气动肌肉驱动机器人手臂的设计与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气动肌肉驱动的机器人手臂是一类具有良好柔顺性能的机器人手臂,在很多应用领域具有突出的优势。在气动肌肉驱动的机器人手臂系统中,关节刚度调节、位置控制及手爪的柔顺夹持是其中最为重要的关键技术问题。本文以气动肌肉驱动的机器人手臂(含手爪)系统为背景,对以上的关键技术进行了系统的研究,并设计了一套实验系统对研究结果进行了详细的验证。本文的主要工作如下:
     在机器人手臂系统设计方面,进行了详细的方案设计和系统软硬件调试,确定了手腕俯仰关节和手指关节分别采用两种不同规格气动肌肉进行驱动的方案,该系统由前臂、手腕、手爪三个部分组成。
     在关节刚度调节方面,重点对气动肌肉的驱动模型和气动肌肉驱动关节的刚度特性进行深入研究。首先分析了气动肌肉的基本模型,在理论分析的基础上,提出利用收缩率参量修正来补偿多种误差的方法,并给出了气动肌肉的改进模型;然后利用气动肌肉的改进模型对关节的输出转矩进行了详细推导;最后给出关节刚度的详细表达式,并提出了一种利用简单、有效的比例刚度调节方法。实验结果验证了气动肌肉的改进模型和上述关节刚度调节方法的合理性、有效性。
     在关节位置控制方面,进行了如下几个方面的工作:首先理论分析和实验证明了PID控制器的可行性和有效性,但关节的响应时间太慢不能满足整个机器人轨迹规划的需要,因此提出采用具有自适应、自学习功能的单神经元自适应PSD控制器来改善关节的控制性能,该控制器可以同时实现对增益、比例、积分和微分四个参量的自适应调整,实验证明该控制器使气动肌肉驱动的关节具有响应时间短、位置精度高、鲁棒性好等显著优点。
     在手爪的柔顺夹持控制方面,进行了以下几个方面的工作:设计了由四根气动肌肉驱动的仿人两指手爪结构;建立了气动肌肉驱动手指夹持力的理论模型;分析了肌肉初始输入压力和初始收缩率对手指张开范围和夹持力的影响。分析结果表明,手指内外侧肌肉的输入压力是决定手指夹持力的重要因素。此外,还对手指运动过程的动静态特性和夹持力进行了系统的测试。实验表明,该气动肌肉驱动的手爪可以实现对多类物品的柔顺抓取。
The robot arm actuated by pneumatic muscles is one kind of the robot arm with good compliance and it is superior to other robot arms in some cases. For the robot arm system actuated by pneumatic muscles, the joint stiffness regulation, the joint position control, and the finger grasping force control are three key techniques. In this dissertation, the three techniques are studied and some effective methods are proposed. Moreover, a robot arm prototype system actuated by pneumatic muscles is designed to verify those proposed methods. Main works of this dissertation are as follows:
    The scheme of the robot arm prototype system is presented and this system is composed of three subsystems, i.e. forearm, wrist and gripper. Moreover, the detailed implemented scheme is proposed and the prototype system, which includes the software and hardware, are debugged.
    For the joint stiffness regulation, the static drive model of pneumatic muscle is improved and stiffness characteristic of the joint is analyzed. The detailed work includes:
    An improved static drive model of pneumatic muscle is proposed, it can compensate the complicated errors due to various factors by adjusting the contraction ratio. On the basis of the model, the static drive model of the joint is introduced. An indirect measurement method of the joint stiffness is proposed by measuring the static parameters of the joint, and its detailed equation of the joint stiffness is given. Some experiments are performed to validate these works and the results show their effectiveness.
    For the joint position control, the detailed work includes:
    Theoretical analysis and experiments proved that PID controller for the joint position control is feasible, effective, However its slow response time doesn't satisfy the need of the trajectory planning for the 4 DOF articulated robot, and so the author proposed to adopt the adaptive and self-learning single neuron PSD controller to improve motion performance of the joint, the controller can adjust adaptively all four parameters, i.e. proportion, integral, differential and gain simultaneously. Experiments show that a good joint position accuracy and a short step response time are achieved.
    For the finger grasping force control, the detailed work includes:
    The structure of humanoid two-fingers gripper is designed. The theoretical model of the finger grasping force is developed. The effect of the initial input pressure and the initial
