锂陶瓷微球释氘行为及其与辐照缺陷的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氚增殖剂是聚变堆产氚包层的核心功能材料,其在中子场下的氚释放行为和辐照性能是氘氚燃料循环工艺、包层工程设计所关心的重要内容。中国已开展了20余年的固态氚增殖剂制备工作,如LiAlO2、Li2ZrO3.Li2TiO3和Li4SiO4等,但对这些材料性能,尤其是辐照产氚性能研究得较少,缺乏对材料辐照效应和氚相关基础问题的认识,无法满足聚变工程设计的要求。针对目前的研究需求,在缺少聚变中子源的实验条件下,本文采用裂变反应堆辐照锂陶瓷氚增殖剂,在堆外热解吸(TDS)实验平台上系统研究材料的氚释放行为及其影响因素,掌握氚释放过程的速控步骤;运用伽玛射线、电子束和中子辐照产生增殖剂材料的体相缺陷,比较研究辐照前后的微观组织变化,采用电子自旋共振实验技术研究辐照缺陷的顺磁特征;利用加热退火的方法加速体相缺陷的恢复速度,研究辐照缺陷湮灭的动力学行为;分析氚释放行为和体相辐照缺陷演变的相关性,建立氚与缺陷的相互作用模型;通过离子注入的方式将氘引入增殖剂材料,研究表面辐照缺陷与氢同位素热解吸行为的关系。
     以不同升温速率进行堆外热解吸实验,研究结果表明,以LiOH为原料、冷冻成型工艺制备出的Li4SiO4陶瓷微球(~80%T.D)具有较低的氚解吸活化能(40.0±4.2kJ/mol),表现出适宜的低温放氚窗口(500~800K).采用球形扩散模型计算得到增殖氚在Li4SiO4微球中的扩散动力学参数,结合表观热解吸活化能,确定以纯氦为载气的条件下,氚在晶粒内的扩散是氚释放过程的速控步。陶瓷微球晶粒的扩散动力学数据与粉末晶体相近,说明氚在晶界内和孔道内的扩散对氚释放的影响较小。氚扩散系数随中子注量的增大而减小,说明辐照缺陷的增多会阻滞氚在晶粒中的扩散。论文同样得到LiAlO2微球的氚解吸活化能为128.7士28.6kJ/mol,氚释放主要分布在750~1000K,说明LiAlO2需要相对较高的温度窗口提氚。
     采用He,He+0.1%H2或He+0.1%H2O为载气,分别研究载气组成对锂陶瓷释氚形态的影响。实验结果表明,氚释放形态由晶粒内氚扩散、表面热解吸和氢同位素交换反应竞争控制。Li4SiO4中氚的扩散速度快,表面热解吸活化能小,表面-OT与载气中H2的同位素交换反应贡献小,因此氚释放形态受载气组成的影响小;LiAlO2中氚的扩散速度慢,热解吸活化能与表面氢同位素交换反应(-OT与H2)的活化能在相近的能阈范围,因此释氚形态受载气组成的影响大,即氦气加H2会增加HT的释放比例。此外,锂陶瓷微球表面负载少量的催化活性元素(Pt, Pd, Ru或Ir),可以显著增强表面氢同位素交换反应,加快表面滞留氚的释放,促进分子氚(HT)在低温段的回收。
     在辐照效应研究方面,采用低剂量的γ射线、电子束和热中子辐照锂陶瓷微球,不会对表面或体相造成严重的辐照损伤,但会诱生缺陷色心,改变材料颜色。采用ESR实验技术检测顺磁缺陷信号,分析辐照缺陷特征,发现Li20主要产生F+中心,而三元锂氧化物辐照后主要产生E’中心和氧缺陷中心(O--center, O2-center)。辐照剂量大于500kGy后,Li4SiO4的非中子辐照缺陷与中子辐照缺陷表现出相似的ESR谱形特征,为模拟研究中子辐照效应提供了参考。
     采用退火的方法使与缺陷相关的扩散、捕获或脱陷等反应过程加速,研究中子辐照缺陷演变的动力学行为。在等速升温(5K/min)过程中,各种离位原子和电子扩散复位,Li4SiO4的中子辐照缺陷逐渐消失。当温度超过798K,表面氚化物分解并在胶体硅表面产生硅悬挂键,生成新的缺陷中心;胶体物质捕获氚形成的氚化物(Si-T或Li-T)可能是锂陶瓷氚滞留的重要因素;运用一级反应动力学方程将Li4SiO4中子辐照缺陷的退火过程分解成快速和慢速两个过程:快退火活化能为0.18±0.02eV,与电子扩散和氢原子扩散有关;慢退火活化能为0.57士0.06eV,与氧回位造成E’心湮灭有关。
     比较Li4SiO4的辐照缺陷退火曲线和氚释放曲线,观察到缺陷湮灭过程快要结束时,氚释放速率才迅速递增,由此推测缺陷慢退火行为与氚释放行为存在一定关系。根据缺陷慢退火活化能与氧扩散活化能差异性,论文采用两种模型阐释了氧空位缺陷与氚的相互作用。一种模型延用传统的理论假设——“氧原子扩散复位造成E'心湮灭”,但氧回位产生-0.60eV的驰豫能。另一种模型根据辐照缺陷的慢退火活化能与羟基的扩散活化能在同一个能阈范围(0.56-0.58eV),推测辐照缺陷慢退火与羟基扩散、氧回位有关。
     采用D2+注入的方式模拟研究表面辐照缺陷对氚释放行为的影响。结果表明,3KeVD2+注入后,Li4SiO4表面状态遭到破坏,部分缺陷会捕获D形成Li-D、O-D,大部分D以非O-D存在。注氘后的热解吸谱与材料表面化学状态有关。
     以上研究结果只适用于低剂量的辐照实验,还不能延伸回答聚变包层中锂陶瓷增殖剂的氚释放和缺陷行为。
Tritium breeder is considered as the key function material of the tritium breeding blanket in a fusion reactor. The tritium release behavior and the irradiation properties of tritium breeder in neutron fields are the important targets for the deuterium-tritium fuel cycle technology and the engineering design of the blankets. The preparation work of the solid tritium breeders, such as LiAlO2, Li2ZrO3, Li2TiO3and Li4SiO4, has been carried out for more than20years in China, but the properties of these materials are studied less, especially the tritium performance during irradiation. Therefore, the lack of the understanding about the tritium issues and irradiation effects can not meet the engineering requirements. According to the current research needs without fusion neutron source, out-of-pile annealing experiments are performed to study the tritium release behavior of the lithium ceramics which are irradiated in fission reactors in this work. The influencing factors, including the heating rate, the isothermal temperature and the purge gas, are investigated respectively to discuss the rate-controlling step during the tritium release process, y-ray, electron beam and neutron irradiation are used to produce defects in lithium ceramic pebbles, the changes of the microcosmic structure before and after irradiation are compared, and the characteristics of irradiation defects are detected by means of electron spin resonance (ESR). The annihilation kinetics of the irradiation defects in neutron-irradiated Li4SiO4is investigated using isochronal and isothermal annealing methods to accelerate the recover rate of the defects. The correlation between annihilation of the irradiation defects and tritium release is analyzed, and then the model of the mutual action between defects and tritium is established. The surface irradiation defects and the hydrogen isotopes desorption behavior of Li4SiO4are investigated by D2+implantation.
