强激光诱导光学元件损伤的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
强激光诱导光学元件的损伤是制约包括ICF激光驱动器在内的强激光系统向更高更强发展的最大瓶颈,受经济效益和技术发展的驱使,这也将是一个持续的挑战。损伤形貌是损伤机制的外在体现,激光辐照过程中等离子体和冲击波的产生与发展是损伤及损伤增长的主要原因,研究强激光诱导光学元件损伤的形貌,研究损伤过程的超快动力学特征,分析强激光诱导光学元件损伤的规律,有助于我们理解激光诱导元件损伤的物理内涵,掌握损伤的物理机制和物理规律,对改进光学元件的加工工艺,增加光学元件的使用寿命,降低高能激光系统的运行成本和提高负载能力有现实意义。
     本论文涉及对多个波长的纳秒激光诱导光学元件损伤的实验研究。主要思路是从实验定性研究1064nm、532nm和355nm三波长的纳秒激光诱导光学元件的初始损伤及损伤增长出发,结合超快时间分辨阴影成像技术,获取了熔石英光学元件前后表面和体内的等离子体、冲击波的产生与发展过程的时间分辨图像,分析了纳秒激光诱导光学元件损伤的规律和机制。
     本论文简述了高功率激光与物质相互作用理论,综述了强激光诱导光学元件损伤的物理机制,实验分析了初始和损伤增长的规律和特点,据此分析了提高光学元件抗激光损伤能力的方法和途径。纳秒激光作用下,光学元件使用和加工过程中残留于表面和亚表面的各种缺陷是导致强激光辐照下元件损伤的直接原因。强激光诱导光学元件损伤是一个涉及光热、光化学、光声、光电、等离子体和冲击波、激光参数和材料性质等众多物理效应和参数的复杂过程,主要的损伤机制有:划痕、裂纹、杂质等缺陷吸收引起的热力学损伤,裂纹对激光场的调制导致局部场强增强引起的光学击穿,受激布里渊散射激发超声波引起的损伤,非线性自聚焦引起的损伤,任何一次损伤实际都是多种机制共同作用并相互促进的结果,这些作用过程都发生在很短的时间内,这增加了我们研究和掌握损伤规律的难度。
     实验研究了1064nm、532nm和355nm三个波长的激光分别对光学元件前、后表面和体内的初始损伤和损伤增长,研究了三个波长两两同时辐照下光学元件的损伤行为,比较和分析了各波长激光对光学元件的初始损伤和损伤增长规律和机制。研究结果表明:表面和亚表面缺陷是纳秒激光辐照下光学元件损伤的最主要原因,等离子体和冲击波在材料体内和空气中的产生与发展的不同导致了前后表面的损伤规律的巨大差异;对应于不同的激光波长,裂纹和以及损伤坑内材料对激光的吸收差异是损伤增长差异的主因,实验结果表明可见光和紫外激光辐照下的熔石英玻璃的体内成丝损伤也与点缺陷有关。对应于不同的激光波长,吸收杂质的种类和数密度差异巨大,恰当的激光辐照预处理能够提高元件对后续激光辐照的的损伤阈值;但在紫外激光辐照下,多脉冲的损伤累积效应明显。在两个波长的激光同时辐照下,杂质和缺陷先被短波长激光电离,产生少量的自由电子,这些自由电子对后续激光无选择的强吸收,极大的增强了总的吸收效率,降低了损伤阈值,增大了损伤程度。
     采用超快时间分辨阴影成像技术,本文研究了纳秒激光辐照损伤熔石英光学玻璃前、后表面和体内的动力学过程,实验观察了前后表面的空气和材料中等离子体和冲击波的差异,对比分析了前后表面和体内的损伤差异及损伤机制。在前表面,由杂质吸收产生的初始等离子体位于空气中,等离子体对激光能量的强吸收对后续激光形成屏蔽效应,使前表面空气等离子体中积累了大量的能量,元件表面损伤以高温等离子体的表面烧蚀为主,材料破坏不严重。在后表面,由于初始等离子体产生于元件表面的材料体内,等离子体的屏蔽效应增加了激光能量在材料中的沉积,材料中等离子体聚集的能量通过爆炸释放,爆炸产生的冲击波和等离子体高温烧蚀是后表面损伤的主要机制,同时伴随着烧蚀物质的喷发去除。在材料内部,通过对损伤区域等离子体和冲击波的观察和分析表明体内损伤主要自聚焦和点缺陷吸收两种机制主导,而且点缺陷吸收诱导材料体内损伤从焦点开始沿着激光入射逆方向的点燃时间存在先后顺序。另外,等离子体膨胀、冲击波传播及其与界面的相互作用、物质去除等过程在材料中产生了复杂的应力波,这些应力波虽然没有对材料产生明显的破坏,但对其产生机理和特点的分析,将有助于更深入的理解强激光与材料相互作用机制。
High power laser-induced damage of optical elements is one of the main limiting factors for ICF laser driver development to higher and stronger, driven by the economic benefits and technical development, it will be a continuing challenge. Damage morphology is the external manifestation of the mechanism of injury, plasma and shock wave generation and development is the main reason of the damage and damage growth. Study of the morphology of the strong laser induced damage and the ultrafast kinetic characteristics of the damage process, analysis the law of the strong laser induced damage, helps us to understand the physical meaning of the laser-induced material damage, helps us to understand the physical meaning of the laser-induced material damage, master the physical mechanism and law of damage, has practical significance to improve the processing of optical components, to increase the useful life, to reducing the running costs of the high-energy laser systems and increase load capacity.
