150kHz高功率因数感应焊接电源的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
串联谐振感应焊接电源在国内已经有了很大的发展,但与国外相比还有较大的差距,尤其在大功率及高频率领域与西欧和日本的差距明显。目前国内的焊接电源研究的方向及面临问题主要包括提高功率变换器的工作频率问题、高频化带来的开关器件以及无源器件的损耗提高问题、感应焊接电源对电网产生的谐波污染及损耗问题、数字化控制的应用等。感应焊接电源AC/DC环节一般采用晶闸管相控整流或者二极管不控整流,造成输入电流失真,波形畸变,不仅严重干扰电网线电压,而且导致电源的利用效率低下,加大了能源的损耗。
     本课题采用功率因数校正技术,通过在整流与逆变环节之间加入一种改进的软开关boost电路—串联电感及无损SNUBBER电路取代传统的LC滤波电路来实现功率因数校正,从而减少了boost电路在高频开关状态下的损耗,提高了校正电路应用范围,采用TMS320LF2407A实现了功率因数校正电路的平均电流模式控制。比较了感应焊接电源的几种功率调节方式,采用逆变侧移相脉宽功率调节方法实现功率调节。针对当前IGBT工作频率较低的情况,逆变桥侧通过IGBT的分时控制来实现倍频工作。
     最后,控制电路采用由集成锁相电路、DSP和CPLD组合的数字化控制系统。DSP实时计算负载功率与额定功率的差值,从而得到移相角。CPLD接受移相角信号和锁相信号,进行移相PWM控制。控制系统外围电路包括过压、过流等保护电路以及由IXDN404组成的IGBT驱动电路。在分析了软开关boost电路和倍频逆变电路的工作原理的基础之上,对主电路做了MATLAB仿真,为后面的实验奠定了基础。实验结果和仿真结果是一致的,验证了功率因数校正技术应用到感应电源中的合理性与可行性。
Series resonant induction welding power has made great progress in our country, but there is still large disparity comparing with foreign countries. Especially in high power and high frequency fields, we have significant diaparity with Western Europe and Japan. At present, the direction of welding power and the problems faced by research include improving the operating frequency of power converter, problems caused by high frequency switching devices and loss improve problem of passive devices, Harmonic pollution and loss issues on the power grids caused by induction welding power, the application of digital control.The input current and waveform distortion is due to the rectifying part, because it usually adopts the thyristor phase-controlled rectifying or diode rectifying in the AC/DC link.It will not only seriously interfere with the power line voltage, but also reduce the energy efficiency, which means the energy wastage is increased.
     Power Factor Correction technology has been applied to this paper. For the negative impact on the grid, we try to add an improved soft boost circuit-lossless snubber circuit between the rectifier and the inverter, which is used to replace the traditional LC filter to achieve power factor correction.Thereby it reduced the boost circuit switching loss at high frequency and improved the correction circuit application. TMS320LF2407A was used to achieve power factor correction with the average current mode control. We compared several power regulation method, and finally chose the phase shifted pulse width modulation as power regulating methods on the AC side.For the current situation of IGBT’s low frequency, we chose a new inverter—through IGBT parallel to achieve multiplier work.
     In the end of the study, we researched the digital control system of induction welding power, which is mainly constituted by the integrated PLL chip 74HC4046, DSP (digital signal processor) and CPLD (compelx programmable logic device) component.The DSP calculated the difference between actual power and rated power of the load, then got phase shift angle.CPLD received signal of phase shift angle and phase-lock, which is used to accomplish the phase-shifted PWM control. In addition, we also designed the external circuit of the control system, such as over-voltage, over current protection circuit and IGBT driving circuit based on chip IXDN404. After analysis of soft boost circuir and multi-frequency inverter, we made MATLAB simulation on the main circuit, as the basis for subsequent experiments. Experimental results and simulation results are consistent, it confirmed that power factor corrections applied to the induction welding power in the technical is reasonable and feasible.
引文
1.潘天明.现代感应加热装置[M].北京:冶金工业出版社,1996.
    2.沈庆通,梁文林.现代感应热处理技术[M].北京:机械工业出版社,2008.
    3. A.Okuno, S.Shirakawa, etc. Latest Development of Voltage-Fed Resonant High Frequency Inverter with Load Resonant Frequency Tracking Scheme for Induction Heating[J]. Power Electronics and Variable Speed Drives, 1998,15(4):152~157.
    4.曹金台.大功率高频感应电源的发展[J].焊管,2007,30(1):41-44.
    5.杨润.基于FUZZY-PLL复合控制的IGBT感应加热电源的研制[D]:[硕士学位论文].西安:西安理工大学,2003.
    6.曲学基等.电力电子滤波技术及其应用[M].北京:电子工业出版社,2008.
    7.王兆安,黄俊主编.电力电子技术[M].北京:机械工业出版社,2000.
    8.李爱文,张承慧.现代逆变技术及其应用[M].北京:科学出版社,2000.
    9.马红斌.基于DSP的PDM/PSM感应加热电源的研究[D]:[硕士学位论文].无锡:江南大学通信与控制工程学院:2003.
    10.程曼丽,刘明,郭芬.功率因数校正技术及不同控制策略研究[J].现代电子技术,2007(10),174-176.