     Li4SiO4ceramic pebbles (-80%T.D), which are made of LiOH with freezing-shaping technology, show good tritium release performance in the low temperature region of500-800K. The apparent desorption activation energy of the bred tritium on the pebble surface is evaluated to be40.0±4.2kJ/mol based on the TDS experiments at different heating rates. The apparent desorption activation energy of tritium on the pebble surface was consistent with the diffusion activation energy of tritium in the crystal grains, indicating that tritium release was mainly controlled by diffusion process. The diffusion coefficients of tritium in the crystal grains at temperatures ranging from450K to600K are obtained by isothermal annealing tests, and the Arrhenius relation is determined to be D=1x10-7.0exp(-40.3×103/RT) cm2s-1. The tritium diffusivity of the Li4SiO4ceramic pebbles in this work is close to that of Li4SiO4crystal powder in the literature, implying that the diffusion of tritium through grain boundaries has little effect on the tritium release rate of Li4SiO4ceramic pebbles. The effect of irradiation fluence on tritium diffusivity in the samples is observed as reduction of the tritium diffusion coefficient with increasing the neutron fluence in the studied range. The bred tritium requires a high temperature region of750-1000K to be liberated from LiAlO2ceramic pebbles corresponding to the apparent desorption activation energy, which is evaluated to be128.7±28.6kJ/mol.
     The release forms of the bred tritium in lithium ceramics influenced by purge gas composition are investigated. He, He+0.1%H2and He+0.1%H2O are used as purge gas respectively in the TDS experiments. The experimental results show that the released pieces of tritium are co-controlled by the desorption reaction and the hydrogen isotope exchange reaction on the pebble surface, indicating that hydrogen addition to the purge gas plays small role on the released forms of the tritium for Li4SiO4because of its quick diffusivity and low desorption activity energy, but can significantly change the released form of the tritium for LiAlO2because of its slow diffusivity and high desorption activity energy. Catalytic metals loaded on the lithium ceramic pebbles can enhance the hydrogen isotope exchange reaction between tritium on the solid surface and hydrogen in the purge gas, and accelerates the recovery rate of the molecular tritium (HT) in the low temperature range.
     With respect to the irradiation effects of Li4SiO4ceramic pebbles, y-ray, electron beam and thermal neutron are used in a low dose range. The experimental conditions can not produce serious damage on the surface or in the body of the specimens, but induce some kinds of defect centers, which change the specimens'color. Electron spin resonance technique (ESR) was employed to analyze the paramagnetic defects in the specimens before and after irradiation. It is found that F+center is the principal paramagnetic defect existing in Li2O after irradiation, and there are E'-center, O--center and O2--center in ternary lithium ceramics after irradiation. The ESR spectra of Li4SiO4irradiated by un-neutron irradiation methods show similar characteristics with the spectrum of the specimen irradiated by thermal neutron when the irradiation dose is more than500kGy. This result provides a reference to study the irradiation effects of material exposed to neutron field.
     The annihilation kinetics of the irradiation defects in neutron-irradiated Li4SiO4is investigated with annealing methods to accelerate the reaction rates related to the defects. Trapped electrons and various kinds of defects recover via diffusion at a heating rate of5K/min from R.T. to798K, then the defects gradually annihilate. some holes are released from the recombination reactions of the E's and PORs to enhance the production of the amorphous silicon centers in the present Li4SiO4when the annealing temperature is higher than798K. Tritium compounds (Si-T or Li-T) formed by colloids trapping tritium may be the considerable reason of tritium inventory in high temperature region. Basing on the first-order reactions, the annealing experiments of ESR show that there are fast and slow annihilation processes of the irradiation defects for neutron-irradiated Li4SiO4. The activation energies for the two processes are0.18and0.57eV respectively. The fast annihilation process may be attributed to diffusion of trapped electrons into defects, and the slow annihilation process may be attributed to the annihilation of E'-center via recovering oxygen.