     In this paper, the Nd:YAG nanosecond laser induced damage of the optical components are studied. The main idea is based on the1064nm,532nm and355nm three wavelength nanosecond laser induced optical element initial damage and damage growth morphology, combining with ultrafast time-resolved method of the shadow map, obtaining the time-resolved images of the process of generation and development of shock waves and plasma on the input-surface, output-surface and in material in fused silica, and analysis the laws of physics and the mechanism of optical component damage induced by nanosecond laser.
     First of all, a brief description of the pulsed laser and material interaction theory and the physical mechanism of optical element damage induced by high power laser, analyzed the methods and ways of improving the laser damage resistance of optical components. Under the nanosecond laser irradiation, the surface and sub-surface defects remains by the processing and use of the process is the direct cause component damage. Laser induced damage of the optical component is a complex process involving photothermal, photoacoustic, optoelectronics, laser parameters, material properties, linear and nonlinear effects, plasma and shock wave and many other physical effects. The major damage mechanism are:heating by the absorption of scratches、cracks、impurities and other defects, ultrasonic induced damage by Stimulated Brillouin Scattering, avalanche ionization and multiphoton ionization damage, the damage caused by the nonlinear self-focusing. In the general case, typically damage is the results of many of these mechanisms together and promotes each other.
     Experimental study of1064nm,532nm and355nm three-wavelength laser induced initial damage and growth damage of surface and material in fused silica, to study behavior which under multiple wavelengths combination on laser-induced damage, comparison and analysis of each wavelength laser initial damage and damage growth laws and mechanisms of optical components. The results show that:the surface impurities and defect is the main cause of optical components surface damage induced by nanosecond laser, the development and nature of plasma and shockwave in material and air led to the huge difference of the front and back surfaces of the initial damage and damage growth. Corresponding to different laser wavelengths, the cracks and materials in damage crater will effect damage growth, self-focusing filamentation damage is according to point defects too. For different laser wavelength, the type and number density of damage pioneer has huge difference. Laser preparation condition can improve the damage threshold, damage accumulation effect are more obvious under the ultraviolet laser irradiation. Under the two wavelengths laser simultaneously irradiation, at first, impurities and defects by the short wavelength laser ionization, and then, the free electrons generated by the ionizing greatly enhance the absorption of long wavelength laser.
     The dynamic process of nanosecond laser induced damage of fused silica's input-surface, exit-surface and bulk in air was investigated by ultrafast time-resolved shadowgraphs. The comparison and analysis of the damage mechanism among the input-surface, exit-surface and bulk were performed. In the input-surface, generation and development process of plasma and shock wave were observed in air and materials. Three stress waves were observed in material under the sub-nanosecond laser, and the bulk damage was observed near the input-surface. In the output-surface, in addition to the shock wave formation and development process is observed, but also the process of material ablation and explosive phase ejections were obtained. In the bulk, the results show that both the self-focusing and defect's absorption answerable for the damage, damage induced by the defect's absorption maybe have temporal difference. The present research is instructive to understand the laser-induced damage mechanism of the fused silica.
引文
1 G. C. Wang. Suggestion of Neutron Generation with Powerful laser [J]. Chinese Journal of lasers,1987; 14(11):64
    2 H.F.巴索夫等.稠密等离子体诊断学[M].《强激光与粒子束》杂志社,1992
    3王淦昌,袁之尚.惯性约束聚变[M].合肥:安徽教育出版社,1996
    4范滇元,张小民.激光聚变驱动器的发展与展望[M].1999/2000中国科学技术前沿,高等教育出版社,2000:358-395
    5 K. Tobita, S. Nishio, M. Enoeda, et al. Design Study of fusion DEMO plant at JAERI [J]. Fusion Engineering and Design,2006; 81(8):1151-1158
    6 R. Hiwatari, K.Okano, Y. Asaoka, et al. Demonstration tokamak fusion power plant for early realization of net electric power generation[J]. Nucl. Fusion.2005; 45(2):96