引文
1 殷际英,何广平.关节型机器人.北京:化学工业出版社,2003
    2 朱世强,王宣银.机器人技术及其应用.杭州:浙江大学出版社,2001
    3 吴广玉,姜复兴.机器人工程导论.哈尔滨:哈尔滨工业大学出版社,1988
    4 诸静.机器人与控制技术.杭州:浙江大学出版社,1991
    5 范印越.机器人技术.北京:电子工业出版社,1988
    6 殷跃红,尉忠信,朱剑英.机器人柔顺控制研究.机器人,1998,20(3):232-240
    7 Ian W. Hunter, and Serge Lafontaine. Comparison of muscle with artificial actuators, Proceedings of the 5th IEEE Solid-State Sensor and Actuator Workshop, Jun., 1992: 178-185
    8 Nemat-Nasser S., Li, J. Y. Electromechanical response of ionic polymer-metal composites. Applied Physics, 2000, 87(7): 3321-3331
    9 Block, H. and Kelly, J. P. Electro-Rheology. Applied Physics, 1988(21): 1661-1677
    10 Li EK., Zhu W., Zhang X., and Zhao C. T. et al. Shape memory effect of ethylene-vinyl acetatecopolymers. Applied Polymer Science, 1999, 71(7): 1063-1070
    11 Darwin G. C. Tsagarakis N., and Medrano-Cerda G. A. Bio-mimetic actuators: polymeric pseudo muscular actuators and pneumatic muscle actuators for biological emulation. Mechatronics, 2000(10): 499-530
    12 鄂世举,吴博达,杨志刚.压电式微小驱动器的发展及应用.压电与声光,2002,24(6):447—451
    13 王琪民,徐国梁,金建峰.磁流变液的流变性能及其工程应用.中国机械工程,2002,13(3):267-270
    14 胡明哲,李强,李银祥,张玲.磁致伸缩材料的特性及应用研究.稀有金属材料与工程,2000,29(6):366-369
    15 魏中国,彭红樱,杨大智.开关记忆合金传感驱动器件及其在机器人中的应用.机器人,1994,15(4):244-249
    16 李新贵,张瑞锐,黄美荣,李荣贵.导电聚合物人工肌肉.材料科学与工程学报,2004,22(1):128-131
    17 余海湖,赵愚,姜德生.智能材料与结构的研究及应用.武汉理工大学学报,2001,23(11):38-41
    18 魏中国,彭红樱,杨大智.形状记忆合金传感驱动器件及其在机器人中的应用.机 器人,1994,16(4):244-249
    19 Yoseph Bar-Cohen. Electroactive polymers as artificial muscles reality and challenges. Proceedings of the 42nd AIAA Structures, Structural Dynamics, and Materials Conference, Gossamer Spacecraft Forum, Oct., 2000:1-10
    20 叶骞,王祖温,包刚.气动人工肌肉.液压气动与密封,2000(2):12-15
    21 王雄耀.介绍一种气动新产品—仿生气动肌肉腱.液压气动与密封,2000(1):31-35
    22 杨钢,李宝仁,刘军.一种新型气动执行元件—气动人工肌肉.中国机械工程,2003,14(15):1347-1349
    23 Frank Daerden. Conception and realization of pleated pneumatic artificial muscles and their use as compliant actuation elements. Doctor thesis. Belgium: Vrije universiteit Brussel. 1999
    24 Frank Daerden, Dirk Lefeber. Pleated pneumatic artificial muscles: Actuators for automation and robotics. IEEE/ASME international conference on advanced intelligent Mechatronics proceedings, Jul., 2001:738-743.
    25 刘荣,宗光华.三自由度人工肌肉驱动器的静力学特性研究.机器人,1994,16(3):160-164
    26 隋立明,王祖温,包钢.气动肌肉与生物肌肉的力学特性对比研究.机床与液压,2004(6):22-24
    27 施光林,周爱国,钟廷修,吕刚.气动人工肌肉与标准气缸的力特性比较.上海交通大学学报,2004,38(8):1348-1353
    28 Klute G.K., Czerniecki J.M., and Hannaford B. Mckibben artificial muscle: pneumatic actuators with biomechanical intelligence. Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronic, Sep., 1999:221-226
    29 Tsagarakis N., Caldwell, D.G. Improved modeling and assessment of pneumatic muscle actuators. Proceedings of the IEEE international conference on robotics and automation, 2000:3641-3646
    30 Inoue K. Rubbertuators and applications for robots. Proceedings of the 4th Symposium on Robotics Research, 1987:57-63
    31 Intelligent Robotics Laborotory.http://eecs.vanderbilt.edu/cis/irl/
    32 Kawamura K., Peters Ⅱ R.A., and Bagchi S. et al. Intelligent robotic systems in service of the disabled. IEEE Transactions on Rehabilitation Engineering, 1995,3(1):14-21
    33 Alford A., Northrup S., and Kawamura K. Music playing robot. Proceeding of the International Conference on Field and Service Robotics, Aug., 1999:174-178
    
