOptical Fibers for ITER Diagnostic Application[J]. Journal of NuclearMaterials,2002,311:1277-1281.
    [90] Alam M, Abramczyk J, Manyam U, Farroni J and Guertin D.Performace ofOptical Fibers in Spaceradiation Environment[M]. London:6th Internat. Conf.on Space Optics,2006,27-30.
    [91] Honda A, Toh K, Nagata S, Tsuchiya B and Shikama T. Effect of Temperatureand Irradiation on Fused Silica Optical Fiber for Temperature Measurement[J].Journal of Nuclear Materials,2007,370:1117-1121.
    [92] Friebele E J, Gingerich M E and Griscom D L. Survivability of Optical Fibersin Space [J]. Proc. of SPIE, Optical Materials Reliability and Testing: Benignand Adverse Environments,1992,1791:177-188.
    [93] Henschel H and Baumann E. Effect of Natural Radioactivity on Optical Fibersof Undersea Cables[J]. Journal of Lightwave Yechnoligy,1996,14:724-731.
    [94] Griscom D L, Gingerich M E and Friebele E J. Radiation-induced Defects inGlasses: Origin of Power-law Dependence of Concentration on Dose[J].Physics Review Letters,1993,71:1019-1022.
    [95] Griscom D L, Gingerich M E and Friebele E J. Model for the Dose, Dose-rateand Temperature Dependence of Radiation-induced Loss in Optical Fibers[J].IEEE Transactions on Nuclear Science,1994,41:523-527.
    [96] Ott M N. Fiber optic cable assemblies for space flight II: Thermal andRadiation Effects[J]. Proc. of SPIE,1998,3440:37-46.
    [99]刘方新,张辰华,李宗民,金嗣昭.光纤γ辐照感生损耗的研究[J].中国科学技术大学学报,1994,24(3):390-393.
    [100]Levy P W. Overview of Nuclear Radiation Damage Processes:Phenomenological Features of Radiation Damage in Crystals and Glasses[J].Proc. of SPIE, Radiation Effects in Optical Materials,1985,541:2-24.
    [101]Lengweiler K, Mattern P L and Levy P W. Studies on Nonmetals DuringIrradiation: The Growth of Centers in KCl at85K[J]. Physical Review Letters,1971,26:1375-1378.
    [102]Levy P W. Radiation Damage Studies on Non-metals Utilizing MeasurementsMade During Irradiation[J]. Journal of Physics and Chemistry of Solids,1991,52:319-349.
    [103]马晶,车驰,于思源,谭丽英,周彦平,王健.光纤布拉格光栅γ辐射损伤及其对光谱特性的影响[J].物理学报,2012,61:064201.
    [104]Liu H, Liu G, Dong S L, He S Y and Yang D Z. Coloring Effects of OpticalAntireflective Film Irradiated by60keV Protons[J]. Thin Solid Films,2011,519:5131-5134.
    [105]Kweon J J, Lee K W, Park J K, Jeon G W, Lee C E, Noh S J and Kim H S.Spectroscopic Study of Plasma-facing Graphite Tiles Modified by Electron andProton Irradiation[J]. Nuclear Instruments and Methods in Physics Research B,2012,274:145-147.
    [106]Yang S J, ChoeJ M, Jin Y G, Lim S T, Lee K, Kim Y S, Choi S, Park S J,Hwang Y S, Kim G H and Park C R. Influence of H+Ion Irradiation on theSurface and Microstructural Changes of a Nuclear Graphite[J]. FusionEngineering and Design,2012,87:344-351.
    [107]Ulku S, O mer D and Ercan T. Effects of Gamma Irradiation on the SingleCrystal Ergosterol: An EPR Study[J]. Journal of Molecular Structure,2012,1007:179-184.
    [108]Bercu V, Negut C D and Duliu O G. Detection of Irradiated Frog (Limnonectesmacrodon) Leg Bones by Multifrequency Spectroscopy[J]. FoodChemistry,2012:135:2313-2319.
    [109]Wen J X, Luo W Y, Xiao Z Y, Wang T Y, Chen Z Y and Zeng X L. Formationand Conversion of Defect Centers in Low Water Peak Single Mode OpticalFiber Induced by Gamma Rays Irradiation[J]. Journal of Applied Physics,2010,107:044904.
    [110]Liu J H, Qi Z M, Huang Q, Wei X L, Ke Z G, Fang Y S, Tian Y C and Yu Z L.Study of Energetic Particle Irradiation Induced Biological Effect on RhizopusOryzae Through Synchrotron FTIR Micro-spectroscopy[J]. Journal ofMolecular Structure,2013,1031:1-8.
    [111]Bootjomchai C, Laopaiboon J, Nontachat S, Tipparach U and Laopaiboon R.Structural Investigation of Borosilicate Recycled-barium–bismuth GlassesUnder the Influence of Gamma-irradiation Through Ultrasonic and FTIRStudies[J]. Nuclear Engineering and Design,2012,248:28-34.