    7 E. I. Moses, J. H. Campbell, C. J. Stolz, et al. The National Ignition Facility:the world's largest optics and laser system[A]. Proc.SPIE[C],2003,5001:1-15
    8 National Ignition facility conceptual design report[J]. UCTL-PROP,1994,117093
    9 E.I. Moses, J.H.Campbell, C. J. Stolz, et al.The National Ignition Facility:The World's Largest Optics and Laser System[R]. UCRL-JC,2003,151593
    10 C. J. Stolz. The National Ignition Facility:The world's largest optics system[R]. UCRL-CONF, 2007,235653
    11 J. P. Amoul, F. Signol.The Laser Megajoule Facility:control system status report[C].2007: Proceedings of ICALEPCS07.Knoxville, Tennessee, USAMOAB02
    12 ebrardt J and Chaput JM, J. Phys:conf. ser. these pioceedings
    13 Proceedings from the annual meetings on "Laser-induced Damage in Optical Materials",1971 to 2001, available from SPIE
    14 J. H. Campbell, R. A. Hawley-Fedder, C. J. Stolz, et al. NIF optical materials and fabrication technologies:An overview[A]. Proc. of SPIE[C], Optical Engineering at the Lawrence Livermore National Laboratory II:The National Ignition Facility,2004,5341:84-101
    15杜祥琬,彭翰生,马佳光,王乃彦等.高技术要览-激光卷[M].北京:中国科学技术出版社,2003
    16 C.R. Giuliano. Laser-induced damage to transparent dielectric materials[J]. Appl. Phys. Lett.,1964, 5(7):137-139
    17 R.W. Hopper, D. R. Uhlmann. Mechanism of inclusion damage in laser glass[J]. Appl Phys,1970, 41(10):4023-4037
    18 M. Sparks, C. J. Duthler. Theory of infrared absorption and material failure in crystals containing inclusions[J]. J. Appl. Phys,1973,44(7):3038-3045
    19 W. W. Thomas. Ar. H. Guenther. Pulsed laser-induced damage to thin-film optical coatings-Part Ⅰ: Experimental[J]. Theory IEEE J Quantum Electron,1981,17(10):2041-2052
    20 J. Becker, A. Bernhardt. ISO 11254:An international standard for the determination of the laser-induced damage threshold[A]. Proc. SPIE 2114[C]. Laser-Induced Damage in Optical Materials, 1993,703
    21 A. M. Rubenchik, M. D. Feit. Initiation, growth and mitigation of UV laser-induced damage in fused silica[A]. Proc. SPIE [C],2002,4679:79-95
    22 M. D. Feit, A. M. Rubenchik, D. Faux, et al. Modeling of laser damage initiated by surface contamination[A]. Proc. SPIE[C],1997,2966:417-424
    23 M. Lenzner, J. Kruger, S. Sartania, et al. Femtosecond optical breakdown in dielectrics [J]. Phys. Rev. Lett.,1998; 80:4076-4079
    24 M. Nostrand, T. Weiland, R. Luthi, et al. A large aperture high energy laser system for optics and optical component testing[A]. Proc. SPIE[C], The 35th Symposium on Optical Materials for High Power Lasers,2003,5273
    25 L. M. Sheehan, M. R. Kozlowski, C. J. Stolz, et al. Large area damage testing of optics, in Specification, Production, and Testing of Optical Components and System[A]. Proc. SPIE [C],1996, 2775:357-369
    26 M. C. Nostrand, S. Thompson, W. Siekhaus, et al. Identification and elimination of fluorescent surface-damage precursors on DKDP optics[A]. Proc. SPIE[C], Laser-Induced Damage in OpticalMaterials,2002,4932:192-201
    27 S. G. Demos, M. C. Nostrand, M. Staggs, et al. Investigation of fluorescence microscopy as a tool for noninvasive detection and imaging of damage precursors at 351-nm [A]. Proc. SPIE[C], Laser-Induced Damage in Optical Materials,2002,4679:347-359
    28 C. J. Stolz, D. J. Chinn, R. D. Huber, et al. Photothermal multi-pixel imaging microscope[R] UCRL-CONF-153485,2003
    29 S. Schwartz, M. D. Feit, Kozlowski M R, et al. Current 3ω large optic test procedures and data analysis for the quality assurance of National Ignition Facility optics[A]. Proc. SPIE[C], in Laser-Induced Damage Materials,1999,3578:314-321
    30 A.M. Rubenchik, M.D. Feit. Initiation, Growth and Mitigation of UV Laser Induced Damage in Fused Silica[A].Proc.of SPIE[C],2002,4679
    31 H. Bercegol, P. Grua. Fracture related initiation and growth of surface laser damage in fused silica[A]. Proc. of SPIE[C], Laser-Induced Damage in Optical Materials,2008,7132:71321B-1~71321B-10
    32 B. Bertussi, C. Philippe, S. Palmier, et al. Initiation of laser-induced damage sites in fused silica optical components[J]. Optics Express,2009,17(14):11469-11479
    33 C.W. Carr, H. B. Radousky, S.G. Demos. Wavelength Dependence of Laser-Induced Damage: Determining the Damage Initiation Mechanisms[J]. Physical Review Letters,2003,19(12): 127402-1-127402-4
    34 M. A. Norton, L. W. Hrubesh, Z. Wu, et al. Growth of laser initiated damage in fused silica at 351nm[A].Proc. SPIE[C],2001,4347:468