    34 Chou Ching-Ping, Hannaford B. Study of human forearm posture maintenance with a physiologically based robotic arm and spinal level neural controller. Biological Cybernetics, 1997,76(4): 285-298
    
    35 Hannaford B., Kristen Jaax, and Klute G.K. Bio-inspired actuation and sensing, Autonomous Robots, 2001,11(3):267-272
    
    36 Biorobotics Laboratory. http://rcs.ec.wshington.edu/BRL/
    
    37 Toshiro Noritsugu, Yoshio Tsuji, and Kazutoshi ITO. Improvement of control performance of pneumatic rubber artificial muscle manipulator by using electroreological fluid damper. Proceeding of the IEEE International on Systems, Man, Cybernetics, Oct., 1999:788-793
    
    38 Toshiro Noritsugu, Toshihiro Tanaka. Application of rubber artificial muscle manipulator as a rehabilitation robot. IEEE/ASME Transactions on Mechatronics, 1997,2(4):259-267
    
    39 Tsagarakis N., Caldwell D.G., and Medrano-Cerda G.A. A 7 DOF pneumatic muscle actuator (PMA) powered exoskeleton. Proceeding of the IEEE international workshop on robot and human interaction, Sep., 1999:327-333
    
    40 Caldwell D.G., Tsagarakis N., and Medrano-Cerda G.A. Biomimetic and smart technology principles of humanoid design. Proceeding of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Jul., 2001:965-970
    
    41 Caldwell D.G., Medrano-Cerda G.A., and Goodwin M.J. Braided pneumatic actuator control of a multi-jointed manipulator. Proceedings of the international conference on systems, man and cybernetics, Oct., 1993:423-428
    
    42 Hamerlain M. An anthropomorphic robot arm driven by artificial muscles using a variable structure control. Proceeding of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Aug., 1995:550-555
    
    43 Bertrand Tondu, Pierre Lopez. Modeling and control of Mckibben artificial muscle robot actuators. IEEE Control Systems Magazine, 2000,20(2):15-38
    
    44 Gabri e He J M, Tuijthof, and Just L. Herder. Design, actuation and control of an anthropomorphic robot arm. Mechanism and machine theory, 2000(35):945-962
    