    [112]Han Y G, Kim G H, Lee K S and Lee S B. Fabrication of Low OH Loss HoleyFibers with Varying Air Hole Sizes and Their Optical Properties[J]. OpticsCommunications,2009,282:1780-1784.
    [113]Wen J X, Peng G D, Luo W Y, Xiao Z Y, Chen Z Y and Wang T Y. GammaIrradiation Effect on Rayleigh Scattering in Low Water Peak Single-modeOptical Fibers[J]. Optics Express,2011,19:23271-23278.
    [114]Durrant S F, Rouxinol F P M, Gelamo R V, Trasferetti B C, Davanzo C U,Moraes M A B D. Characterization of Si: O: C: H Films Fabricated UsingElectron Emission Enhanced Chemical Vapour Deposition[J]. Thin Solid Films,2008,516:803-806.
    [115]Zhang G Q, Xua D P, Song G X, Xue Y F, Li L, Wang D Y and Su W H.Effect of Si–OH on the Transformation of Amorphous SiO2to Coesite[J].Journal of Alloys and Compounds,2009,476: L4-L7.
    [116]Wu C M, Gu J J, Wu Y, Luo J Y, Xu T W and Zhang Y P. Carboxylic AcidType PVA-based Hybrid Membranes for Alkali Recovery Using DiffusionDialysis[J]. Separation and Purification Technology,2012,92:21–29.
    [117]Stremme W, Ortega I, Siebe C and Grutter M. Gas Composition ofPopocatépetl Volcano between2007and2008: FTIR SpectroscopicMeasurements of an Explosive Event and during Quiescent Degassing[J]. Earthand Planetary Science Letters,2011,301:502–510.
    [118]Lee S H, Jeong S and Moon J. Nanoparticle-dispersed High-k OrganicInorganic Hybrid Dielectrics for Organic Thin-film Transistors[J]. OrganicElectronics,2009,10:982-989.
    [119]Socha R P and Vayrynen J. The Influence of Fluoride Anions on the SiliconCarbide Surface Oxidation in Aqueous Solutions[J]. Applied Surface Science,200,213:636–643.
    [120]Lin Y J, Lee H Y, Hwang F T and Lee C T. Low Resistive Ohmic ContactFormation on Surface Treated-n-GaN Alloyed at Low Temperature[J]. Journalof Electronic Materials,2001,30:532-537.
    [121]Lin Y J, Lin W X, Lee C T and Chang H C. Electronic Transport and SchottkyBarrier Heights of Ni/Au Contacts on n-Type GaN Surface with and without aThin Native Oxide Layer[J]. Japanese Journal of Applied Physics,2006,45:2505-2508.
    [122]Kim D I, Kim K H and Ahn H S. Tribological Properties of Adsorbed WaterLayer on Silicon Surfaces[J]. International Journal of Precision Engineeringand Manufacturing,2010,11:741-746.
    [123]Lim T Y, Kim C Y and Kim B S. Effects of SiO2Barrier and N2Annealing onSb-Doped SnO2Transparent Conducting Film Prepared by Sol-Gel DipCoating[J]. Journal of Sol-Gel Science and Technology,2004,31:263-266.
    [124]Cho S M, Kim Y T and Yoon D H. Optical Characterization of Silica BasedWaveguide Prepared by Plasma Enhanced Chemical Vapor Deposition[J].Journal of the Korean Physical Society,2003,42: S947-S951.
    [125]Ismayil, Ravindrachary V, Bhajantri R F, Praveena S D, Poojary B, Dutta Dand Pujari P K. Optical and Microstructural Studies on Electron IrradiatedPMMA: A Positron Annihilation Study[J]. Polymer Degradation and Stability,2010,95:1083-1091.
    [126]Wang Q Y, Geng H B, He S Y, Yang D Z, Zhang Z H, Qin X B and Li Z X.Effects of80keV Proton Radiation on the Optical Properties andMicrostructure of Type-GG17Glass as Rubidium Lamp Envelope[J]. NuclearInstruments and Methods in Physics Research B,2009,267:2489-2494.
    [127]Francis S M, Stephens W E and Richardson N V. X-ray Photoelectron andInfrared Spectroscopies of Quartz Samples of Contrasting Toxicity[J]. Environ.Health,2009,8: S1-S4.
    [128]Tetsuo F, Minoru F, Syunji O, Tsutomu I S and Noriaki I. Effects of ProtonImplantation on Amorphous SiO2Predamaged by Si Implantation[J]. JapaneseJournal of Applied Physics,1990,29, L1846-L1848.
    [129]Griscom D L. Electron Spin Resonance in Glasses[J]. Journal ofNon-crystalline Solids,1980,40:211-272.
