高频模块化UPS及其并联控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实现UPS 电源系统的模块化、智能化、绿色化和高效节能是UPS 电源系统的发展方向。实现UPS 电源模块化的关键是逆变器的并联控制技术。按照模块化的概念进行UPS 电源系统设计、实现高输入功率因数和在线热插拔并联运行要解决控制上的很多问题,在工程方面也需要解决一系列的技术问题。一定意义上讲,解决好工程问题也是理论研究结果走向实际应用的重要一环。本文在实现UPS 电源系统的模块化、智能化、数字化、高频化和绿色化方面开展了一些研究工作,针对采用分散逻辑并联控制策略的高频模块化UPS 电源并联系统进行了详细的理论分析和实验研究。
    本文提出了一种新型双Boost-PFC 变换器的拓扑结构解决现有的双Boost-PFC 变换器由于两个变换器之间存在耦合导致的两路输出直流母线电压不平衡问题。通过对这种新型双Boost-PFC 变换器拓扑结构的工作模式研究,指出在拓扑结构上可以等效为两个彼此独立的Boost-PFC 变换器。这两个等效变换器分别工作在市电的正负半波,这种彼此独立的Boost 变换器为实现输出直流母线电压的解耦控制、获得高输入功率因数的同时得到稳定对称的双直流母线电压输出奠定了基础,并为后级半桥逆变器提供对称的直流电压。
    本文建立了Boost 变换器的数学模型和多台逆变器并联系统的数学模型。在对多机并联系统数学模型进行研究的基础上,提出了并联逆变器之间的有功环流和无功环流与逆变器的输出阻抗、逆变器的输出电压幅值、相位之间存在复杂的耦合关系。指出这种固态逆变器的并联与传统发电机并网系统有很大的不同,因此在并联逆变器均流控制策略上不能照搬电力系统中发动机的功率调节特性。
    本文提出了基于本文研究的新型拓扑结构的双Boost-PFC 变换器的控制策略。该控制策略采用具有滞环控制的电流内环和PI 控制的电压外环的独立双环双回路控制,理论分析表明,两套彼此独立的双回路控制系统分别对两路直流母线电压输出进行单独控制,从而有效地解决了双Boost-PFC 变换器输出直流母线电压的耦合问题。在理论分析的基础上,进行了实验研究,实验结果表明,该控制策略可以获得比较好的控制效果。针对传统控制策略下Boost-PFC 变换器产生输入市电电流失真和不能获得单位功率因数的缺点,研究了一种新型的采用电流前馈控制策略的Boost-PFC 变换器的
Realization of modularization, intelligence, greenness and high efficiency is the development direction of UPS systems. The key technology to implement modular operation of UPS is the control strategy of paralleled inverters. According to the modularization concept, lots of control problems must be solved to design of UPS power system and achieve high input power factor and realize the hot plug parallel operation. Technical problems in real applications need to be solved too. To some extend, engineering problems-solving is important for theory research results turning into practical applications. In this dissertation, research work on the realization of modularization, intelligence, digital control, high efficiency and clean power of UPS system is carried out. Based on distributed-logical-control method, theory analysis and experimental research on parallel operation of high frequency modularized UPS are presented in this paper.
    A novel dual Boost-PFC converter is proposed to solve the DC bus voltage unbalance caused by the coupling between two Boost-PFC converters. Based on the study of the operation modes of the new dual Boost-PFC converter, it is found that the novel topology can be taken as two separate Boost-PFC converters. These two converters work during positive and negative half cycles respectively, and the two independent Boost converters settle the base for realizing DC bus voltage decoupling control, achieving high input power factor as well as stable and symmetrical dual DC bus voltage outputs, and it can be used to supply the symmetrical DC bus voltage for the cascade half-bridge inverter.
    Mathematic models of Boost converter and paralleled operation system with multi-UPS are built. Based on the study of the mathematic model of paralleled multi-UPS system, complex coupling relations between real, reactive circulating currents of the paralleled inverters and the inverters output impedance, output voltage amplitude, phase angle are presented. It is pointed out that the paralleled static inverters are far more different from the traditional generators in parallel, so power regulating methods of the generators in the power system can not be applied to current sharing control scheme for paralleled inverters.
