时滞及饱和Hamilton系统的分析与综合
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,作为控制理论研究热点之一的非线性系统控制理论得到了长足的发展,尤其是微分几何数学方法的引入,使得非线性系统控制理论有了很大的飞跃。但作为更一般的问题——具有时滞和饱和的非线性控制系统的研究结果还不多见。众所周知,时滞现象和执行器饱和普遍存在于实际系统中,是引起系统不稳定和性能变差的主要原因之一。然而,由于系统本身的复杂性导致对此类非线性系统的控制难度大大增加。至今仍有许多基本的问题难于得到很好的解决,相应的结果也不多见。而作为一类重要的非线性系统的广义Hamilton控制系统,由于其结构清晰,物理意义明确,Hamilton函数是系统的总能量,它在稳定性分析和控制设计问题中表现出了明显的优越性。最近几年,Hamilton系统的观点和方法越来越引起非线性控制界的关注。
     本论文针对具有时滞和饱和的Hamilton系统,研究了其稳定性和控制设计等问题。主要包括以下内容:
     一.研究了时滞Hamilton系统的稳定性问题。充分利用Hamilton系统自身的特性,并结合时滞系统稳定性分析方法:Lyapunov-Krasovskii泛函法,从时滞无关和时滞相关两个角度为两类时滞Hamilton系统(常时滞及时变时滞)分别提出了稳定性的充分条件。针对系统状态矩阵中包含不确定性的时滞Hamilton系统,提出了鲁棒稳定的充分条件。另外,基于所得到的结论,研究了时滞非线性系统的Hamilton实现理论,并分析了其稳定性。最后给出了几个例子与仿真支持所提出的理论结果。
     二.研究了时滞Hamilton控制系统的L_2干扰抑制问题。考虑一类带干扰的时滞Hamilton系统,通过应用合适的控制律和存储函数,构造了一个γ-耗散不等式。然后基于Lyapunov-Krasovskii稳定性定理,为闭环系统提出了一个渐近稳定的充分条件。最后,将结果推广到结构矩阵存在凸型不确定性的情形,为系统设计了鲁棒L_2干扰抑制控制器。仿真例子进一步验证了结论的正确性和实用性。
     三.研究了带有饱和和输入可加性干扰的Hamilton控制系统的有限增益镇定问题。从有限增益输出和有限增益输入两个方面分别进行了分析。在一定条件下运用静态输出反馈控制使得闭环系统达到全局渐近稳定。另外,针对Hamilton系统中的非线性函数提出进一步的演变条件,证明了相同的反馈律可以使得闭环系统达到有限L_2增益镇定,同时获得有限增益的估计值。仿真结果验证了结论的有效性。
     四.研究了具有饱和输入的时滞Hamilton系统的稳定性和镇定问题。综合考虑时滞和饱和对系统产生的双重影响,基于Hamilton系统的结构特性,根据Lyapunov-Krasovskii稳定性定理,提出了系统在输出反馈控制下可镇定的充分条件。这些条件由线性矩阵不等式(LMI)构成,可以直接通过MATLAB工具箱进行求解和验证,简单易行。最后给出了数值仿真例子,进一步证明了所得稳定性结论和控制设计方法的实用性和有效性。
     五.研究了执行器饱和的电力系统可镇定问题。应用前面得到的关于饱和Hamilton控制系统的分析结果,分别讨论了励磁饱和以及励磁-汽门同时饱和的单机无穷大电力系统的有限增益镇定问题。首先基于Hamilton能量理论将电机系统模型转化为广义耗散Hamilton系统模型,然后运用静态输出反馈,在适当的条件下,证明了闭环系统可以达到渐近稳定和有限增益镇定,从而解决了相应的电力系统的镇定问题。最后给出了仿真实例。
     本论文的主要创新点在于:
     ·首次研究时滞Hamilton系统的稳定性和控制设计问题。充分利用Hamilton系统的特有结构和耗散性质,分别为几类时滞Hamilton系统提出了稳定,鲁棒稳定和反馈镇定的若干判据:
     ·首次研究饱和Hamilton系统的稳定性和有限增益镇定问题。充分利用Hamillton系统的特有结构和耗散性质,分别提出了系统有限增益输出和有限增益输入镇定的充分条件,并得到有限增益的估计值;
     ·首次研究时滞和饱和双重影响下的Hamilton系统,充分利用Hamilton系统的结构特性,提出了系统稳定及在输出反馈控制下可镇定的充分条件。
Recent years witnessed the full-grown development of nonlinear systems control theory,one of the research hotspots in control theory.Especially with the introduction of differential geometry methodology,the nonlinear control systems theory has been made great progress.However,the research outcome is still insufficient on the more common issues of time-delay and saturation of nonlinear control systems.As well known,the phenomena of time delay and saturation constraint are often encountered in many practical control systems and one of the main reasons resulting in instability and poor performances of the associated control systems.However,the complexity of the system itself leads to the increasing difficult in controlling this kind of nonlinear systems.It is until present that many a fundamental problem has not been settled down and the corresponding outcome is scare as well.Meanwhile,port-controlled Hamiltonian systems,as an important class of nonlinear systems,owing to its clear structure and physical meaning,and that Hamiltonion function is considered as the total energy of the systems,demonstrates salient superiority in stability analysis and control design.In recent years,the viewpoint and methodology of Hamiltonion systems have drawn increasing attention in the field of nonlinear control systems.