    45 Lee Y.K., Shimoyama I. A skeletal framework artificial hand actuated by pneumatic artificial muscles. Proceeding of the IEEE international conference on robotics and automation, May, 1999:926-931
    46 隋立明,王祖温,包钢.气动肌肉驱动仿人臂的设计.液压与气动,2004(9):7-8
    47 隋立明,包刚.气动人工肌肉驱动关节特性研究.液压与气动,2002(3):3-5
    48 范伟,彭光正,高建英等.气动人工肌肉驱动球面并联机器人的力控制研究.机器人,2004,26(4):336-341
    49 范伟,彭光正,高建英等.气动人工肌肉驱动球面并联机器人的位置控制研究.北京理工大学学报,2004,24(6):516-519
    50 宗光华.变结构控制系统理论实现人工肌肉央持力控制.机器人,1990,12(4):15-19
    51 郑奇,李醒飞,张国雄.类人上肢的双肌肉驱动系统的设计.液压与气动,2003(11):7-8
    52 施光林,周爱国,钟廷修.气动人工肌肉驱动多自由度平台的非线性特性.华南理工大学学报,2004,32(9):41-45
    53 张立彬,鲍官军,杨庆华等.气动柔性球关节的模糊PID控制.中国机械工程,2005,16(5):407-410
    54 朱笑丛,陶国良.气动人工肌肉伺服平台的建模.浙江大学学报,2004,38(8):1055-1060
    55 Schulte H.E The characteristics of the Mckibben artificial muscle. In: The Application of External Power in Prosthetics and Orthotics, Publication 87, National Academy of Sciences, National Research Council, Washington DC, Appendix H, 1961
    56 Chou Ching-Ping, Hannaford B. Measurement and modeling of McKibben pneumatic artificial muscles. IEEE Transactions on Robotics and Automation, 1996,12(1):90-103
    57 Klute G.K., Hannaford B. Accounting for elastic energy storage in mckibben artificial muscle actuators. ASME Journal of Dynamic Systems, Measurement, and Control, Jun., 2000:386-388
    58 刘荣,宗光华.人工肌肉驱动特性研究.高技术通讯,1998(6):34-38
    59 Tondu Bertrand, Vincent Boitier, and Pierre Lopez. Naturally compliant robot-arms actuated by McKibben artificial muscles. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Mar., 1994:2635-2640
    60 隋立明,包刚.气动人工肌肉改进模型研究.液压气动与密封,2002(2):1-4
    61 李宝仁,刘军,杨钢.气动人工肌肉系统建模与仿真.机械工程学报,2003,39(7):23-28
    62 Manuello Bertetto A., Ruggiu M. Characterization and modeling of air muscles. Mechanics Research Communications, 2004(31): 185-194
    63 Thongchai S., Goldfarb M., and Sarkar N.et al. A frequency modeling method of rubbertuators for control application in an ima framework. American Control Conference, Jun., 2001:1710-1714
    64 Klute G.K., Hannaford B. Fatigue characteristics of McKibben artificial muscle actuators. Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, Nov., 1998:1776-1781
    65 Steven Gerold Northup. Biologically inspired control of a humanoid robot with nonlinear actuators. Doctor thesis. Vanderbilt University, 2001
    66 Caldwell D.G., A.Razak, and Mike Goodwin. Braided pneumatic muscle actuators. International Federation of Automatic Control Workshop on Intelligent Autonomous Vehicles, Apr., 1993:507-512
    67 Medrano Cerda G.A., Bowler C.J., and Caldwell D.G. Adaptive position control of antagonistic pneumatic muscle actuators. Proceedings of the IEEE/RSJ international conference intelligent robots and systems, 1995:378-383
    68 Caldwell D.G., Medrano-Cerda G.A., and Mike Goodwin. Control of pneumatic muscle actuators. IEEE Control Systems Magazine, 1995,15(1):40-48
    69 王祖温,隋立明,包钢.气动肌肉驱动关节的输入整形研究.机械工程学报,2005,41(1):66-70
    70 林良明,阳社平,颜国正.医疗机器人用空气压人工肌线性控制的研究.中国医疗器械杂志,2002,26(1):7-10
    71 Osuka K., Kimura T., and Ono T. H~∞ control of a certain nonlinear actuator. Proceedings of the 29th Conference on Decision and Control, Dec., 1990:370-371