    Based on the research of the novel double Boost-PFC converter topology, a control strategy is proposed in the dissertation. The control scheme adopts double loop control strategy, and hysteresis loop control is applied for the inner current loop while PI controller is applied for the outer voltage loop. Theoretical analysis indicates that the two independent
    double loop control systems control the two DC buses separately, thereby solving effectively the coupling problems of DC bus voltage for Dual Boost-PFC converter. Experimental works are carried out, and the results indicate that better control effects are acquired with the proposed control technique. A novel control method employing current feedforward technique for Boost-PFC converter is researched to solve the problems in traditional method, such as input current distortion and non-unit input power factor for Boost-PFC. Simulation works indicate that the current feedforward control can compensate for zero-crossing distortion. The control method for modularized UPS based on the newtopology of high-frequency link to realize parallel operation is proposed. The control method includes the control on high-frequency inverter, which are load sharing in parallel, inner/outer synchronization control, switching logic control required by hot plug operation, bypass control, synthetically switching logic control on protection of modularized parallel UPS against shock, short-circuit & overload etc. The inverter according to the design of modular concept requires corresponding control method and switching logic required in parallel for hot plug operation. Switching inner/outer synchronization control, load sharing in parallel, switching logic control required in parallel for hot plug operation、bypass control are researched in detail in this dissertation which settle the basis for realization of synchronous operation, switching logic in parallel, and load sharing technique, ensure the reliability and stability of the paralleled inverter system. Based on theoretical research, six single-phase 3KVA high frequency modularized UPS have been built as experimental prototypes. The experimental research works for UPS which adopts the above control method are carried out. The experimental results show that stability of high frequency modularized UPS in parallel, load sharing during the paralleled modules, stability of hot plug ,stability of dynamic switching logic for multi-modules in parallel system are acquired better. Parallel operation control method based on SMC is proposed and parallel control method combining SMC with traditional PID controller is proposed, too. Through theoretical research for SMC applied in paralleled inverter system, switchover function of discrete SMC is given and control equation of the switchover function is derived. The relative simulation is carried out. As shown in the results, faster response is acquired using SMC, but high frequency oscillation existing in steady state. Novel control method combined SMC with traditional PID is used to solve the high frequency oscillation problem. Simulation research proves the control performance used by the control method combined
    SMC with PI controller and results show that better stability, anti-perturbation ability, and load sharing control capability are achieved by using the combined control scheme. Based on the demand of the practical application and the research of the novel topology of dual Boost-PFC converter, the main circuit is studied which is used in the commercial products with switching functions between utility power and batteries as well as pre-charge function for dc bus and the circuits of PLL, output power detection, the circuits to protect against overload、shock、short-circuit are given, the demand is satisfied to protect the inverters in parallel system against overload, shock and short circuit. These protection functions for paralleled multi-UPS system are tested by experimental works in detail and the results show that these protection functions can protect the paralleled inverter against the overload, shock, short circuit and they play a very important role in improving the safety operation of the paralleled UPS system.