     This thesis mainly studies the issues of stability and control design of Hamiltonian systems with time-delay and saturation.As follows are the main research contents.
     1.The stability of Hamiltonian systems is discussed.In full utilization of the dissipative structural properties of the Hamiltonian systems,and by using the technique of Lyapunov-Krasovskii functional,from two angles of delay-independent and delay-dependent,several sufficient stability conditions are proposed for two classes of Hamiltonian systems(including constant delay and time-varying delays).The robust stability is considered for a class of time-delay Hamiltonian systems which possesses time-invariant uncertainties belonging to some convex bounded polytypic domain.Besides, based on the proposed results,the stability of a class of nonlinear time-delay systems is also studied by Hamiltonian realization.Some examples are given to support the theoretical results.
     2.The L_2-disturbance attenuation for a class of time-delay Hamiltonian systems is considered.Aγ-dissipative inequality is established by using a proper control law and a storage function.Then based on the Lyapunov-Krasovskii stability theorem,a sufficient condition is proposed for the asymptotically stable of the closed-loop system. Finally,the case that there are time-invariant uncertainties belonging to some convex bounded polytypic domain is investigated and an L_2 disturbance attenuation control law is proposed as well.Simulations further inspects and verifies the correctness and practicability of the results.
     3.The stabilization problem for a port-controlled Hamiltonian system subject to actuator saturation and input additive external disturbances is investigated.The results are developed from two aspects:finite gain output stabilization and finite gain input stabilization.Conditions are identified under which a static output feedback law would achieve asymptotic stabilization.Under some additional growth conditions on the nonlinear functions involved in the system,the same feedback law would also achieve finite gain L_2 stabilization.In establishing these results,an estimate of the finite gain is also obtained.The illustrative examples verify the effectiveness of the proposed theories.
     4.The stabilization of a class of Hamiltonian systems with state time-delay and input saturation is addressed.Based on the special structure and dissipative property of the Hamiltonian systems,by using the Lyapunov-Krasovskii functional theory,the sufficient conditions are derived to guarantee the systems as well as the resulted closedloop systems for the system under output feedback to be asymptotically stable when input saturation effectively occurs.These conditions are composed of linear matrix inequalities and can directly be solved and verified through MATLAB/LMI toolbox, easy and simple.Numerical examples are presented to illustrate the effectiveness of the obtained results.
     5.The finite gain stabilization problem of the generator power systems subject to actuator saturation and external disturbances is investigated.Applying the analysis results of the Hamiltonian control systems subject to saturation,the finite gain stabilization of the single-machine infinite bus systems with excitation saturating and both excitation and steam valve saturating are discussed,respectively.First of all, based on the Hamiltonian energy theory,the power system model is transformed into a port-controlled Hamiltonian system model.Then a static output feedback controller is considered for the obtained Hamiltonian systems.Under some growth conditions, it is shown that the asymptotic stabilization,as well as the finite gain stabilization of the closed-loop system can be achieved,which solves the stabilization of the corresponding power systems.Simulation shows the effectiveness of the stabilizing method proposed.