     Isochronal annealing experiments of ESR for neutron-irradiated Li4SiO4are performed to contrast the annihilation process of irradiation defects and the tritium release process. It is observed that the tritium release rate speeds up when the annihilation process of the irradiation defects on the verge of ending, thus the correlation between the slow annihilation process and the tritium release is speculated. According the difference of activity energy of the slow process and the diffusivity activity energy of oxygen, two theoretical models are suggested to interpret the mutual action of oxygen vacancy and tritium. One model supposes that the recovering oxygen ions triggers the tritium release, but a relaxation energy of-0.60eV will be produced after the recover of oxygen ions. The other model considers that he slow annihilation process is related to the diffusion of hydroxyl radical and the recovery of oxygen owing to the same energy barrier of0.56-0.58eV for both the slow annihilation process and the hydroxyl diffusion.
     The effect of surface defects on the tritium release is simulated by D2+implantation. The chemical states and the deuterium desorption behavior of Li4SiO4implanted with3KeV D2+are investigated by in-situ X-ray photoelectron spectroscopy, the FT-IR spectroscopy and the thermal desorption spectroscopy. The experimental results show that deuterium implantation can change the chemical states on the surface of Li4SiO4, and produce many irradiation defects and binding groups, such as defects trapping D to form Li-D, therefore the thermal desorption behavior of molecular deuterium is related to the surface states. The un-O-D states of deuterium implanted into the sample convert to O-D states during the heating process, which has some relationship with the thermal desorption behavior of deuterium water (HDO). The above results are helpful to understand the tritium release behavior of lithium breeder affected by irradiation defects.
     The above results are suitable to the experiments with low dose irradiation, but can not extend to reflect the tritium release and defects behavior in the fusion blankets.
引文
[1]肖成建,陈晓军,康春梅,等.锂陶瓷氚增殖剂的中子辐照性能与产氚行为[J].化学进展,2011,23(9):1906-1913.
    [2]M. Zmitko. European Test Blanket Modules Project:Organization, Objectives, Time Schedule and Development Strategy [C]. International Workshop on Ceramic Breeder Blanket Interactions (CBBI-16), Sept.8-10,2011, Portland, USA.
    [3]N. Rouxa, S. Tanaka, C.E. Johnson, R. Verral. Ceramic breeder material development [J]. Fusion Engineering and Design,1998,41:31-38.
    [4]C.E. Johnson. Ceramic breeder materials:Status and needs [J]. Journal of Nuclear Materials,1998,258-263:140-148.
    [5]冯开明.ITER实验包层计划综述[J].核聚变与等离子体物理,2006,26(3):161-169.
    [6]H. Kwast, M. Stijkel, R. Conrad et al. Exotic:development of ceramic tritium breeding materials for fusion reactor blankers.1995,12, ECN-C-95:123.
    [7]G..W. Hollenberg. Swelling of lithium ceramics during irradiation [J]. Advances in Ceramics,1989,25:183-189.
    [8]G. W. Hollenberg, H. Watanabe, I. J. Hastings. "BEATRIX-Ⅱ" A multinational solid breeder materials experiment [J]. Journal of Nuclear Materials,1992,191-194:23-29.
    [9]G. Piazza, A. Erbe, R. Rolli. Post-irradiation examinations of Li4SiO4 pebbles irradiated in the EXOTIC-8 experiment [J]. Journal of Nuclear Materials,2004,329-333: 1260-126.
    [10]郝嘉琨编著.聚变堆材料[M].北京:化学工业出版社,2006,12.
    [11]H. Kleykamp. Chemical interactions in the EXOTIC-7 experiment [J]. Journal of Nuclear Materials,1999,273:171-176.
    [12]C.E. Johnson, T. Kondo, N. Roux. Fabrication, properties, and tritium recovery from solid breeder materials [J]. Fusion Engineering and Design,1991,16:127-139.
    [13]毛世奇.辐照对锂陶瓷材料电导率的影响[J].原子能科学技术,1998,32(5):451-454.
    [14]K. Noda, Y. Ishii, T. Nakazwa, H. Matsui. Model experiments for tritium behavior in pure and Al-doped lithium orthosilicate using ion conductivity [J]. Fusion Engineering and Design,1991,17:55-59.
    [15]N. Roux, C. Johnson, K. Noda. Properties and performance of tritium breeding ceramics [J]. Journal of Nuclear Materials,1992,191-194:15-22
    [16]G. Schumacher, M. Dalle-Donne, R. Huber, et al. Improvement of the mechanical stability of lithium-orthosilicate pebbles [J]. Fusion Engineering and Design,1991,17: 31-36.
    [17]D. Vollath. Trends in ceramic breeder development [J]. Fusion Engineering and Design, 1991,17:3-11.
    [18]J. G. vander Laan, H. Kawamura, N. Roux. Ceramic breeder research and development: progress and focus [J]. Journal of Nuclear Materials,2000,283-287:99-109.
    [19]M. Nishikawa, T. Kinjyo, T. Ishizaka, S. Beloglazov, T. Takeishi, M. Enoeda, T. Tanifuji. Release behavior of bred tritium from LiAlO2 [J]. Journal of Nuclear Materials, 2004,335:70-76.
    [20]K. Okuno, H. Kudo. Tritium diffusivity in lithium-based ceramic breeders irradiated with neutrons [J]. Fusion Engineering and Design,1998,8:355-358.
    [21]M. Nishikawa, A. Baba, S. Odoi, Y. Kawamura. Tritium inventory estimation in solid blanket system [J]. Fusion Engineering and Design,1998,39-40:615-625.
    [22]K. Munakata, A. Koga, Y. Yokoyama, S. Kanjo, S. Beloglazov, D. Ianovski, T. Takeishi, R.-D. Penzhorn, K. Kawamoto, H. Moriyama,Y. Morimoto, S. Akahori, K. Okuno. Effect of water vapor on tritium release from ceramic breeder Material [J]. Fusion Engineering and Design,2003,69:27-31.