引文
[1] 陈坚. 电力电子学—电力电子变换和控制技术. (第2 版)北京: 高等教育出版社, 2004
    [2] 王彩琳. 电力半导体器件的最新发展动向. 半导体情报1999, Vol. 36, No. 2: 27-32
    [3] 张广明. 中国电力与UPS. 自动化博览, 2000(2): 1-5
    [4] 王其英, 何春华. UPS 不间断电源剖析与应用. 北京: 科学出版社, 1996
    [5] 张立, 赵永健. 现代电力电子技术. 北京: 科学出版社, 1992. 9
    [6] H. J. Jiang, Y. Qin, S. S Du et al. DSP Based Implementation of a Digitally-Controlled Single Phase PWM Inverter for UPS. IEEE, INTELEC Conf. Rec. , 1998: 221-224
    [7] Liviu Mihalache. DSP Control Method of Single-Phase Inverters for UPS applications. Proc. IEEE APEC, 2002: 590-596
    [8] Hiroshi Ohshima, Kazuto Kawakami. Large Capacity 3-Phase UPS with IGBT PWM Inverter. IEEE PESC Conf. Rec. , 1991: 117-122
    [9] 李成章. 智能化UPS 供电系统原理与应用. 北京: 电子工业出版社, 1999
    [10] J. Sun and R M. Bass, ‘Modeling and practical design issues for average current control, ”in Proceedings of 1999 IEEE Applied Power Electronics Conference: 980-986
    [11] J. Sun, et al. Averaged modeling of PWM converters operating in discontinuous condudion mode. IEEE Transactions on Power Electronics, July 2001, 16(4): 482-491
    [12] R. Srinivasan and R. Oruganti. A unity power factor converter using half-bridge boost topology. IEEE Transactions on Power Electronics, May 1998, 13(3): 487-500
    [13] De Pra U. , Baert D. , Kuyken H.. Analysis of the Degree of Reliability of a Redundant Modular Inverter Structure. IEEE, INTELEC Conf. Rec. , 1998: 543-548
    [14] Thorsell L. , Lindman P.. Reliability Analysis of a Direct Parallel Connected n+1 Redundant Power System Based on Highly Reliable DC/DC Modules. IEEE, INTELEC Conf. Rec. , 1988: 551-556
    [15] APC 公司北京代表处. 电源阵列——高可靠性的模块化UPS 冗余系统. 电子质量, 2003(3): 140-141
    [16] 黄探宇. 高可靠性集中热备份UPS 供电系统. 南京工业大学学报(自然科学版), 2002(3): 42-46
    [17] Rengang Chen, Canales F. , Bo Yang et al. Volumetric Optimal Design of Passive Integrated Power Electronic Module (IPEM) for Distributed Power System (DPS) Front-End DC/DC Converter. IEEE IAS Conf. Rec. , 2002: 1758-1765
    [18] Tabisz W. A. , Jovanovic M. M. , Lee F. C.. Present and Future of Distributed Power Systems. IEEE APEC Conf. Rec. , 1992: 11-18
    [19] Alexander B. Lostetter. Miniaturization, Packaging, and Thermal Analysis of Power Electronics Modules: [Master Thesis]. Virginia: Virginia Polytechnic Institute and State University, 1998
    [20] Ivan Celanovic. A Distributed Digital Control Architecture for Power Electronics Systems: [Master Thesis]. Virginia: Virginia Polytechnic Institute and State University, 2000
    [21] Ganguly A. K.. Restructuring of Power Distribution Entities in Developing Economies. IEEE Transmission and Distribution Conference and Exposition, 2001: 476-479
    [22] Richard D. DeBlasio, Thomas S. Basso. Status on Developing IEEE Standard: 1547 For Distributed Power Resources And Electric Power Systems Interconnection. IEEE Transmission and Distribution Conference and Exposition, 2001: 941-944
    [23] 徐建中. 分布式供电和冷热电联产的前景. 节能与环保, 2002(3): 10-14
    [24] 何仰赞温增银汪馥瑛周勤慧. 电力系统分析(下). 湖北: 华中理工大学出版社, 1996
    [25] Hacker R. J.. Electricity Generation by Commercial Customers using Photovoltaics: Grid Photovoltaics. IEE Colloquium on Electricity Generation by Commercial Customers Using Photovoltaics, 1994: 1-4
    [26] Markvart T. , Arnold R. J.. Integration of Photovoltaic Convertors into the Public Electricity Supply Network. IEE Colloquium on Power Electronics for Renewable Energy, 1997: 1-4
    [27] Photovoltaics: Electricity from the Sun: North Carolina Solar Center Publication, 2002
    [28] TAKAO KAWABATA, SHIGENORI HIGASHINO. Parallel Operation of Voltage Source Inverters. IEEE Trans. Ind. Appl. , 1988, 24 (2): 281-287
    [29] Jiann-Fuh Chen, Ching-Lung Chu, Yow-Chyi Lieu. Modular Parallel Three-Phase Inverter System. IEEE International Symposium on Industrial Electronics, 1995: 237-242