    35 M.A.Norton, A. V. Carr, C.W. Carr, et al. Laser damage growth in fused silica with simultaneous 351 nm and 1053 nm irradiation[A]. Proc. SPIE [C],2008,7132:71321H
    36 M. A. Norton, E. E. Donohue, W G. Hollingsworth, et al. Growth of Laser Initiated Damage in Fused Silica at 527 nm[A].Proc.SPIE[C], Laser-Induced Damage in Optical Materials,2003,5273
    37 R. A. Negres, M. A. Norton, D.A. Cross, et al. Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation[J]. Optics Express,2010,18(9):19966-19976
    38 M. A. Norton, J. J. Adams, C.W. Carr, et al. Growth of laser damage in fused silica:diameter to depth ratio[A]. Proc. SPIE [C], Laser-Induced Damage in Optical Materials,2007,6720
    39 M. D. Feit, A. M. Rubenchik. Mechanisms of CO2 laser mitigation of laser damage growth in fused silica [A]. Proc. SPIE[C],2002,4932
    40 L. W. Hrubesh, M. A. Norton, W. A. Molander, et al. Methods for mitigating growth of laser-initiated surface damage on fused silica optics at 351nm [A]. Proc. SPIE[C],2002,8190
    41 I.L.Bass, V. G. Draggoo, G. M. Guss, et al. Mitigation of laser damage growth in fused silica NIF optics with a galvanometer scanned CO2 laser[A]. Proc. SPIE[C],2006,6261
    42 R. M. Brusasco, B. M. Penetrante, J. A. Butler, et al. Localized CO2 laser treatment for mitigation of 351-nm damage growth on fused silica[A]. Proc. SPIE[C],2002,4679
    43 M. A. Stevens-Kalceff, A. Stesmans, J. Wong. Defects induced in fused silica by high fluence ultraviolet laser pulses at 355 nm[J].Appl. Phys. Lett.,2002; 80 (5):758-760
    44 J. Wong, J. L. Ferriera, E. F. Lindsey, et al. Morphology and microstructure in fused silica induced by high fluence ultraviolet 355 nm laser pulses[J]. Journal of Non-Crystalline Solids,2006; 352:255-272
    45 M. D. Feit, A. M. Rubenchik. Influence of subsurface cracks on laser induced surface damage[A]. Proc. of SPIE[C], Laser-Induced Damage in Optical Materials,2004,5273:264-272
    46 F. Y. Genin, A. Salleo, T. V. Pistor, et al. Role of light intensification by cracks in optical breakdown on surfaces[J]. J. Opt. Soc.Am.A,2001; 18 (10):2607-2616
    47 P. E. Miller, T. I. Suratwala, J. D. Bude, et al. Initiation of Laser Damage at Surface Imperfections on Fused Silica Optics[C]. Optical Fabrication and Testing. Optical Society of America,2010
    48 S. Papernov, A. W. Schmid. Laser-induced surface damage of optical materials:Absorption sources, initiation, growth, and mitigation[A]. Proc. of SPIE [C],2008,7132
    49 S. Alberto. High-power laser damage in fused silica[D]. Ph. D. Berkeley:University of California, 2001
    50 J. A. Menapace, P. J. Davis, W.A. Steele, et al. MRF Applications:Measurement of Process-dependent Subsurface Damage in Optical Materials using the MRF Wedge Technique [A]. Proc. of SPIE[C], 2005,5991:599103-1-599103-11
    51 D. Golini. W. I. Kordonski, P. Dumas, et al. Magnetorheological finishing (MRF) in commercial, precision optics manufacturing[A]. Proc. SPIE[C],1999,3782:80-91
    52 M.A.Norton, E. E.Donohue, M. D. Feit, et al. Growth of Laser Damage in SiO2 under Multiple Wavelength Irradiation[A]. Proc. SPIE[C],2005
    53 P. DeMange, C. W. Carr, R. A. Negres, et al. Multiwavelength investigation of laser-damage performance in potassium dihydrogen phosphate after laser annealing[J]. Optics Letters,2005; 30(3): 221-223
    54 M. Runkel, K. Neeb, M. Staggs, et al. The results of raster-scan laser conditioning studies on DKDP triplers using Nd:YAG and excimer lasers [A]. Proc. SPIE[C],2002,4679:368-383
    55 L. J. Atherton, F. Rainer, J. J. DeYoreo, et al. Thermal and laser conditioning of production and rapid-growth KDP and KD*P crystals[A]. Proc. SPIE[C],1994,2114:36-44
    56 J. H. Campbell, F. Rainer, M. Kozlowski, et al. Damage resistant optics for a megajoule solid-state laser[A]. Proc. SPIE[C],1991,1441:444
    57 H. Bercegol, R. Courchinoux, M. Josse, et al. Observation of laser-induced damage on fused silica initiated by scratches[A]. Proc. SPIE[C],2005,5647:78-85
    58 M. Commandre, J. Y. Natoli, L. Gallais. Photothermal microscopy for studying the role of nano-sized absorbing precursors in laser-induced damage of optical materials[J]. Eur. Phys. J. Special Topics, 2008; 153:59-64
    59 J. Y. Natoli, Laurent Gallais, Bertrand Bertussi, et al. Localized pulsed laser interaction with sub-micronic gold particles embedded in silica:a method for investigating laser damage initiation[J]. Optics Letters,2003; 11 (7):824-829
    60 L. Gallais, J.Y. Natoli, C. Amra. Statistical study of single and multiple pulse laser-induced damage in glasses[J]. Optics Letters,2002; 10 (25):1465-1474