    [23]M. Kobayashi, K. Kawasaki, T. Fujishima, Y. Miyahara, Y. Oya, K. Okuno. Release kinetics of tritium generated in lithium-enriched Li2+xTiO3 by thermal neutron irradiation [J]. Fusion Engineering and Design,2012,87:471-475.
    [24]K. Moritani, T. Magari, H. Moriyama. Tritium release kinetics of lithium silicates with irradiation defects [J]. Fusion Engineering and Design,1998,39-40:675-683.
    [25]H. Kudo, K. Okuno. Kinetic studies of the tritium release process in neutron-irradiated Li2O and LiOH [J]. Journal of Nuclear Materials,1981,101:38-43.
    [26]K. Moritani, H. Moriyama. In situ luminescence measurement of irradiation defects in ternary lithium ceramics under ion beam irradiation [J]. Journal of Nuclear Materials, 1997,248:132-139.
    [27]K. Okuno, H. Kudo. Chemical states of tritium and interaction with radiation damages in Li2O crystals [J]. Journal of Nuclear Materials,1986,138:31-35.
    [28]O. D. Slagle, T. Kurasawa, R. A. Verrall, G. W. Hollenberg. In situ tritium recovery from Li2O irradiated in fast neutron flux--BEATRIX-Ⅱ temperature change specimen [J]. Journal of Nuclear Materials,1992,191-194:214-218.
    [29]沈文德.混合堆包层在线产氚演示回路及其放氚实验.SWNPC报告,1997.
    [30]K. Tsuchiya, A. Kikukawa, D. Yamaki, et al. In-situ tritium release behavior from Li2TiO3 pebble-bed [J]. Fusion Engineering and Design,2001,58-59:679-82.
    [31]Y. Chikhray, V. Shestakov, O. Maksimkin, L. Turubarova, I. Osipov, T. Kulsartov, A. Kuykabayeba, I. Tazhibayeva, H. Kawamura, K. Tsuchiya. Study of Li2TiO3+5 mol% TiO2 lithium ceramics after long-term neutron irradiation [J]. Journal of Nuclear Materials,2009,386-388:286-28.
    [32]H. Kwast. Tritium Recovery from Ceramic Breeder Materials [C]. Japan-US Workshop P195 and International Energy Agency Speciallist'Workshop Proceedings of the International Workshop on Ceramic Breeder Blanket Internations. Tokyo Japan,1992: 54-67.
    [33]K. Tsuchiya, A. Kikukawa. In-situ tritium release behavior from Li2TiO3 pebble-bed [J]. Fusion Engineering and Design,2001,58-59:679-682.
    [34]G. Kiz-ane, J. T-iliks, A. V-itin, et al. Behavior of tritium in breeding materials [J]. Fusion Engineering and Design,2005,75-79:897-901.
    [35]T. Kinjyoa, M. Nishikawaa, N. Yamashitaa. Chemical form of released tritium from solid breeder materials under the various purge gas conditions [J].Fusion Engineering and Design,2007,82:2147-2151.
    [36]H. Pfeiffer, J. S. Sanchez, L. J. Alvarez. Lithium and tritium diffusion in lithium oxide (Li2O), a molecular dynamics simulation [J]. Journal of Nuclear Materials,2000,280: 295-303.
    [37]M. Nishikawa, Y. Kawamura. Release of water from Li2ZrO3 packed bed to sweep gases [C]. Japan-US Workshop P195 and International Energy Agency Speciallist'Workshop Proceedings of the International Workshop on Ceramic Breeder Blanket Internations. Tokyo Japan,1992:189-196.
    [38]A. K. Fischer, C. E. Johnson. Measurements of adsorption in the LiAlO2-H2O(g) system[J]. Fusion Technology,1989,15:1212-1215.
    [39]N. Roux, G. Hollenberg, C. Johnson. Summary of experimental results for ceramic breeder materials [J]. Fusion Engineering and Design,1995,27:54-166.
    [40]T. Kinjyo, M. Nishikawa, M. Enoeda. Estimation of tritium release behavior from solid breeder materials under the condition of ITER test blanket module [J]. Journal of Nuclear Materials,2007,367-370:1361-1365.
    [41]Y. Kawamura, M. Nishikawa, T. Shiraishi, K. Okuno. Formation of water in lithium ceramics bed at hydrogen addition to purge gas [J]. Journal of Nuclear Materials,1996, 230:287-294.
    [42]Y. Kawamura, M. Nishikawa, T. Shiraishi. Formation of water in lithium ceramics bed at hydrogen addition to purge gas [J]. Journal of Nuclear Materials 1996,230:87-294.
    [43]A. Baba, M. Nishikawa, T. Eguchi. Isotope exchange reaction on solid breeder materials [J]. Fusion Engineering and Design,2000,49-50:483-489.
    [44]S. Tanaka, Y.Yamaki, M.Yamawaki. Effects of surface heterogeneity on tritium release [C]. Proc.2nd Int. Workshop on Ceramic Breeder Blanket Interactions, Paris,1993.
    [45]M. Oyaidzu, H. Kimura, A. Yoshikawa. Correlation between annihilation of irradiation defects and tritium release in neutron-irradiated lithium zirconate [J]. Fusion Engineering and Design,2006,81:583-588.
    [46]T. Tanifuji, D. Yamaki, T. Takahashi, A. Iwamoto. Tritium release from neutron-irradiated Li2O sintered pellets:porosity dependence [J]. Journal of Nuclear Materials,2000,283-287:1419-1423.
    [47]H. Wedemeyer, H. Werle, E. Gunther. Influence of grain-size and carbonate impurities on the tritium release from lithium orthosilicate [J]. Journal of Nuclear Materials,1992, 191-194:240-242.