    [130]Yoshikatsu N, Hideyuki I, Fusami S, Akira I, Ichiro Y and Kazuhiko Y.FT-IR-ATR Observation of SiOH and Sill in the Oxide Layer on an Si Wafer[J].Mikrochim Acta,1988, I:431-434.
    [131]Ilya A S, Boris M T and Alexander D T. Magnetic Resonance Studies onRadiation-induced Point Defects in Mixed Oxide Glasses. I. Spin Centers inB2O3and Alkali Borate Glasses[J]. Journal of Non-crystalline Solids,2000,262:6-34.
    [132]Cacaina D, Ylanen H, Uduar D A and Simon S. EPR Study of GammaIrradiated Yttrium Bioactive Glasses and Yttrium Silica Sol-gelMicrospheres[J]. Journal of Optoelectronics and Advanced Materials,2007,9:675-679.
    [133]Ichikawa T and Yoshida H. Mechanism of Radiation-induced Degradation ofPoly (methyl methacrylate) as Studied by ESR and Electron Spin EchoMethods[J]. Journal of Polymer Science Part A: Polymer Chemistry,1990,28:1185-1196.
    [134]Carlson C G, Keister K E, Dragic P D, Croteau A and Eden J G.Photoexcitation of Yb-doped Aluminosilicate Fibers at250nm: Evidence forExcitation Transfer from Oxygen Deficiency Centers to Yb3+[J]. OpticalSociety of America,2010,27:2087-2094
    [135]魏强,何世禹,刘海,杨德庄.石英玻璃低能质子辐照损伤动力学研究[J].光学学报,2005,25:83-87.
    [136]宁鼎,胡恺生,傅怀杰.氢气氛对光纤损耗特性的影响[J].物理学报,1991,39:82-88.
    [137]Gruber W, Borchardt G and Schmidt H.Trap-limited Diffusion of Hydrogen inPrecursor Derived Amorphous Si–B–C–N-ceramics[J]. Journal of NonCrystalline Solids,2007,353:4121-4127.
    [138]Yamamura Y. Dynamic MC Simulation of Low-energy Ion Implantation[J].Nuclear Instruments and Methods in Physics Research B,1999,153:410-414.
    [139]Corni F, Monelli A, Ottaviani G, Tonini R, Queirolo G and Zanotti L.Radiation Enhanced Transport of Hydrogen in SiO2[J]. Journal ofNon-crystalline Solids,1997,216:71-76.
    [140]Nagasawa Y, Ishida H, Soeda F, Ishitan A, Yoshii I and Yamamoto K.FT-IR-ATR Observation of SiOH and Sill in the Oxide Layer on an Si Wafer[J].Mikrochimca Acta,1998, I:431-434.
    [141]Alhazmi A M, and Mayer PM. Protonating Polymer Oligomers in the GasPhase to Change Fragmentation Pathways[J]. Journal of the American Societyfor Mass Spectrometry,2009,20:60-66.
    [142]Paul M C, Sen R, Bhadra S K and Dasgupta K. Radiation Response Behaviourof Al Codoped Germano-silicate SM Fiber at High Radiation Dose[J]. OpticsCommunications,2009,282:872-878.
    [143]Griscom D L. Trapped-electron Centers in Pure and Doped Glassy Silica: AReview and Synthesis [J]. Journal of Non-crystalline Solids,2011,357:1945-1962.
    [144]Gilard O, Caussanel M, Duval H, Quadri G and Reynaud F.New Model forAssessing Dose, Dose Rate and Temperature Sensitivity of Radiation-inducedAbsorption in Glasses[J]. Journal of Applied Physics,2010,108:093115.
    [145]王旭东,程远,李春东,何世禹,杨德庄,顾鹏飞. S781白漆低能质子辐照损伤的模拟研究[J].航天器环境工程,2010,27:682-685.
    [146]曹宇青,王铁军. PCVD工艺制作特殊多模光纤[J].网络电信,2007,9:43-44.
    [147]Kakuta T, Shikama T, Narui M and Sagawa T. Behavior of Optical Fibersunder Heavy Irradiation[J]. Fusion Engineering and Design,1998,41:201–205.
    [148]邓都才,王艳芳,高玉桥,何书平. PCVD法制备低损耗单模光纤[J].光通信研究,1990,53:60-60.
    [149]文建湘,肖天鹏,孙建军.“1”字型石英保偏光纤的结构设计及其制备[J].光纤与电缆及其应用技术,2012,2:16-19.
    [150]Messenger S R, Xapsos M A, Summerszr G P and Burke E A.Co60GammaRay Irradiations of Solar Cells: a New Way to Predict Space RadiationDamage[C]. Hawaii: IEEE,1994:2153-2156.
    [151]Summers G P, Burke E A, Shapiro P, Messenger S R and Walters R J. DamageCorrelations in Semiconductors Exposed to Gamma, Electron, and ProtonRadiations[J]. IEEE Transactions on Nuclear Science,1993,40:1372-1376.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700