    61 胡昌信.强激光与物质的相互作用[J].力学进展,1980;1:118-128
    62周益春,段祝平,解伯民.强激光破坏机制研究进展[J].力学与实践,1995;17(1):10-18
    63 陆建,倪晓武,贺安之.激光与材料相互作用物理学[M].北京:机械工业出版社,1996
    64孙承伟,陆启生,范正修,等.激光辐照效应[M].北京:国防工业出版社,2002
    65郑启光,辜建辉.激光与物质相互作用[M].武汉:华中力学大学出版社,1996
    66夏志林,邵建达,范正修.在短脉冲激光作用下薄膜的损伤机制[J].材料研究学报,2006;20 (6):581-586
    67夏志林,邵建达,范正修,等.薄膜体内缺陷对损伤概率的影响[J].物理学报,2007;56(1):400-407
    68谢磊,马平,刘义彬,等.大口径反射元件环形抛光工艺[J].强激光与粒子束,2012;24(7):1687-1690
    69徐曦,杨李茗,石琦凯,等.磁流变加工对中频误差的影响[J].强激光与粒子束,2012;24(7):1695-1699
    70王凤蕊,黄进,刘红婕,等.激光诱导HF酸刻蚀后熔石英后表面划痕的损伤行为研究[J].物理学报,2010;59(7):5122-5127
    71 王凤蕊,郑直,刘红婕,等.HF酸刻蚀提升熔石英亚表面划痕抗损伤性能的机理[J].光子学报,2012;41(3):253-257
    72蒋晓东,郑直,祖小涛,等.亚表面杂质对熔石英激光损伤的影响[J].电子科技大学学报,2012;41(2):238-241
    73王凤蕊,黄进,刘红婕,等.激光诱导HF酸刻蚀后熔石英后表面划痕的损伤行为研究[J].物理学报,2010;59(7):5122-5127
    74刘红婕,周信达,黄进,等.355nm纳秒紫外激光辐照下熔石英前后表面损伤的对比研究[J].物理学报,2011;60(6):065202-1-065202-6
    75欧阳升,刘志超,许乔.熔石英表面加工引入金属微粒的三倍频激光损伤机制[J].强激光与粒子束,2011;23(9):2423-2427
    76胡鹏,陈发良.短脉冲激光辐照下Si02损伤微观机理简化模型[J].强激光与粒子束,2007;19(11):1771-1774
    77胡鹏,陈发良.激光辐照下杂质诱导光学玻璃损伤的两种机理[J].强激光与粒子束,2005;17(7):961-965
    78韩敬华,冯国英,杨李茗,等.纳秒激光诱导K9玻璃损伤形貌研究[J].红外与激光工程,2010;39(1):37-41
    79韩敬华,冯国英,杨李茗,等.纳秒激光在K9玻璃中聚焦的损伤形貌研究[J].物理学报,2008;57(9):5558-5564
    80尹伟,祖小涛,蒋晓东,等.经355 nm激光预处理后熔石英的损伤增长[J].原子能科学技术,2009;43(9):860-864
    81田东斌,袁晓东,祖小涛,等.熔石英亚表面缺陷附近光强分布的数值模拟[J].强激光与粒子束,2008;20(2):67-70
    82蒋勇,袁晓东,祖小涛,等.熔石英亚表面缺陷的研究进展[J].材料导报:综述篇,2009;23(7):102-106
    83郭少锋,陆启生,周萍,等.横向受激布里渊散射诱导破坏的数值研究[J].物理学报,2004;53 (11):3766-3770
    84郭少锋,陆启生,程湘爱,等.光学透明材料中瞬态SBS过程的数值研究[J].物理学报,2004;53(1):0099-0104
    85贾天卿,陈鸿,吴翔.导带电子的光吸收及其对材料破坏过程的影响[J].物理学报,2000;49(7):1277-1281
    86贾天卿,陈鸿,王珏,等.激光照射下石英玻璃的损伤机理研究[J].强激光与粒子束,1998;10(3):375-378
    87倪晓昌,王清月.时空分布的超短激光脉冲烧蚀电介质材料时等离子体的产生[J].光子学报,2004;33(9):1035-1039
    88 Zhang N, Zhu X N, Yang J J, et al. Time-Resolved Shadowgraphs of Material Ejection in Intense Femtosecond Laser Ablation of Aluminum[J].Phys. Rev. Lett.,2007; 99(16):167602
    89钱石雄,王恭明.非线性光学原理与进展[M].上海:复旦大学出版社,2002
    90石顺祥,陈国夫,赵卫等.非线性光学[M].西安:西安电子科技大学出版社,2003
    91 张志刚.飞秒激光技术[M].北京:科学出版社,2011
    92杜祥琬,等.高技术要览-激光卷[M].北京:中国科学技术出版社,2003
    93 B. C. stuart, M. D.Feit, A. M. Rubenchik, et al. laser-Induced Damage in Dielectrics with Nanosecond to Subpicosecond Pulses[J]. Physical Review Letters,1995; 74(12):2248-2251
    94 T. X. Phuoc. Laser-induced spark ignition fundamental and applications[J]. Optics and Lasers in Engineering,2006; 44:351-397
    95 E. G. Gamaly, S. Juodkazis, K. Nishimura, et al. Laser-matter interaction in the bulk of a transparent solid:Confined microexplosion and void formation[J]. Physical Review B,2006; 73:214101
    96 A.C.Tien, S. Backus, H. Kapteyn, et al. Short-Pulse Laser Damage in Transparent Materials as a Function of Pulse Duration[J]. Physical Review letters,1999; 82(19):3883-3886
    97 M. Bass, H. H. barrett. Avalanche breakdown and the probabilistic nature of laser-induced damage [J]. IEEE Journal of Quantum Electronics,1972; 8(3):338-343
    98 N. Bloembergen. Laser-induced electric breakdown in solids[J]. IEEE Journal of Quantum Electronics, 1974; 10(3):375-386
    99 D. W. Fradin, E. Yablonovitch, M. Bass. Confirmation of an electron avalanche causing laser-induced bulk damage at 1.06 um[J]. Applied Optics,1973; 12(4):700-709
    100 J.Dijon, T. Poiroux, C. Desrumaux. Nano absorbing centers:A key point in laser damage of thin films[A]. Proc. SPIE[C], Laser-Induced Damage in Optical Materials,1996,2966:315-325
    101 S. Papernov, A. W. Schmid. Correlations between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulsed-laser radiation[J]. J. Appl. Phys.,2002; 92(10): 5720-5728
    102 F. Bonneau. P. Combis, J. L. Rullier, et dl. Study of UV laser interaction with gold nanoparticles embedded in silica[J]. Appl. Phys. B,2002; 75(8):803-815
    103 P. Grua, J. P. Morreeuw, H. Bercegolm et dl. Electron kinetics and emission for metal nanoparticles exposed to intense laser pulses[J]. Phys. Rev. B,2003; 68:035424
    104 X. F. Liu, D. W Li, Y. A. Zhao, et al. Further investigation of the characteristics of nodular defects[J]. Applied Optics,2010; 49 (10):1774-1779
    105 S. Palmier, J. L. Rullier, J. Capoulade, et al. Effect of laser irradiation on silica substrate contaminated by aluminum particles [J]. Applied Optics,2008; 47 (8):1164-1170
    106 C. J. Stolz, F.Y.Genina, T. V. Pistor. Electric-field enhancement by nodular defects in multilayer coatings irradiated at normal and 45° incidence[A]. Proc.of SPIE[C], Laser-Induced Damage in Optical Materials,2004,5273:41-49