    [48]S. van Til. Out of pile tritium release behaviour and microscopic investigation of lithium metatitanate irradiated in the High Flux Reactor in Petten [J]. Fusion Engineering and Design,2010,85(7-9):1143-1146.
    [49]Y.Nishikawa, M. Oyaidzu, A.oshikawa. Correlation between tritium release and thermal annealing of irradiation damage in neutron-irradiated Li2SiO3 [J]. Journal of Nuclear Materials,2007,367-370:1371-1376.
    [50]H. Wedemeyer, H. Werie, E. Gunther. Influence of grain-size and carbonate impurities on the tritium release from lithium orthosilicate [J]. Journal of Nuclear Materials,1992, 191-194:240-242.
    [51]P.C. Bertone, The Kinetics that Govern the Release of Tritium from Neutron-Irradiated Lithium Oxide [J]. Journal of Nuclear Materials,1988,151:281-292.
    [52]S. Casadio, J.G. van der Laan, C. Alvani, A.J. Magielsen, M.P. Stijkel. Tritium release kinetics from Li2TiO3 pebbles as prepared by soft-wet-chemistry [J]. Journal of Nuclear Materials,2004,329-333:1252-1255.
    [53]J.P. Kopasz, S.W. Tam, C.E. Johnson, Enhanced tritium transport and release by solids modification [J]. Journal of Nuclear Materials,1991,179-181:816-819
    [54]F. Botter, S. Tistchenko, M. Briec, J.P. Kopasz. Progress in the knowledge of the mechanism of tritium release from lithium ceramics [J]. Fusion Engineering and Design, 1991,17:49-54.
    [55]K. Munakata, A. Baba, M. Nishikawa, R.D. Penzhorn.Development of an improved ceramic tritium breeder-ceramic breeder with catalytic function [J]. J. Nucl. Sci. Technol. 1998,35:511-514
    [56]K. Munakata, A. Baba, T. Kawagoe, T. Takeishi, Y.Yokoyama, M. Nishikawa, R.D. Penzhorn, H. Moriyama,K. Kawamoto, K. Okuno. Tritium release from improved ceramic breeder with catalytic function[J]. J. Nucl. Sci. Technol.,1999,36:962-964.
    [57]K. Munakata, Y. Yokoyama, A. Baba. Tritium release from catalytic breeder materials [J]. Fusion Engineering and Design,2001,58-59:683-687
    [58]K. Mochizuki, K. Munakata, T. Wajima, K. Hara, K. Wada, T. Shinozaki, T. Takeishi, R. Knitter, N. Bekris, K. Okuno. Study of isotope exchange reactions on ceramic breeder materials deposited with noble metal [J]. Fusion Engineering and Design,2010,85 (7-9):1185-1189
    [59]K. Munakata, T. Shinozaki, K. Inoue. Tritium release from lithium orthosilicate pebbles deposited with palladium [J]. Journal of Nuclear Materials,2009,386-388:1091-1094
    [60]Y. Narisato, K. Munakata, A. Koga, Y. Yokoyama, T. Takata, H. Okabe. Enhancement of isotope exchange reactions over ceramic breeder material by deposition of catalyst metal [J]. Journal of Nuclear Materials,2004,329-333:1370-1373.
    [61]S. Tanaka, T. Terai, M. Yamawaki. Study on tritium release from solid breeding materials using the research reactor "YAYOI" [J]. Nuclear Energy,1998,32(1-2):71-95.
    [62]朱德琼,陈晓军,彭述明,等.固体氚增殖剂的制备及性能综述[J].材料导报,2008,22(9):72-76
    [63]A. Abramenkovs, J. Tiliks, G. Kizane. Basic study of influence of radiation defects on tritium release processes from lithium silicates [J]. Journal of Nuclear Materials,1997, 248 (1):116-120
    [64]M.Oyaidzu, H.Kimura, A.Yoshikawa. Correlation between annihilation of irradiation defects and tritium release in neutron-irradiated lithium zirconate [J]. Fusion Engineering and Design,2006,81:583-588.
    [65]Y. Nishikawa, M. Oyaidzu, A. Yoshikawa. Correlation between tritium release and thermal annealing of irradiation damage in neutron-irradiated Li2SiO3 [J]. Journal of Nuclear Materials,2007,367-370:1371-1376.
    [66]M. Oyaidzu, Y. Nishikawa, T. Suda. Detrapping behavior of tritium trapped via hot atom chemical process in neutron-irradiated ternary lithium oxides [J]. Journal of Nuclear Materials,2008,375:1-7.
    [67]M. Oyaidzu, Y. Morimoto, H. Kodama. Correlation between annihilation of radiation defects and tritium release in Li2TiO3[J]. Journal of Nuclear Materials,2004,329-333: 1313-1317.
    [68]H. Moriyama, S. Tanaka, K. Okuno. Irradiation defects in ceramic breeder materials [J]. Journal of Nuclear Materials,1998,258-263:587-594.
    [69]S. Tanaka, D. Yamaki, M. Yamawaki. Modeling of surface reactions in tritium release from solid breeding materials [J]. Fusion Technol.,1991,19:1018-1023.
    [70]H. Moriyama, S. Tanaka, K. Noda. Irradiation effects in ceramic breeder materials [J]. Journal of Nuclear Materials,1998,258-263:587-594
    [71]V. Grishmanov, S. Tanaka, J. Tiliks, G. Kizane, A. Supe, T. Yoneoka. Influence of radiation defects on tritium release parameters from Li2O [J]. Fusion Engineering and Design,1998,39-40:685-691
    [72]唐涛.锂基陶瓷中氚行为的理论与实验研究[D].2010.