    11.华伟,金新民.大功率单相功率因数校正主电路方案[J].电工技术杂志,1998,No.2:13-15.
    12.陈一逢.高性能软开关功率因数校正电路的设计[J].电源技术应用,2004,No.135-137.
    13.董淑惠,李亚斌,田丰.时间分割式IGBT高频感应加热电源的研究[J].电力科学与工程,2007,(4):1-3.
    14.李贺,彭咏龙,李亚斌.分时控制MOSFET高频感应加热电源[J].通信电源技术,2008,25(5),7-9.
    15.鲍简愈,徐炜等.软开关相移PWM感应加热技术的研究[J].电力电子技术,2002,36(6):31~32.
    16.蔡慧,赵荣祥,陈辉明.倍频式IGBT感应加热电源的研究[J].中国电机工程学报,2006,26(2):154-158.
    17. Yuki Kawaguchi,Eiji Hiraki,Toshihiko Tanaka and Mutsuo Nakaoka.Full Bridge Phase-Shifted Soft Switching High-Frequency Inverter with Boost PFC Function for Induction Heating System[J].IEEE Transactions on Power Electronics, 2003,18(1):334~343.
    18.李国伟,朱锦洪,石红信,路凯通.IGBT感应加热/钎焊电源的DSP的数字化控制系统设计[J].电焊机,2007,37(1),20-22.
    19.张维刚.基于DSP和CPLD的移相全桥软开关电源数字控制器[J].微计算机信息,2006,22(10-2):37-39.
    20. Y.T.You, K.I.Hwu.etc.Forward Converter Using a CPLD-Based Control Technique to obtain a Fast Transient Load Response[J]. IEEE.2003:359~364.
    21. Ivobukazu Hashi, Kuniomi Oguchi. A CPLD-Based Control IC for Three-Phase Auxiliary Resonant Snubber Inverter[J].IEEE.2002:1194~1197.
    22.张素荣,李敏远.基于DSP的具有最佳死区的串联谐振感应加热系统[J].电气传动自动化,2004(6),23-26.
    23.王生德,刘平,申晋,王相友.MM74HC4046在高频感应加热电源中的应用[J].电力电子技术,2007,41(8),73-75.
    24.车保川.屈百达.基于74HC4046新型频率跟踪电路的研究[J].现代电子技术,2008(3),188-190.
    25.熊腊森,全亚杰.CD4046锁相环在感应加热电源中的应用[J].电焊机2000(6),14-17.
    26.刘和平等编著.TMS320LF240x DSP结构、原理及应用[M].北京:北京航空航天大学出版社,2002.4.
    27.师宇杰,袁虎臣.有源功率因数校正的控制机理[J].电源世界,2007(12),37-39.
    28.章兴华,吴为麟.基于DSP数字化控制的高频PFC的仿真与实现.机电工程[J],2002,19(5):26-29.
    29.赵晶,齐铂金,张伟等.PI调节逆变式IGBT感应加热电源频率自动跟踪技术[J].电力电子技术,2003(2):12-16.
    30. S.Wanchana , T.Benjanarasuth,N.Komine .PLL in Cooperated with PI Controller for Flow Control System .IEEE VOL.32,NO.2, March/April,1999:276~286.
    31. Yang Ye, Mehrhad Kazerani. Modeling,Control and Implementation of Three Phase PWM Converters[J]. IEEE Transactions on Power Electronics, 2003,18(3):857~864.
    32. Tsai-Fu Wu,Shih-An Liang. A Structure Approach to Synthesizing Soft Switching PWM Converters[J]. IEEE Trans. On Power Electronics.2003,18(1):857~864.
    33.阮新波,严仰光.全桥变换器的控制策略[J].电力电子技术,1998(3):106-110.
    34.吴继华,王成.Altera FPGA/CPLD设计[M].北京:人民邮电出版社,2005.
    35.潘松,黄继业编著.EDA技术实用教程[M].北京:科学出版社,2005.
    36.李云松,宋锐,雷杰,杜建超编著.Xilinx FPGA设计基础(VHDL版)[M].西安:西安电子科技大学出版社,2008.
    37.刘福奇编著.FPGA嵌入式项目开发实例精粹[M].北京:电子工业出版社,2009.
    38.马庆强.基于可编程逻辑器件的高频感应加热电源的研究[D].上海:同济大学,2006.
    39.颜文旭.基于DSP的高频感应加热电源的研究[D]:[硕士学位论文].无锡:江南大学通信与控制工程学院,2003.
    40.时矗.移相调功式IGBT超音频感应加热电源的研究[D]:[硕士学位论文].成都:西南交通大学,2004.
    41.沈争.IGBT高频谐振逆变控制研究[D]:[硕士学位论文].杭州:浙江大学,2006.
    42.沈刚,王华民等.高频大功率感应加热电源驱动电路设计[J].工业加热,2004(2):26~28.
    43.彭迎,阮江军,杜志叶.EXB841在驱动中频IGBT半桥电路中的应用[J].电子技术,2004(8):46-47.
    44.荣军,李宏.基于MATLAB的高功率因数校正技术的仿真研究.仿真技术[J].2007(6):41-43.
    45.黄忠霖,黄京编著.电力电子技术的MATLAB实践[M].北京:国防工业出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700