    107 M. D. Feit, A. M. Rubenchik. Implications of nanoabsorber initiators for damage probability curves, pulselength scaling, and laser conditioning[A]. Proc. SPIE[C], Laser-Induced Damage in Optical Materials,2004,5273:74-82
    108 Y. K. Danileiko, A. A. Manenkov, V. S. Nechitailo. The mechanism of laser-induced damage in transparent materials, caused by thermal explosion of absorbing inhomogeneities [J]. Sov. J. Quantum Electron,1978; 8 (1):116
    109 R. A. Negres, M. D. Feit, P. DeMange, et al. Pump and probe damage testing for investigation of transient material modifications associated with laser damage in optical materials [R]. UCRL-PROC-235690,2007
    110 L. D. Merkle, N. Koumvakalis, M. Bass.Laser-induced bulk damage in SiO2 at 1.064,0.532, and 0.355μm[J]. Journal of Applied Physics,1984; 55(3):772-775
    111 B. R. Lawn, M. V. Swain. Microfracture beneath point indentations in brittle solids[J]. Journal of Materials Science,1975; 10(1):113-122
    112 B. R. Lawn, M. V. Swain, K. Phillips. On the mode of chipping fracture in brittle solids[J]. Journal of Materials Science,1975; 10(7):1236-1239
    113 F. Y. Genin, A. Salleo, T. V. Pistor, et al. Role of light intensification by cracks in optical breakdown on surfaces[J]. J. Opt. Soc.Am.A,2001; 18 (10):2607-2616
    114 T. Suratwala, R. Steele, M. D. Feit, et al. Effect of Rogue Particles on the Sub-Surface Damage of Fused Silica during Grinding/Polishing[R]. UCRL-JRNL-230858,2007
    115 T. Suratwala, P. Miller, J. Menapace, et al. FY07 LDRD Final Report A Fracture Mechanics and Tribology Approach to Understanding Subsurface Damage on Fused Silica during Grinding and Polishing [R]. LLNL-TR-401200,2008
    116 A. A. Tesar, N. J. Brown, J. R. Taylor, et al. Subsurface polishing damage of fused silica:Nature and effect on laser damage of coated surfaces[J]. Laser-Induced Damage in Optical Materials,1990s 1441: 154-172
    117 N. Bloembergen. Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics[J]. Applied Optics, 1973; 12(4):661-664
    118 F. Y. Genin, A. Salleo, T. V. Pistor, et al. Role of light intensification by cracks in optical breakdown on surfaces[J]. J. Opt.Soc.Am. A,2001; 18 (10):2607-2616
    119 M. D. Feit, A. M. Rubenchik. Influence of subsurface cracks on laser-induced surface damage Proc[A]. SPIE 5273[C], Laser-Induced Damage in Optical Materials,2003:264
    120 O. S. Heavens. Optical properties of thin solid films[M]. New York, Dover Publications,1965
    121 李莉,雷雨,肖邵球,等.光学材料亚表面缺陷处强激光电磁场分布的3维模拟[J].强激光与粒子束,2009;21(6):936-938
    122章春来,刘春明,向霞,等.裂纹或气泡对熔石英损伤修复坑场调制的近场模拟[J].物理学报Acta Phys.Sin.,2012,61(12):124214-1-124214-12
    123 E. S. Bliss, J. T. Hunt, P. A. Renard. Effects of nonlinear propagation on laser focusing properties[J]. IEEE J. Quantum Electron,1976; 12(7):402-406
    124 E. S. Bliss, D. R. Speck, J. F. Holzrichter, et al. Propagation of a high-intensity laser pulse with small-scale intensity modulation[J]. Applied Physics Letters,1974; 25(8):448-450
    125 J. H. Marburger, Self-focusing:theory [J]. Prog. Quantum Electronics,1975; 4:35-10
    126 V. I. Talanov. Focusing of light in cubic media[J]. JETP Lett.,1970; 11:199-201
    127 R.L. Sutherland. Handbook of Nonlinear Optics[J]. Optical Engineering,1997; 36(3):964-964
    128 E. W.VanStryland, M. J. Soileau, A. L. Smirl, et al. Pulse-width and focal-volume dependence of laser-induced breakdown[J]. Phys. Rev. B,1981; 23:2144-2151
    129 T.R.Moore, G.L.Fischer, R. W. Boyd. Measurement of the power distribution during stimulated Brillouin scattering with focused Gaussian beams[J]. J. Mod. Opt.,1998; 45:735-745
    130 H.Yoshida, H.Fujita, M. Nakatsuka. Stimulated Brillouin scattering phase-conjugated wave reflection from fused-silica glass without laser-induced damage[J].Opt. Eng.,1997; 36:2557-2562
    131 J. M. Sajer. Stimulated Brillouin scattering and front surface damage[J]. Proc SPIE,2004; 5273: 129-135
    132 J. R. Murray, J. R. Smith, R. B. Ehrlich, et al. Experimental observation and suppression of transverse stimulated Brillouin scattering in large optical components[J]. J. Opt. Soc. Am. B,1989; 6: 2402-2411
    133 於海武,孟绍贤.光学材料破坏的超声模型[J].光学学报,1996;16(10):1446-1450
    134 H. Yuan, S. X. Meng. Transient stimulated Brillouin scattering and damage of optical glass[J]. J. Appl.Phys.,1997; 81(1):85-88
    135赵元安,王涛,张东平,等.脉冲激光辐照光学薄膜的缺陷损伤模型[J].光子学报,2005;34(9):1372-1375
    136威廉M.斯顿著,蒙大桥,张友寿,等译.材料激光工艺过程[M].北京:机械工业出版社,2012
    137 M. R. Lange, J. K. Mciver. Pulsed laser induced damage of an optical material with a spherical inclusion:influence of the thermal properties of the materials[J]. Proc. SPIE[C],1984,669:380-386