    [73]Luis Padilla-Campos. A theoretical investigation of occupation sites for tritium atoms in lithium titanate [J]. Journal of Molecular Structure,2003,21:107-112.
    [74]K. Noda, Y. Ishii, T. Nakazwa, H. Matsui, et al.Model experiments for tritium behavior in pure and Al-doped lithium orthosilicate using ion conductivity [J]. Fusion Engineering and Design,1991,17:55-59.
    [75]A.A. Abramenkovs, J.E. Tiliks, V.G. Vasilyev. Tritium extraction from lithium containing ceramics in thermal annealing in after-reactor experiments [J]. Fusion Engrg. 1991,17:61-64.
    [76]K. Noda, T. Nakazwa, Y. Ishii, H. Matsui. Irradiation damage in lithium orthosilicate [C]. Japan-US Workshop PI95 and International Energy Agency Speciallist'Workshop Proceedings of the International Workshop on Ceramic Breeder Blanket Internations. Tokyo Japan,1992:344-350.
    [77]T. Tang, Z. Zhang, J. B. Meng, et al. Synthesis and Characterization of Lithiu Silicate Powders [J]. Fusion Engineering and Design,2009,84(12):2124-2130.
    [78]K. Okuno, H. Kudo. Tritium diffusivity in lithium-based ceramic breeders irradiated with neutrons [J]. Fusion Engineering and Design,1989,8:355-358.
    [79]K. Okuno, H. Kudo. Thermal release of tritium produced in sintered Li2O pellets [J]. Journal of Nuclear Materials,1983,116:82-85.
    [80]F. Botter, S. Tistchenko, M. Briec, J.P. Kopasz. Progress in the knowledge of the mechanism of tritium release from lithium ceramics [J]. Fusion Engineering and Design, 1991,17:49-54.
    [81]H. Okabe, K. Munakata, Y. Yokoyama, et al. Modeling of tritium release from ceramic breeder materials by focusing on transport process in breeder grain [J]. Journal of Nuclear Materials,2004,29-33:1309-1312
    [82]S. Akahori. Study on correlation between tritium behavior and thermal annealing behavior of irradiation damages in neutron-irradiated Li4SiO4 [D]. Shizuoka University, 2001,4003.
    [83]V. Grishmanov, S. Tanaka, J. Tiliks, G. Kizane, A. Supe, T. Yoneoka. Influence of radiation defects on tritium release parameters from LiO2 [J]. Fusion Engineering and Design,1998,39-40:685-691.
    [84]G. Kizane, J. Tiliks, A. Vitins, J. Rudzitis. Tritium localisation and release from the ceramic pebbles of breeder [J]. Journal of Nuclear Materials,2004,329-333:1287-1290
    [85]Donne M D, Gunther E, Schumacher G, et al. Research and development work for the lithium orthosilicate pebbles for the Karlsruhe ceramic breeder blanket [J]. Journal of Nuclear Materials,1991,179-181:796-799.
    [86]姜作中,白新德,凌云汉,等.微波烧结偏铝酸锂陶瓷的可行性研究[J].2003,26(12):956-960.
    [87]K. Tsuchiya, K. Fuchinoue, S. Saito, K. Watarumi, T. Furuya, H. Kawamura. Fabrication development of Li2O pebbles by wet process [J]. Journal of Nuclear Materials,1998, 253:196-202.
    [88]X. Wu, Z. Wen, J. Han, X. Xu, B. Lin. Fabrication of Li2TiO3 pebbles by water-based sol-gel method [J]. Fusion Engineering and Design,2008,83:112-116.
    [89]C.H. Jung, J.Y. Park, S.J. Oh, H.K. Park, Y.S. Kim, D.K. Kim, J.H. Kim. Synthesis of Li2Ti03 ceramic breeder powders by the combustion Process [J]. Journal of Nuclear Materials,1998,253:203-212
    [90]王和义,孙颖,赵君科,等.溶胶-凝胶法制备锆酸锂陶瓷微球[J].高技术通讯,1997,8:53-57.
    [91]蒋国强,罗德礼,陆光达,等.氚和氚的工程技术[M].北京:国防工业出版社,2007.
    [92]W. Pannhorst, V. Geiler, G. Rake, et al. Production process of lithium orthosilicate pebbles [C]. Proceedings 20th Symposium on Fusion Technology, Marseille, France, 1998, p.1441.
    [93]Y. Gan, M. Kamlah, H. Riesch-Oppermann, R. Rolli, P. Liu. Crush Probability analysis of ceramic breeder pebbles beds under mechanical stress [C].14th International Conference on Fusion Reactor Materials (ICFRM-14), Sapporo, Japan,2009.
    [94]陈晓军,王和义,高小铃,罗阳明,肖成建,古梅,等.一种三元锂陶瓷微球的聚合成型制备方法[P].专利号:200710048923.4.
    [95]陈晓军,王和义,高小铃,罗阳明,肖成建,古梅,等.一种三元锂陶瓷微球的冷冻成型制备方法[P].专利号:200710048921.5.
    [96]高小铃,陈晓军,古梅,杨通在,王和义,彭述明.Li4Si04陶瓷微球的间接湿法制备工艺与表征[J].原子能科学技术,2010,44(9):1099-1104.
    [97]X. Gao, X. Chen, M. Gu, C. Xiao, S. Peng. Fabrication and characterization of Li4SiO4 ceramic pebbles by wet method [J]. Journal of Nuclear Materials,2012,424:210-215.
    [98]D. Zhu, S. Peng, X. Chen, X. Gao. Fabrication and characterization of Li3TaO4 ceramic pebbles by wet process [J]. Journal of Nuclear Materials,2010,396:245-250.