    [30] Jong-Lick Lin, Chin-Hua Chang. Small-Signal Modeling and Control of ZVT-PWM Boost Converters. IEEE Trans. on Power Electronics, 2003, 18(1): 2-10
    [31] Mazumder S. K. , Nayfeh A. H. , Boroyevich D.. A Nonlinear Control Scheme for Independent Stabilization of a Parallel Multi-Phase Boost Converter by Blocking Pure Zero-Sequence Current. IEEE PESC Conf. Rec. , 2002: 1401-1406
    [32] Xiao Sun, Yim-Shu Lee, Dehong Xu. Modeling, Analysis, and Implementation of Parallel Multi-Inverter Systems with Instantaneous Average-Current-Sharing Scheme. IEEE Trans. Power
    [33] 朱长海, 刘鲁源, 朱邦太. 基于滑模控制的Buck-Boost型AC/DC变换器. 洛阳工学院学报, 2002, 23(1): 85-88
    [34] 邓超平, 刘晓东, 凌志斌. 三相单开关零电流Cuk 型功率因数校正器的研究. 中国电机工程学报, 2004, 24(4): 74-79
    [35] 李冬, 阮新波. 一种复合型单开关功率因数校正预调节器. 中国电机工程学报, 2003, 23(8): 81-84
    [36] 郑颖楠, 王炎, 邬伟扬. 可逆变流技术回顾与发展现状. 燕山大学学报, 1999, 23(2): 108-113
    [37] Panov Y. , Rajagopalan J. , Lee F. C. Analysis and Design of N Paralleled DC-DC Converters with Master-Slave Current-Sharing Control. IEEE APEC Conf. Rec. , 1997: 436-442
    [38] Iu H. H. C. , Tse C. K. Instability and Bifurcation in Parallel-Connected Buck Converters under a Master-Slave Current Sharing Scheme. IEEE PESC Conf. Rec. , 2000: 708-713
    [39] Jovanovic M. M. , Crow D. E. , Lieu Fang-Yi. A Novel, Low-Cost Implementation of “Democratic”Load-Current Sharing of Paralleled Converter Modules. IEEE Trans. Power Electron. , 1996, 11(4): 604-611
    [40] Schonknecht A. , De Doncker R. W. Distributed Control Scheme for Parallel Connected Soft-Switching High-Power High-Frequency Inverters. IEEE PESC Conf. Rec. , 2002: 1395-1400
    [41] 黄探宇. 高可靠性集中热备份UPS 供电系统. 南京工业大学学报(自然科学版), 2002(3): 42-46
    [42] 姜桂宾, 裴云庆. SPWM 逆变电源的自动主从并联控制技术. 电工电能新技术, 2003, 22(3): 16-20
    [43] 何利铨邱国跃. 电力系统无功功率与有功功率控制. 重庆: 重庆大学出版社, 1995
    [44] 陈坚. 交流电机数学模型及调速系统. 北京: 国防工业出版社, 1989
    [45] 刘豹. 现代控制理论. 北京, 机械工业出版社, 2004
    [46] 胡寿松. 自动控制原理. 北京, 国防工业出版社, 1994
    [47] 于长官. 现代控制理论. 哈尔滨: 哈尔滨工业大学出版社, 1997
    [48] 龚银河, 刘丛立, 汪梅. 开关滞时对SPWM 逆变器输出波形的影响. 电力电子技术, 1996(2): 1-4
    [49] 薛向党, 李国民, 夏长亮等. PWM 逆变器死区解耦控制方法的研究. 电力电子技术, 1998(2): 21-24
    [50] 毛鸿, 吴兆麟, 王毅. SPWM 变换器无死区滞后控制技术的研究. 电力电子技术, 2000(4): 7-9
    [51] Hengchun Mao, Lee C Y, Bo royevich Silva Hiti. Review of High performance Three phase Power factor Correction Circuits. IEEE Transactions on Industry Electronics, Aug. 1997, 44 (4): 437-446
    [52] Jaehong Hahn, Prasad N Enjeti, et al. A New Three phase Power Factor Correction ( PFC ) Scheme Using Two Single phase PFC Modules. IEEE Transaction on Industry Applications, 2002, 38(1): 123-130
    [53] Peter M Barbosa, Fred C Lee. Design Aspects of Paralleled Three-phase DCM Boost Rectifier. Center for Power Electronics System. IEEE, CPES, 1999: 331-336
    [54] 徐德鸿. 三相高功率因数整流器的发展与现状. 江苏机械制造与自动化, 2000(4): 6-10
    [55] Malesani L, Rossetto L, Spiazzi G et al. Single switch Three phase AC/DC Converter with High Power Factor and Wide Regulation Capability. IEEE, INTELEC’92, 1992: 279-285
    [56] Spiazzi G, Lee F C. Implemention of Single Phase Boost Power Correction Circuits in the Three Phase Applications. IEEE, IECON’94, 1994, 1: 250-255
    [57] Chongming Qiao, Keyue Ma Smedley. Three phase unity power factor star connected switch (VIENNA ) rectifier with unified constant frequency integration control. IEEE, Trans. on Power Electronics, 2003, 18(4): 952-957
    [58] Kolar, Johann W. , Stogerer Franz, Minibock Johanna et al. New Concept for Reconstruction of the Input Phase Currents of a Three Phase Switch Level PWM (VIENNA ) Rectifier Based on Neutral Point Current Measurement. IEEE, PESC, 2000, 1: 139-146
    [59] Kolar Johann W. , Franz C Zach. A Novel Three Phase Utility Interface Minimizing Line Current Harmonics If High PowerTelecommunications Rectifier Modules. IEEE, Trans. on Industrial Electronics, 1997, 44(4): 456-467
    [60] Johann W Kolar, Drofenik, Uwe. New Switching Loss Reduced Discontinuous PWM Scheme for a Unidirectional Three Phase Switch Level Boost Type PWM (VIENNA ) Rectifier. IEEE, INTELEC’99, 1999: 29-32