     Innovations of the thesis mainly include the following three aspects:
     ●It is first studied stability and controller design of time-delay Hamiltonian systems. Making the most of the special structure and dissipative property of the Hamiltonian systems,some stability and feedback stabilization criterion are derived for several kinds of time delay Hamiltonian systems,respectively;
     ●It is first studied stability and finite gain stabilization of Hamiltonian systems with input saturation.Making the most of the special structure and dissipative property of the Hamiltonian systems,the sufficient conditions on finite gain output stabilization and finite gain input stabilization are proposed for the systems,respectively. Estimates of the finite gain are also obtained;
     ●It is first studied the Hamiltonian systems under the double influences of time delay and saturation.Making the most of the special structure and dissipative property of the Hamiltonian systems,the sufficient conditions of stability and stabilization under an output feedback law are presented.
引文
[1]P.Antonis.Analysis of nonlinear time-delay systems using the sum of squares decomposition.Pro.Amer.Contr.Conf.,Boston,Massachusetts,USA,June,2004,pp.4153-4158.
    [2]K.Astorom and B.Wittenniark.Adaptive control.Addison-Wesley,New York,1988.
    [3]X.Bao,Z.Lin,and E.D.Sontag.Finite gain stabilization of discrete-time linear systems subject to actuator saturation.Automatica,2000,36(2):269-277.
    [4]R.Bellman and K.L.Cooke.Differential-difference equations.New York:Academic Press,1963.
    [5]G.Besancon and S.Battiloti.On output feedback tracking control with disturbance attenuation for Euler-Lagrange sytems.Proc.37th IEEE Conf.Decision and Control,Tampa,USA,1998,pp.3139-3143.
    [6]P.Borne,M.Dambrine,W.Perruquetti,et al.Vector Lyapunov functions:nonlinear,time-varying,ordinary and functional differential equations.Stability and control:Theory,methods and applications(Martynyuk ed).London:Taylor and Francis,49-73,2002.
    [7]S.Boyd,E.I.Ghaoui and E.Feron,et al.Linear matrix inequalities in systems and control theory.Philadephia:SIAM,1994.
    [8]R.Brayton.Nonlinear oscillations in a distributed network.Quart.Appl.Math.,1976,24:289-301.
    [9]S.D.Brierley,J.N.Chiasson,E.B.Lee,et al.On stability independent of delay.IEEE Trans.Aurom.Contr.,1982,27(1):252-254.
    [10]F.Bullo.Averaging and vibrational control of mechanical systems.SIAM J.Contr.Optim.,2002,41(2):542-562.
    [11]Y.Cao,Y.Sun and C.Cheng.Delay-dependent robust stabilization of uncertain systems with multiple state delays,IEEE Trans.Autom.Contr.,1998,43(11):1608-1612.
    [12]Y.Cao and P.M.Frank.Analysis and synthesis of nonlinear time-delay systems via fuzzy control approach.IEEE Trans.Fuzzy Systems,2000,8(4):200-211.
    [13]Y.Cao,Z.Lin,T.Hu,Stability analysis of linear time-delay systems subject to input saturation,IEEE Trans.Circuits and Systems-I,2002,49(2):233-240.
    [14]Y.Cao,Z.Lin and D.G.Ward.Anti-windup design out put tracking systems subject to actuator saturation and constant disturbance.Automatica,2004,40(7):1221-1248.
    [15]P.H.Chang and J.W.Lee.A model reference observer for time-delay control and its application to robot trajectory control.IEEE Trans.Control Systems Technology,1996,4(1):2-10.
    [16]B.Chen and S.Wang.The stability of feedback control with nonlinear saturating actuator time domain approach.IEEE Trans.Autom.Contr.,1988,34(3):483-487.
    [17]J.Chen,D.Xu and B.Shafai.On sufficient conditions for stability independent of delay,IEEE Trans.Autom.Contr.,1995,40(9):1675-1680.
    [18]W.Chen,J.Xu and Z.Guan.Guaranteed cost control for uncertain Markovian jump systems with mode-dependent delays,IEEE Trans.Autom.Contr.,2003,48(12):2270-2277.
    [19]W.Chen,Z.Guan,X.Lu,et al.Delay-dependent absolute stability of uncertain Lur'e systems with time-delays.自动化学报,2004,30(2):235-238.