    [99]T. Kinjyo, M. Nishikawa, M. Enoeda, S. Fukada. Tritium diffusivity in crystal grain of Li2TiO3 and tritium release behavior under several purge gas conditions [J]. Fusion Engineering and Design,2008,83:580-587.
    [100]C.J. Xiao, C. M. Kang, X. J. Chen, et al. Improvement of hydrogen isotope exchange reactions on Li4SiO4 ceramic pebble by catalytic metals [J]. Chinese Chemical Letters, 2012,23:936-940.
    [101]C. Xiao, C. Kang, X. Ren, et al. Improvement of Tritium Release from Lithium Ortho-silicate Pebble Deposited with Catalytic Metals [J]. Journal of Plasma Fusion Research,2013,10:1-6.
    [102]肖成建,陈晓军,康春梅,等.正硅酸锂陶瓷小球辐照产氚实验研究[J].核聚变与等离子体物理,2011,3(31):224-227
    [103]C. Kang, X. Wang, C. Xiao, X. Gao, M. Gu, J. Liu, H. Wang, S. Peng, X. Chen. Out-of-pile tritium release study on Li4SiO4 pebbles from TRINPC-1 experiments [J]. Journal of Nuclear Materials,2011,412:62-65
    [104]C. Kang, C. Xiao, X. Wang, et al. Effect of water adsorption on tritium release from Li4SiO4 [J]. Journal of Nuclear Materials,2013,432:454-459
    [105]C. Xiao, X. Gao, M. Kobayashi, K. Kawasaki, H. Uchimura, K. Toda, C. Kang, X. Chen, H. Wang, S. Peng, X. Wang, Y. Oya, K. Okuno. Tritium release kinetics of lithium ortho-silicate pebble irradiated with low thermal-nuetron fluence[J]. Journal of Nuclear Materials,2013,438:46-50.
    [106]TomkovaE.. TDS spectra analysis[J]. Surface science,1996,351:309-318
    [107]T. Kulsartov, I. Tazhibayeva, Y. Gordienko, E. Chikhary, K. Tsuchiya, H. Kawamura, A. Kulsartova. Study of tritium and helium release from irradiation lithium ceramics Li2TiO3 [J]. Fusion science and technology,2011,60:1139-1142.
    [108]K. Okuno. Kinetics of tritium release from neutron-irradiated breeding materials for fusion reactors. Fusion reactor blanked and fuel cycle technology proceedings of international symposium, Tokai-mura, Ibaraki, Japan, October 27-29,1986.
    [109]J.H. Sharp, G.W. Brindley, B.N. Narahari Achar. Numerical data for some commonly used solid state reaction equations [J]. Journal of the American Ceramic Society,1966, 49:379-382
    [110]卢景雾.现代电子顺磁共振波谱学及其应用[M].北京大学医学出版社,2011.
    [111]M. Chiesa, E. Giamello, Cristiana, G. Pacchioni. The 17O hyperfine structure of trapped holes photo generated at the surface of polycrystalline MgO [J]. Chemical Physics Letters,2005,403:124-128.
    [112]K. Noda, K. Uchida, T. Tanifuji, S. Nasu. Study of radiation damage in Li2O by means of electron-spin resonance [J]. Physical Review B,1981,24:3736-3742.
    [113]P. Vadja, F. Beuneu. Electron radiation damage and Li-colloid creation in Li2O [J]. Physical Review B,1996,53:5335-5340
    [114]K. Moritani, T. Magari. H. Moriyama. Electron spin resonance measurement of irradiation defects in vitreous silica irradiated with neutrons and ion beams [J]. Journal of Nuclear Materials,2004,329-333:988-992.
    [115]M. Hasegawa, M. Tabata, M. Fujinami, Y. Ito, H. Sunaga, S. Okada, S. Yamaguchi. Positron annihilation and ESR study of irradiation-induced defects in silica glass [J]. Nuclear Instruments and Methods in Physics Research B,1996,116:347-354.
    [116]Y. Bensimon, B. Deroide, F. Dijoux, M. Martineau. Nature and thermal stability of paramagnetic defects in natural clay:a study by electron spin resonance [J]. Journal of Physics and Chemistry of Solids,2000,61:1623-1632.
    [117]K. Kokura, M. Tomozawa, R. K. Maccrone. Defect formation in SiO2 glass during fracture [J]. Journal of Non-Crystalline Solids,1989,111:269-276.
    [118]周晓荣,刘小波,庄林,陆君涛.储锂硅材料的ESR谱研究[J].波谱学杂志,2009,26(2):223-229.
    [119]K. Moritani, Y. Teraoka, I. Takagi, H. Moriyama. Electron spin resonance measurement of irradiation defects produced in quartz crystal[J]. Nuclear Instruments and Methods in Physics Research B,2005,232:317-321.
    [120]A. Stesmans, V.V. Afanasev. Physics Research B,1996,54:11129-11132.
    [121]周永恒.石英玻璃及原料中羟基的研究[D].中国建筑材料科学研究院,2002.
    [122]K.M. Davids, M. Tomozawa, An infrared spectroscopic study of water-related species in silica glasses [J]. J. Non-Cryst. Solids,1996,201:177-198.
    [123]R.A.B. Devine. Macroscopic and microscopic effects of radiation in amorphous SiO2 [J]. Nuclear Instruments and Methods in Physics Research Section B,1994,91:378-390.
    [124]T. Bakos, S.N. Rashkeev, S.T. Pantelides. Reactions and Diffusion of Water and Oxygen Molecules in Amorphous SiO2 [J]. Physical Review Letters,2002,88:505-508.
    [125]R.H. Doremus. Tansport of oxygen in silicate glasses [J]. Journal of Non-Crystalline Solids,2004,349:242-247.