    [61] Chongming Qiao, Keyue M Semdley. A General Three Phase PFC Controller Part II. for Rectifiers with a Series Connected Dual Boost Topology. IEEE, Industry Applications Conference, Thirty Forth IAS Annual Meeting, pt. 4, 1999, 4: 2512-2519
    [62] J. T. Boy and A. W. Green, Current-forced single phase reversible rectifier, Proc. Inst. Elect. Eng. , 1989, 136(5): 205-211
    [63] Chongming Qiao, Keyue M Semdley. A General Three phase PFC Controller Part I. for Rectifiers with a Parallel Connected Dual Boost Topology. IEEE, Industry Applications Conference, Thirty Forth IAS, Annual Meeting, 1999, 4: 2504-2511
    [64] Tero Viitanen, Heikki Tuusa. A State Power Loss Consideration of the 50 kW VIENNA I and PWM Full bridge Three phase Rectifier. IEEE, PESC’02, 2002, 2: 915-920
    [65] Martins A. S. , et al. Control Strategy for the Double Boost converter in continuous conduction mode applied to power factor correction. 27th Annual IEEE PESC '96, June 1996, 23: 1066-1072
    [66] Moh. C. Ghanem, et al. A new control strategy to achieve sinusoidal line current in a cascade Buck-Boost converter. IEEE Trans. on IE, Jun. 1996, 43(3): 441-449
    [67] Jiann-Fuh Chen, Ching-Lung Chu. Combination voltage-controlled and current-controlled PWM inverters for UPS parallel operation [N]. IEEE Transactions on Power Electronics, 1995, 10: 547 -558
    [68] Oshima H. , Miyazaya Y. , Hirata A.. Parallel redundant UPS with instantaneous PWM control [M]. INTELEC '91, 1991: 436-442
    [69] Martins A. P. , Carvalho A. S. , Araujo A. S. A control method for high power UPSs in parallel operation [M]. Proceedings of the 38th Midwest Symposium on Circuits and Systems, 1995, 1: 1996
    [70] T. Kwabata, S. Higashino. Parallel Operation of Voltage Source Inverters. IEEE Trans. on Industry Application, March/April 1988, 24(2): 281-287
    [71] Y. -K. Chen, T. -F Wu, et al. A Current-sharing Control Strategy for Parallel Multi-inverter Systems Using Microprocessor-Based Robust Control. Electrical and Electronic Technology, 2001. TENCON. Proceedings of IEEE Region 10 International Conference on, Aug. 2001, 2: 647-653
    [72] Duan Shanxu, Meng Yu, et al. Parallel operation control technique of voltage source inverters in UPS [M]. PEDS '99, 1999, 2: 883-887
    [73] T. -F. ; Huang, Y. -H et al. A 3C Strategy for Multi-module Inverters in Parallel Operation to Achieve an Equal Current Distribution.. Power Electronics Specialists Conference, 1998. PESC 98 Record. 29th Annual IEEE, 17-22 May 1998, 1: 186-192
    [74] Ruff, H.. High availability configurations for large UPS systems. Business Continuity, 1997, 6(1): 49-55
    [75] Messer, G. J.. Reliability enhancement through paralleling. Official Proceedings of the Twelfth International HFPC Power Conversion, Presented at Power Systems World'97 Conference and Exhibit, 1997
    [76] Ito Y. ; Kanno, Y. ; Iino, M. ; Iyama, O. Digitally controlled parallel redundant UPS. Sanken Technical Report, 1996, 28(1): 22-30
    [77] James, M. ; Rickwood, D. H.. Experience with VRLA batteries and economical arrangements for higher reliability in UPS applications. 9th Battery Conference and Exhibition, 1996
    [78] 王江, 王家军, 王先来. 电力电子开关变换器的滑模控制. 电机与控制学报, 2000, 4(3): 188-192
    [79] 万军. 单相UPS逆变器的模型参考滑模控制. 电力电子技术, 2004, 38(3): 63-64
    [80] 唐超颖, 沈春林. 非线性不确定系统的变结构控制. 测控技术, 2003, 22(3): 35-37
    [81] F. Rodriguez and J. Chen, “A refined nonlinear average model for constant frequency current mode controlled PWM converters, ”IEEE Trans. Power Electron. , Oct. 1991, 4: 56-66
    [82] Roberto Giral and Luis Martinez-Salamero, Sigmond Singer. Interleaved Converters Operation Based on CMC. IEEE Trans. on Power. Electronics, 1999, 14(4): 643-652
    [83] Han-Ju Cha, Shin-Sup Kim, Min-Gu Kang et al. Real-Time Digital Control of PWM Inverter with PI Compensator for Uninterruptible Power Supply. IEEE IECON Conf. Rec. , 1990: 1124-1128
    [84] Chihchiang Hua and Richard G. Hoft. High Performance Deadbeat Controlled PWM Inverter Using a Current Source Compensator for Nonlinear Loads. IEEE PESC Conf. Rec. , 1992: 443-450