    [20]D.Cheng,Z.Xi,Y.Hong,et al.Energy-based stabilization in power systems.Proc.14th IFAC World Congress,Beijing,China,1999,O:297-303.
    [21]D.Cheng,S.Spurgeon and J.Xiang.On the development of generalized Hamiltonian realizations.Proc.39th Conf.Decision and Control,Sydney,Australia,2000,5:5125-5130.
    [22]D.Cheng,Z.Xi,Q.Lu and S.Mei.Geometric structure of generalized controlled Hamiltonian systems and its application.Science in China:Series E,2000,43(4):365-379.
    [23]D.Cheng.On Lyapunov Mapping and its Applications,Communications in Information and Systems,2001,1(3):255-272.
    [24]Y.Chitour and Z.Lin.Finite gain l_p stabilization of discrete-time linear systems subject to actuator saturation:the case of p=1.IEEE Trans.Auto.Contr.,2003,48(12):2196-2198.
    [25]J.Chou,L.Horng,B.Chen.Dynamic feedback compensator for uncertain time-delay systems containing saturating actuator.Int.J.Contr.,1989,49:961-968.
    [26]T.J.Courant.Dirac manifold.Trans.Amer.Math.Soc.,1990,319:631-661.
    [27]R.F.Curtain.Robust stabilization of normalized coprime factors:the infinite-demensional case.Int.J.Contr.,1990,51(6):1173-1190.
    [28]M.Dalsmo and A.J.vander Schaft.On representations and integrability of mathematical structures in energy-conserving physical systems.SIAM J.Contr.Optim.,1999,37(1):54-91.
    [29]W.Daniel,J.Li and Y.Niu.Adaptive neural control for a class of nonlinearly parametric time-delay systems.IEEE Trans.Neural Networks,2005,16(3):625-635.
    [30]J.Doyle,R.Smith and D.Enns.Control of plants with input saturation nonlinearities.Proc.Amer.Contr.Conf.,Minneapolis,MN,June,1987,pp.1034-1039.
    [31]L.Dugard and E.E.Verriest.Stability and control of time-delay systems.New York:Springer-Verlag,1998.
    [32]H.Fang,Z.Lin and M.Roteac.On IQC approach to the analysis and design of linear systems subject to actuator saturation.Automatica.2008,57:611-619.
    [33]H.Fertik and C.Ross.Direct digital control algorthms with anti-windup feature.ISA Trans.,1967,6:317-328.
    [34]T.I.Fossen.Marine control systems:guidance,navigation,and control of ships,rigs and underwater vehicles.Trondheim(Norway):Marine Cybernetics AS,2002.
    [35]E.Fridman.New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems.Systems and Control Letters,2001,43(2):309-319.
    [36]E.Fridman.Stability of systems with uncertain delays:a new "complete" Lyapunov-Krasovskii functional.IEEE Trans.Autom.Contr.,2006,51(5):885-890.
    [37]Y.Fu,Z.Tian and S.Shi.Output feedback stabilization for a class of stochastic time-delay nonlinear systems.IEEE Trans.Autom.Contr.,2005,50(6):847-851.
    [38]H.Gao,Z.Wang and C.Wang.Improved H∞ control of discrete-time fuzzy systems:a cone complementarity linearization approach.Information Sciences,2005,175:57-77.
    [39]M.Galaz,R.Ortega,A.Bazanella and A.Stankovic.An energy shaping approach to the design of excitation control of synchronous generators.Automatica,2003,39:111-119.
    [40]S.S.Ge,T.H.Lee and C.J.Harris.Adaptive neural network control of robotic manipulators.London:World Scientific,1998.
    [41]S.Ge,F.Hong and T.Lee.Adaptive neural network control of nonlinear systems with unknown time delays.IEEE Trans.Autom.Contr.,2003,48(11):2004-2010.
    [42]L.Ghaoui,F.Oustry,M.Ait Rami.A cone complementarity linearization algorithm for static output-feedback and related problems.IEEE Trans.Auto.Contr.,1997,52(8):1171-1176.
    [43]A.Glattfelder,W.Schaufelberger.Stability analysis of single loop control systems with saturation and antireset-windup circuits.IEEE Trans.Auto.Contr.,1983,28(7):1074-1080.