    138 M. V. AlImen, A. Blatter. Laser-beam interactions with materials:Physical principles and application[M]. New York, Springer,1995
    139 T.P.Hughes. Plasmas and laser light[M]. Bristol, Hilge,1975
    140 R. L. Stegman, J. T. Schriempf, L. R.Hettche. Experimental studies of laser-supported absorption waves with 5-ms pulses of 10.6-μm radiation[J]. Journal of Applied Physics,1973; 44(8):3675-3681
    141 A. N. Pirri. Theory for momentum transfer to a surface with a high power laser[J]. Physics of Fluids, 1973; 16(9):1435-1440
    142 J. Neauport, L. Lamaignere, H. Bercegol, et al. Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm[J]. Opt.Express,2005; 13:10163-10171
    143 P.E.Miller, T.I.Suratwala, L.L.Wong, et al. The distribution of subsurface damage in fused silica[A]. Proc. SPIE[C], Laser-Induced Damage in Optical Materials,2005,5991:599101
    144 W. C. Levengood. Effect of origin flaw characteristics on glass strength[J]. Journal of Applied Physics,1958; 29(5):820-826
    145 S. R. Foltyn. Spotsize effects in laser damage testing[J]. Natl. Bur. Stand. US Spec. Publ.,1984; 669: 368-379
    146 R. M. OConnell. Onset threshold analysis of defect-driven surface and bulk laser damage [J]. Appl. Opt.,1992; 31(21):4143-4153
    147 J. Y. Natoli, L. Gallais, H. Akhouayri, et al. Laser-induced damage of mat erials in bulk, thin-film, and liquid forms[J]. Appl. Opt.,2002; 41(16):3156-3166
    148刘志超,许乔,欧阳升,等.熔石英紫外激光初始损伤形态分析[J].强激光与粒子束,2009;21(7):1027-1031
    149 M. R. Kasaai, V. Kacham, F. Theberge, et al. The interaction of femtosecond and nanosecond laser pulses with the surface of glass[J]. Journal of Non-Crystalline Solids,2003; 319(1):129-135
    150程光华,王屹山,赵卫,等.不同宽度脉冲激光对白宝石损伤的结构特征[J].光子学报,2006;35(8):1121-1125
    151 S. Papernov, A. W. Schmid. Two mechanisms of crater formation in ultraviolet pulsed laser irradiated SiO2 thin films with artificial defects[J].J. Appl. Phys.,2005; 97:114906
    152 M. D. Crisp, N. L. Boling, G. Dube. Importance of Fresnel reflections in laser surface damage of transparent dielectrics[J]. Appl. Phys. Lett.,1972; 21(8):364-366
    153 S. Papernov, A. W. Schmid. Testing asymmetry in plasma-ball growth seeded by a nanoscale absorbing defect embedded in a SiO2 thin-film matrix subjected to UV pulsed-laser radiation[J]. J. Appl. Phys.,2008; 104(6):063101
    154 F. Y. Genin, K. Michlitsch, J. Furr, et al.Laser-induced damage of fused silica at 355 nm and 1064 nm initiated at aluminum contamination particles on the surface[A]. Proc.of SPIE[C], Laser-Induced Damage in Optical Materials,1997,2966:126-138
    155 M. D. Feit, A. M. Rubenchik, D. R. Faux, et al. Modeling of laser damage initiated by surface contamination[A]. Proc.of SPIE[C], Laser-Induced Damage in Optical Materials,1996,2966:417-424
    156胡建平,张问辉,段利华,等.K9玻璃表面的1064m激光损伤[J].激光杂志,2006;27(3):59-60
    157 M. D. Feit, F. Y. Genin, A.M.Rubenchik, et al. Statistical Description of Laser Damage Initiation in NIF and LMJ Optics at 355 nm[R]. UCRL-JC-131508,1998
    158 M. A. Stevens-Kalceff, A. Stesmans, Joe Wong. Defects induced in fused silica by high fluence ultraviolet laser pulses at 355nm[J]. Appl.Phys.Lett.,2002; 80(5):758-760
    159 C. H. Fan, J. Sun, J. P. Longtin. Plasma Absorption of Femtosecond Laser Pulses in Dielectrics[J]. Journal of Heat Transfer,2002; 124:275-283
    160 B.C.Stuart, M. D. Feit, S. Herman, et al. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics [J]. Phys. Rev.B,1996; 53:1749-1761
    161 B. C. Stuart, M. D. Feit, A. M. Rubenchik, et al. Laser-Induced Damage in Dielectrics with Nanosecond to Subpicosecond Pulses [J]. Phys.Rev. Lett.,1995; 74:2248-2251
    162 J. Capoulade, J. Y. Natoli, A. Hildenbrand, et al. Influence of the laser beam size on the laser-induced damage in thin films and substrates[A]. Optical Interference Coatings (OIC)[C],2007, Laser Damage (FB)
    163 A. J. Campillo, B. Carpenter, B. E. Newnam, et al. Soft apertures for reducing damage in high-power laser-amplifier systems[J]. Optics Communications,1974; 10(4):313-315
    164 P. E. Miller, T. I. Suratwala, J. D. Bude, et al. Initiation of Laser Damage at Surface Imperfections on Fused Silica Optics [A]. Optical Fabrication and Testing (OFT) [C],2010, Materials Processing and Damage (OWA)
    165 S. Z. Xu, X. T. Zu, X.D.Jiang, et al.The damage mechanisms of fused silica irradiated by 355 nm laser in vacuum[J]. Nucl. Instr. and Meth. in Phys. Res. B,2008; 266:2936-2940