    [85] J. S. Lai and D. Chen, “Design considerations for power factor correction boost converter operating at the boundary of continuous conduction mode and discontinuous conduction mode, ”in Proc. IEEE APEC’93, 1993: 267–273
    [86] S. Ahmed, “Controlled on-time power factor correction circuit with input filter, ”M. S. thesis, Virginia Polytechnic Inst. State Univ. , Blacksburg, VA, May 1990
    [87] R. B. Ridley, “Average small-signal analysis of the boost power factor correction circuit, ”in Proc. VPEC Seminar, 1989: 108–120
    [88] Y. Amran, F. Huliehel, and S. Ben-Yaakov, “Aunified SPICE compatible average model of PWM converters, ”IEEE Trans. Power Electron., Oct. 1991, 6: 585–594
    [89] Tomoki Yokayama and Atsuo Kawamara. Disturbance Observer Based Fully Digital Controlled PWM Inverter for CVCF Operation. IEEE Trans. Power Electron. , 1994, 9(5): 473-480
    [90] 周永鹏, 沈安文, 蔡正英. 数字化UPS 中的死区效应与补偿方法. 电力电子技术, 2002(3): 5-6
    [91] 薛向党, 李国民, 夏长亮等. PWM 逆变器死区解耦控制方法的研究. 电力电子技术, 1998(2): 21-24
    [92] 毛鸿, 吴兆麟, 王毅. SPWM 变换器无死区滞后控制技术的研究. 电力电子技术, 2000(4): 7-9
    [93] 龚银河, 刘丛立, 汪梅. 开关时滞对SPWM 逆变器输出波形的影响. 电力电子技术, 1996(2): 1-4
    [94] P. D. Evans and P. R. Close. Harmonic distortion in PWM inverter output waveforms. Proc. Inst. Elec. Eng. , 1987, 134(B4): 224-232
    [95] E. Dijk, H. Spruijt, D. M. O’Sullivan, and J. B. Klaassens, “PWM-switch modeling of dc–dc converters, ”IEEE Trans. Power Electron. , Nov. 1995, 10: 659–665
    [96] Takashi Sukegawa, Kenzo Kamiyama, Katsuhiro Mizuno et al. Fully Digital Vector Controlled PWM VSI-Fed ac Drives with an Inverter Dead-Time Compensation Strategy. IEEE Trans. Ind. Appl. , 1991, 27(3): 552-559
    [97] Jong-Woo Choi and Seung-Ki Sul. Inverter Output Voltage Synthesis Using Novel Dead Time Compensation. IEEE Trans. Power Electron. , 1996, 11(2): 221-227
    [98] Jonathan Kimball and Philip T. Krein. Real-Time Optimization of Dead Time for Motor Control Inverters. IEEE PESC Conf. Rec. , 1997: 597-600
    [99] Alfredo R. Munoz and Thomas A. Lipo. On-Line Dead-Time Compensation Technique for Open-Loop PWM-VSI Drives. IEEE Trans. Power Electron. , 1999, 14(4): 683-689
    [100] A. Mansoor, W. M. Grady, A. H. Chowdhury et al. An Investigation of Harmonics Attenuation and Diversity Among Distributed Single-Phase Power Electronic Loads. IEEE Transactions on Power Delivery, 1995, 10(1): 467-473
    [101] Masaaki Sakui and Hiroshi Fujita. An Analytical Method for Calculating Harmonic Currents of a Three-Phase Diode-Bridge Rectifier with dc Filter. IEEE Trans. Power Electron. , 1994, 9(6): 631-637
    [102] Masaaki Sakui, Hiroshi Fujita, Mitsuo Shioya. A Method for Calculating Harmonic Currents of a Three-Phase Bridge Uncontrolled Rectifier with DC Filter. IEEE Trans. Ind. Electron. , 1989, 36(3): 434-440
    [103] 王丰尧. 滑模变结构控制. 北京: 机械工业出版社, 1995
    [104] K. D. Yong, V. I. Utkin, et al. A control engineer’s guide to sliding mode control. IEEE Trans. Control System Technology, 1999, 7(3): 328-342
    [105] 高为柄. 变结构控制的理论及设计方法. 科学出版社, 1996
    [106] 姚琼荟, 黄继起, 吴汉松. 变结构控制系统. 重庆大学出版社, 1997
    [107] 肖雁鸿, 葛召炎, 周靖林. 全滑模变结构控制系统. 电机与控制学报, 2002, 6(3): 233-236
    [108] 叶伟国, 陈江. 逆变器的滑模变结构控制研究. 绍兴文理学院学报. 2002, 22(1): 92-96
    [109] 王江, 曾启明. 基于奇异摄动方法的同步发动机二阶滑模控制器的设计. 中国电机工程学报, 2003, 23(10): 142-147
    [110] 宋宜斌, 王培进. 滑模变结构控制器输出特性分析与改进. 电气传动, 2004(3)
    [111] 杨俊华, 吴捷. 风力发电机组的非线性控制-变结构控制和鲁棒控制. 动力工程, 2003, 23(6): 2803-2809
    [112] 吴梅, 胡云安, 张友安. 多输入多输出非线性系统的多面滑模控制. 系统工程与电子技术, 2002, 24(7): 87-90
    [113] 刘琳, 殷桂梁, 吴杰. 多机电力系统的滑模智能PSS 设计. 现代电力, 2003, 20(2): 29-32
    [114] Gous, Marthinus G. F. et al. Sliding mode control for a three-phase shunt active power filter utilizing a four-leg voltage source inverter. IEEE 35th Annual Power Electronics Specialists Conference, PESC’04, 2004: 4609-4615
    [115] Korondi P. , Nagy L. , Nemeth G. Control of a three phase UPS inverter with unbalanced and nonlinear load. EPE '91. 4th European Conference on Power Electronics and Applications, 1991, 3: 180-184