    72 Repperger D.W., Phillips C.A., and Krier M. Controller design involving gain scheduling for a large scale pneumatic muscle actuator. Proceedings of the IEEE International Conference on Control Applications, Aug., 1999:285-290
    73 Repperge D.W., Johnson K.R., and Phillips C.A. A VSC position tracking system involving a large scale pneumatic muscle actuator. Proceeding of the IEEE conference on decision & control, Dec., 1998:4302-4307
    74 杨钢,李宝仁.基于CMAC的气动人工肌肉变结构位置控制研究.机械工程学报,2004,40(10):92-96
    75 Pack R.T., Iskarous M., and Kawamura K. Comparison of fuzzy and nonlinear control techniques for a flexible rubbertuator-based robot joint. Proceedings of the International Fuzzy Systems and Intelligent Control Conference, Institute of Fuzzy Systems and Intelligent Control, Mar., 1994:361-370
    76 Carbonell P., Jiang Z.P., and Repperger D.W. A fuzzy backstepping controller for a pneumatic muscle actuator system. Proceedings of the IEEE international Symposium on Intelligent Control, Sep., 2001:353-358
    77 Hesselroth T., Sarkar K. Neural network control of a pneumatic robot arm. IEEE Transations on Systems, Man, and Cybernetics, 1994,24(1):28-37
    78 Ozkana M., Inouel K., and Negishi K.et al. Defining a neural network controller structure for a rubbertuator robot. Neural Networks, 2000(13):533-544
    79 Northrup, S., Brown Jr. E.E., and Parlaktuna O. et al. Biologically inspired control architecture for an upper limb. Intelligent Robotic Orthosis, International Journal of Human-friendly Welfare Robotic Systems, 2001,2(3):4-8
    80 Northrup, S., Sarkar N., and Kawamura K. Biologically inspired control architecture for a humanoid robot. Proceeding of the IEEE International Conference on Intelligent Robots and Systems, Nov., 2001:481-487
    81 隋立明,王祖温,包钢.气动肌肉的刚度特性分析.中国机械工程,2004,15(3):242-244
    82 张立彬,杨庆华,胥芳等.机器人多指灵巧手及其驱动系统研究的现状.农业工程学报,2004,20(3):271-276
    83 张永德,刘廷荣,李华敏.机器人多指灵巧手的结构型式的优化分析.机械设计,1999(7):9-13
    84 李剑锋,张玉茹,张启先.多指手的操作灵巧性设计.机械工程学报,2000,36(11):23-29
    85 SMC(中国)有限公司.现代实用气动技术.北京:机械工业出版社,1998
    86 Werner Deppert,and Kurt Stoll.李宝仁译.气动技术低成本综合自动化.北京:机械工业出版社,1999
    87 陆鑫盛,周洪.气动自动化系统的优化设计.上海:科学技术文献出版社,2002
    88 宗光华,刘海波,程君实译.机器人技术手册.北京:科学出版社,1996
    89 龚振邦.机器人机械设计.北京:电子工业出版社,1995
    90 The SHADOW Air Muscle. http://www.shadow.org.uk/
    91 Fluidic Muscle MAS. http://www.festo.com/en/mas
    92 Merlin Systems Corp.Ltd. Http://www.merlinsystemscorp.com/live./
    93 SMC(中国)有限公司.SMC气动元件产品样本.2002
    94 戴敬.LabVIEW基础教程.北京:国防工业出版社,2002
    95 Robert H.Bi shop(美).LabVIEW 6i实用教程.北京:电子工业出版社,2003
    96 傅信.过程计算机控制系统.西安:西北工业大学出版社,1995
    97 于海生等.微型计算机控制技术.北京:清华大学出版社,1999
    98 王顺晃,舒迪前编著.智能控制系统及其应用.北京:机械工业出版社,1995
    99 刘金琨.先进PID控制及其MATLAB仿真.北京:电子工业出版社,2003
    100 Marsik J. A new conception of digital adaptive PSD control. Problems of Control and Information Theory, 1983,12(4):267-279
    101 Marsik J., Strejc V. Application of identification free algorithms for adaptive control. Automatica, 1989,25(2):273-277
    102 马香峰.机器人机构学.北京:机械工业出版社,1991

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700