    166 J. Neauport, P. Cormont, L. Lamaignere, et al. Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm[J]. Optics Communications,2008; 281:3802-3805
    167 郭少锋,陆启生,邓少永,等.ns脉冲激光对K9玻璃的破坏实验[J].强激光与粒子束,2004;16(7):817-820
    168 http://tupian.baike.com/22512/1.html?prd=zutu_before
    169 M. A. Stevens-Kalcef, J. Wong. Cathodoluminescence Micdroanalysis of the Distribution of defects induced in fused silica by UV laser pulses and after damage mitigation treamtent with a CO2 laser[J]. Journal of Applied Physics,2004; 97 (UCRL-JRNL-204432)
    170 C. Y. Wei, J. D. Shao, H. B. He, et al. Mechanism initiated by nanoabsorber for UV nanosecond-pulse-driven damage of dielectric coatings[J]. Optics Express,2008; 16(5):3376-3382
    171 A. J. Ikushima, T. Fujiwara, K. Saito. Silica glass:A material for photonics[J]. Journal of Applied Physics,2000; 88(3):1201-1213
    172 K. Saito, A. J. Ikushima. Absorption edge in silica glass[J]. Phys. Rev. B,2000; 62:8584-8587
    173 Saito, Kazuya. Effects of fluorine on structure, structural relaxation, and absorption edge in silica glass[J]. Journal of Applied Physics,2002; 91(8):4886-4890
    174 C. W. Carr, H. B. Radousky, A. M. Rubenchik, et al. Localized Dynamics during Laser-Induced Damage in Optical Materials[J]. Phys. Rev. Lett.,2004; 92:087401
    175 T.Suratwala, L.Wong, P.Miller, et al. Sub-surface mechanical damage distributions during grinding of fused silica [R].UCRL-JRNL-217445,2005
    176 Z. Wang, Y. L. Wu, Yifan Dai, et al. Subsurface damage distribution in the lapping process[J]. Appled Optics,2008; 47 (10):1417-1426
    177 T. Kamimura, S.Akamatsua, M. Yamamotoa, et al. Enhancement of surface-damage resistance by removing a subsurface damage in fused silica[A]. Proc.of SPIE[C], Laser-Induced Damage in Optical Materials,2004; 5273:244-249
    178 R. M. Brusasco, B. M. Penetrante, J. E. Peterson, et al. UV-laser conditioning for reduction of 351-nm damage initiation in fused silica[A]. Proc.SPIE [C], Laser-Induced Damage in Optical Materials,2002,4679:48-55
    179 J. A. Menapace, B. Penetrante, D. Golini, et al. Combined advanced finishing and UV-laser conditioning for producing UV-damage-resistant fused-silica optics[A]. Proc.SPIE [C], Laser-Induced Damage in Optical Materials,2002,4679:56-68
    180 M. D. Feit, A. M. Rubenchik. Implications of nanoabsorber initiators for damage probability curves, pulselength scaling, and laser conditioning[A]. Proc.SPIE [C], Laser-Induced Damage in Optical Materials,2004,5273:74-82
    181 C. J. Stolz, L. M. Sheehan, S. M. Maricle, et al. Astudy of laser conditioning methods of hafhia silica multilayer mirrors[A]. Proc.SPIE [C], Laser-Induced Damage in Optical Materials,1999,3578, 144-152
    182 L. J. Atherton, F. Rainer, J. J. DeYoreo, et al. Thermal and laser conditioning of production and rapid-growth KDP and KD*P crystals[A]. Proc.SPIE [C]. Laser-induced damage in optical material, 1994,2114:36-45
    183 J. Neauport, C. Ambard, P. Cormont, et al. Subsurface damage measurement of ground fused silica parts by HF etching techniques[J].Optics Express,2009; 17(22):20448-20456
    184 L.Wong, T. Suratwala, M. D. Feit, et al. The effect of HF/NH4F etching on the morphology of surface fractures on fused silica[J]. Journal of Non-Crystalline Solids,2009; 355:797-810
    185徐世珍,吕海兵,田东斌,等.酸蚀深度对熔石英三倍频激光损伤阂值的影响[J].强激光与粒子束,2008;20(5):760-764
    186郝作强.强飞秒激光在大气中的成丝非线性光学研究[D].博士学位论文.中国科学院研究院(物理研究所),2007
    187郝作强,张杰.超短脉冲强激光在大气中的传输[J].物理,2004,33(10):741-747
    188张杰,郝作强,远晓辉,等.超强飞秒激光脉冲在空气中的传输研究[J].量子电子学报,2006,23(3):282-294
    189张军勇,孙美智,张艳丽,等.神光Ⅱ终端光学组件的频率变换逆问题研究[J].光学学报,2012,32(9):0916003-1~0916003-6
    190 P. Wegner, J. Auerbach, T. Biesiada, et al. NIF final optics system:frequency conversion and beam conditioning[A]. SPIE Photonics West[C],2004, UCRL-CONF-155817
    191 J. L. Hendrix, J. Schweyen, J. Rowe, et al. Ghost Analysis Visualization Techniques for Complex Systems:Examples from the NIF Final Optics Assembly[A]. Third Annual International Conference on Solid State Lasers for Application(SSLA) to Inertial Confinement Fusion (ICF)[C],1998, UCRL-JC-129754
    192 P. DeMange, R A. Negres, A. M. Rubenchik, et al. The energy coupling efficiency of multi-wavelength laser pulses to damage initiating defects in DKDP nonlinear crystals[J]. J. Appl. Phys,2007,103(8):083122
    193邱荣,王俊波,李晓红,等.纳秒强激光诱导K9玻璃表面损伤实验[J],强激光与粒子束,2011,23(8):2101-2105
    194 R. A. Negres, M. D. Feit, and S. G. Demos. Dynamics of material modifications following laser-breakdown in bulk fused silica[J]. Optical Express,2010,18(10):10642

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700