    [116] Lee Jeong-UK, Yoo Ji-Yoon, et al. Current control of a PWM inverter using sliding mode control and adaptive parameter estimation. IECON Proceedings (Industrial Electronics Conference), 1994, 1: 372-377
    [117] Wong L. K. , Leung F. H. F. Tam P. K. S. Control of PWM inverter using a discrete-time sliding mode controller. Proceedings of the IEEE 1999 International Conference on Power Electronics and Drive Systems. PEDS'99, 1999, pt. 2, 2: 947-50
    [118] Carpita M. , Farina P. , Tenconi S. A single phase, sliding mode controlled inverter with three levels output voltage for UPS or power conditioning applications. Fifth European Conference on Power Electronics and Applications, 1993, 4: 272-277
    [119] Tai Tsang-Li, Chen Jian-Shiang. UPS inverter design using discrete-time sliding-mode control scheme. IEEE Trans. on Industrial Electronics, 2002, 49(1): 67-75
    [120] Jung S. -L. , Tzou Y. -Y. Sliding mode control of a closed-loop regulated PWM inverter under large load variations. Record. IEEE, PESC '93. 1993: 616-622
    [121] Shih-Liang, Hsiang-Sung Huang. Self-tuning discrete sliding mode control of a closed-loop regulated PWM inverter with optimal sliding surface. IEEE, PESC’96 1996, pt. 2, 2: 1506-1512
    [122] Tsang-Li Tai, Jian-Shiang Chen. UPS inverter design using discrete-time sliding-mode control scheme. IEEE Trans. on Industrial Electronics, 2002, 49(1): 67-75
    [123] Zadravec D. , Jezernik K. Improved sliding-mode controller for UPS systems. EPE '91. 4th European Conference on Power Electronics and Applications, 1991, 3: 578-582
    [124] Castilla M. , Garcia de Vicuna L. , et al. Modeling and multi-input sliding mode control of the series resonant inverter. PEMC '96. 7th International Power Electronics and Motion Control Conference, 1996, pt. 1, 1: 210-214
    [125] Jung J. W. , Dai M. , Keyhani A. Optimal control of three-phase PWM inverter for UPS systems. IEEE, PESC’04, 2004, 3: 2054-2059
    [126] Sanchis P. , Ursaea A. , Gubia E. Marroyo L. Sliding mode control technique for indirect current controlled active filter. IEEE Region 5. 2003 Annual Technical Conference. Conference Record. Papers Presented at the 2003 Annual Meeting, 2003: 51-58
    [127] Pinheiro H. , Martins A. S. , Pinheiro J. R. A sliding mode controller in single phase voltage source inverters. IEEE, IECON’94. 20th International Conference on Industrial Electronics, Control and Instrumentation, 1994, pt. 1, 1: 394-398
    [128] Pirog S. PWM rectifier and active filter with sliding-mode control. International Conference on Electrical Drives and Power Electronics, 1996, pt. 2, 2: 457-62
    [129] Ying Li, Xi Fu. The study of self-adaptive sliding mode variable structure-fuzzy control for induction motor. IEEE International Conference on Intelligent Processing Systems, 1997, pt. 1, 1: 232-236
    [130] Ramos Rafael, Biel Domingo, Fossas Enric, et al. Control of single-phase parallel-connected inverters: Fixed-frequency quasi-sliding mode control approach and FPGA-based implementation. IEEE, PESC’2003, 2003, 3: 1426-1431
    [131] Sanchis P. , Ursaea A.. , Gubia E. et al. Boost DC-AC inverter: a new control strategy. IEEE Trans. on Power Electronics, 2005, 20(2): 343-353
    [132] Jezenik K. , Milanovic M. , Zadravec D. Microprocessor controlled inverter for UPS applications. EPE '89, 3rd European Conference on Power Electronics and Applications, 1989, 3: 1121-5
    [133] Vazquez N. , Cortes D. , Alvarez J. , et al. A new non-linear control strategy for the boost inverter. PESC Record -IEEE Annual Power Electronics Specialists Conference, 3, 2003: 1403-1407
    [134] Chihchiang Hua, Chinming Shen, Gengshing Peng. Design of an Input Filter to Suppress Conducted EMI of a Single Phase UPS Inverter. IEEE IECON Conf. Rec. , 1996: 1699-1704
    [135] 沙占友. EMI 滤波器的设计原理. 电子技术应用, 2001(5): 46-48
    [136] 邱成悌, 赵悙役, 蒋全兴. 电子设备结构设计原理. 南京: 东南大学出版社, 2001
    [137] 白同云, 吕晓德. 电磁兼容设计. 北京: 北京邮电大学出版社, 2001
    [138] 周永鹏, 沈安文, 蔡正英. 数字化UPS 中的死区效应与补偿方法. 电力电子技术, 2002(3): 5-6
    [139] 段善旭, 刘邦银等. 基于分散逻辑的UPS 逆变电源并联控制技术. 电力电子技术, 2004, 38(2)