    [126]S.T. Pantelides, Z.Y. Lu, C. Nicklaw, T. Bakos, S.N. Rashkeev,D.M. Fleetwood, R.D. Schrimpf. The Eo center and oxygen vacancies in SiO2 [J]. Journal of Non-Crystalline Solids,2008,354:217-223.
    [127]H. T, A. M, S. S, et al. Deuterium desorptio behavior of solid tritium breed in materials, lithiumtitanate. Ninth China-Japan Symposium on materials for advanced energy systems and fission&fusion. Guilin China, Oct.2007.
    [128]T. Luo, T. Oda, Y. Oya, S. Tanaka. IR observation on O-D vibration in LiNbO and LiTaO3 single crystal irradiated by 3 keV D+2 [J]. Journal of Nuclear Materials,2008, 382:46-50
    [129]T. Luo, T. Oda, Y. Oya. Existence states of deuterium irradiated into LiAlO2 [J]. Journal of Nuclear Materials,2008,372:53-58
    [130]T. Luo. XPS analysis on chemical states of Li4SiO4 irradiated by 3 keV D+2[J]. Journal of Nuclear Materials,2011,408:7-11.
    [131]T. Hino, H. Shibata, Y. Yamauchi, et al. Deuterium ion irradiation for tritium breeding material and evaluation for tritium inventories in test blanket module and blanket of a demonstration reactor [J]. Journal of Nuclear Materials,2011,417:713-717.
    [132]B. Carriere, D. Brion, J.Escard, et al. X-Ray Photoelectron study of some silicon-oxygen compounds [J]. Journal of Electron Spectroscopy and Related Phenomena,1977,10: 85-91.
    [133]T.L. Barr. An ESCA Study of Termination of the Passivation of Elemental Metals [J]. The Journal of Physical Chemistry,1978,82:1801-1810.
    [134]A.M. Beccaria, G. Castello, G. Poggi. Influence of Imlrosialic pressure on pitting of iiliiminuin in s(?) water [J]. British Corrosion Journal,1995,30:283-287.
    [135]B. Stypula, J. Stoch. The characterization of passive films on chromium electrodes by XPS [J]. Corrosion Science,1994,36:2159-2167.
    [136]肖成建,陈晓军,高小铃,等.氘离子注入Li4SiO4的表面化学状态及其热解吸行为[J].原子能科学技术,2012,46:1418-422.
    [137]M. Weller, R. Herzog, M. Kilo, G. Borchardt, S. Weber, S. Scherrer, "Oxygen mobility in yttria-doped zirconia studied by internal friction, electrical conductivity and tracer diffusion experiments [J]. Solid State Ionics,2004,175,409-413.
    [138]T. Kawagoe, M. Nishikawa, A. Baba, S. Beloglazov [J]. Surfaceinventory of tritium on Li2Ti03, Journal of Nuclear Materials,2001,297:27-34.
    [139]J.M. Miller, H.B. Hamilton, J.D. Sullivan. Testing of lithium titanate as an alternate blanket material [J]. Journal of Nuclear Materials,1994,212-215:877-880.
    [140]T. Hayashi, S. Konishi, K. Okuno. Tritium Release Behavior from Neutron-irradiated Li8PbO6[J]. Journal of Nuclear Materials,1990,170:60-65.
    [141]Y. Morimoto, S. Akahori, A. Shimada, K. Iguchi, K. Okuno, M. Nishikawa, K. Munakata, A. Baba, T. Kawagoe H. Moriyama, K. Kawamoto and M. Okada. Correlation between Tritium Release and Thermal Annealing of Damages in Neutron Irradiated Li4SiO4 [J]. Fus. Tec,2001,39:634-638.
    [142]O.D. Slagle, G.W. Hollenberg, D.L. Baldwin. The FUBR-1B Irradiation Experiment-Tritium Release and Physical Stability of Solid Breeder Materials [J]. Journal of Nuclear Materials,1991,179-181:843-849.
    [143]Y. Ueda, Y. Kasumata, M. Nishi. Paramagnetic centers in neutron-irradiated Li2O [J]. J. Appl. Phys.,1977,16:1743-1745.
    [144]H. Katsui, S. Nagata, B. Tsuchiya, T. Shikama. Study on damage accumulation in LiAlO2 single crystal irradiated with deuterium and helium ions by ion-channeling. Nuclear Instruments and Methods in Physics Research B,2010,286:2735-2739.
    [145]G. Piazza, J. Reimann, E. Gu'nther, R. Knitter, N. Roux, J.D. Lulewicz. Behaviour of ceramic breeder materials in long time annealing experiments [J]. Fusion Engineering and Design,2001,58-59:653-659.
    [146]Masabumi Nishikawa, Atsushi Baba, Satoshi Odoi, Yoshinori Kawamura. Tritium inventory estimation in solid blanket system [J]. Fusion Engineering and Design,1998, 39-40:615-625.
    [147]A. Badawi, A.R. Ra.ray, M.A. Abdou. Modeling and analysis of time-dependent tritium transport in lithium oxide [J]. Journal of Nuclear Materials,1999,273:79-94.
    [148]N. Zaccari, D. Aquaro. Mechanical characterization of Li2TiO3 and Li4SiO4 pebble beds: Experimental determination of the material properties and of the pebble bed effective values [J]. Fusion Engineering and Design,2007,82:2375-382.
    [149]J. Reimann, G. Wo'mer. Thermal creep of Li4SiO4 pebble beds [J]. Fusion Engineering and Design 2001,58-59:647-651.
    [150]M.H.H. Kolb, M. Bruns, R. Knitter, S. van Til. Lithium Orthosilicate Surfaces: Characterization and Effect On Tritium Release [J]. Journal of Nuclear Materials,2012, 427:126-132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700