    [140] IEEE Recommended Practices and Requirements for Harmonics Control in Electrical Power System. ANSI/IEEE Standard 60519, 1992
    [141] IEC. D. Sturbances in Supply System Caused by Household Appliances and Similar Elecyrical Equipment. International Electrotechnical Commission Publication 60555, 1982
    [142] IEC. D. Sturbances in Supply System Caused by Household Appliances and Similar Elecyrical Equipment. International Electrotechnical Commission Publication 61003-3-2, 1995
    [143] 水利电力部. 电力系统谐波管理暂行规定(SD126-84).水利电力出版社, 1984
    [144] 中国国家标准GB/T14549-93, 电能质量. 公用电网谐波.中国标准出版社, 1994
    [145] Peng F Z. , Akagi H. , A new approach to harmonic compensation in power systems—a combined system of shunt passive and series active filters. IEEE Trans. Ind. Appl. , 1990
    [146] akeda M. , Ikeda K. , Tominaga Y. Harmonic current compensation with active filters. Proc of IEEE/IAS Annual Meeting, 1987: 808-815
    [147] Tuladhar A. , Jin H. , Unger T. et al. Control of Parallel Inverters in Distributed AC Power Systems with Consideration of the Line Impedance Effect. IEEE APEC Conf. Rec. , 1998: 321-328
    [148] Perreault D. J. , Selders R. L. Jr. , Kassakian J. G. Frequency-Based Current-Sharing Techniques for Paralleled Power Converters. IEEE Trans. Power Electron. , 1998, 13(4): 626-634
    [149] Chandorkar M. C. , Divan D. M. , Adapa R. Control of Parallel Connected Inverters in Stand-Alone AC Supply Systems. IEEE IAS Conf. Rec. , 1991: 1003-1009
    [150] 张崇巍, 张兴. PWM 整流器及其控制. 北京: 机械工业出版社, 2003
    [151] Manias S. Ziogas P. D. et al. An AC/DC converter with improved input power factor and high power density. IEEE Trans. IA, 1986, 22(6): 1073-1081
    [152] Roberto Martinez. A high performance single phase rectifier with input power factor correction. IEEE Trans. on Power Electronics, 1996, 11(2): 311-317
    [153] 张德华, 章进法. 新型半桥高功率因数整流器. 电力电子技术, 1996(4): 70-73
    [154] Ramesh S. et al. A unity power factor converter using half-bridge Boost topology. IEEE Trans. on Power Electronics, May 1998, 13(3): 487-450
    [155] Martin H. L. chow, et al. Single Stage single-switch isolated PFC regulator with unity power factor, fast transient response, and low-voltage stress. IEEE Trans. on Power Electronics, Jan. 2000, 15(1): 156-163
    [156] Y. S. Lee and K. W. Siu, Single-switch fast-response switching regulators with unity power factor. Applied Power Electronics Conf. Exposition Proc. , 2, San Jose, CA, Mar. 1996: 91-96
    [157] 王兆安, 杨军, 刘进军. 谐波抑制和无功功率补偿. 北京: 机械工业出版社, 1998
    [158] 段善旭. 模块化逆变电源全数字化并联控制技术研究: [博士学位论文]. 武汉: 华中科技大学图书馆, 1999
    [159] 孟宇. 全数字化的逆变电源无互联线并联控制研究: [硕士学位论文]. 武汉: 华中科技大学图书馆, 2000
    [160] 李成章. 智能化UPS 供电系统原理与研究. 北京: 电子工业出版社, 1999
    [161] H. S. H. Chung, E. P. W. Tam, S. Y. R. Hui, “Development of a fuzzy logic controller for boost rectifier with active power factor correction, ”IEEE, PESC’1999: 149–154
    [162] Mohamed Tou, Kamal Al-Haddad, Guy Olivier, Venkatachari Rajagopalan. Analysis and Design of Single-Controlled Switch Three-Phase Rectifier with Unity Power Factor and Sinusoidal Input Current. IEEE Trans. on Power Electronics, 1997, 12(4): 608-614
    [163] Seshadri Sivakumar, K. Natarajan, Rajmund Gudelewicz. Control of Power Factor Correcting Boost Converter Without Instantaneous Measurement of Input Current. IEEE Trans. on Power Electronics, 1995, 10(4): 435-445
    [164] Jong-Lick Lin, Chin-Hua Chang. Small-Signal Modeling and Control of ZVT-PWM Boost Converters. IEEE Trans. on Power Electronics, 2003, 18(1): 2-10
    [165] Rueda P. , Ghani S. et al. A new energy transfer principle to achieve a minimum phase & continuous current Boost converter. IEEE, PESC’2004, 2: 2232-2236
    [166] Yaoping Liu, Keyue Smedley. Control of dual boost power factor corrector for high power applications. IEEE, IECON’03, 2003, 3: 2929-2932
    [167] Yaoping Liu, Smedley K. A new passive soft-switching dual-boost toplogy for power factor correction. IEEE, PESC’03, 2003, 2: 669-676

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700