    [44]H.Gorecki,S.Fuksa,P.Grabowskii,et al.Analysis and synthesis of time-delay systems.Polish Scientific Publishers,Warszawa,1989.
    [45]K.Gu.Discretized LMI set in the stability problem of linear uncertain time delay systems.Int.J.Contr.,1997,68(4):923-934.
    [46]K.Gu,V.Kharitonov and J.Chen.Stability of time-delay systems.Birkh(a|¨)user:Boston,2003.
    [47]关新平,华长春,唐英干.一类不确定非线性系统的鲁棒无源化控制.控制与决策,2001,16(5):599-601.
    [48]X.Guan and C.Chen.Delay-dependent guaranteed cost control for T-S fuzzy systems with time delays.IEEE Trans.Fuzzy Systems,2004,12(2):236-249.
    [49]Z.Guan,G.Chen.On delayed impulsive Hopfield neural networks.Neural Networks.1999,12(2):273-280.
    [50]P.Gutman and P.Hagander.A new design of constrained controllers for linear systems.IEEE Trans.Aurora.Contr.,1985,,31(1):22-33.
    [51]R.Hanus,M.Kinnaert and J.Henrote.Conditioning technique,a general anti-windup and bumpless transfer method.Automatica,1987,23:729-739.
    [52]J.K.Hale.Theory of Functional Differential Equations.New York:Springer-Verlag,1977.
    [53]J.K.Hale and S.M.V.Lunel,Introduction to Functional Differential Equations.New York:Springer-Verlag,1993.
    [54]Q.Han and K.Gu.Robust stability of time-delay systems with passive uncertainty.3rd IFAC Workshop on Time Delay Systems,Santa Fe,NM,Dec.2001.
    [55]A.Hmamed.On the stability of time delay systems:a new result.Int.J.Contr.,1986,43:321-324.
    [56]A.Hmamed.Further results on the stability of uncertain time-delay systems.Int.J.System Science,Taylor and Francis,1991,22(3):605-614.
    [57]T.Hu and Z.Lin,Control systems with actuator saturation:analysis and design,Birkh(a|¨)user,Boston,2001.
    [58]T.Hu,Z.Lin and B.Chen.An analysis and design method for linear systems subject to actuator saturation and disturbance.Automatica,2002,38(8):351-359.
    [59]T.Hu and Z.Lin.Convex analysis of invariant sets for a class of nonlinear systems.Systems and Control Leters,2005,54(8):729-737.
    [60]C.Hua,X.Guan and G.Duan.Variable structure adaptive fuzzy control for a class of nonlinear time delay systems,Fuzzy sets and Systems,2004,148(3):453-468.
    [61]C.Hua,X.Guan and P.Shi.Robust Backstepping control for a class of time delayed systems.IEEE Trans.Autom.Contr.,2005,50(6):894-899.
    [62]A.lsidori,Nonlinear control systems Ⅱ,London:Springer,1999.
    [63]M.Jankovic.Control Lyapunov-Razumikhin functions and robust stabilization of time delay systems.IEEE Trans.Autom.Contr.,2001,46(7):1048-1060.
    [64]M.Jankovic.Control of nonlinear systems with time delay.Proc.42th Conf.Decision Contr.,Maul,Hawaii,USA,Dec.2003,pp.4545-4550.
    [65]X.Jiao and T.Shen.Adaptive feedback control of nonlinear time-delay systems:the Lasalle-Yoshizawa-based approach.IEEE Trans.Autom.Contr.,2005,50(11):1909-1913.
    [66]E.Kamen.Linear systems with commensurate time delays:Stability and stabilization independent of delay.IEEE Trans.Autom.Contr.,1982,27(2):367-375.
    [67]V.Kapila and W.M.Haddad.Actuator amplitude saturation control for systems with exogenous disturbances.Proc.American Control Conference,Philadelphia,Pennsyivania,June,1998,1468-1472.
    [68]V.Kapila and W.M.Haddad.Robust stabilization for systems with parametric uncertainty and time delay.J.Franklin Institute,1999,336:473-480.
    [69]D.Kennedy,D.Miller and V.Quintana.A nonlinear geometric approach to power system excitation control and stabilization.Electric Power System Energy,1998,20:501-515.
    [70]V.L.Kharitonov and P.Z.Alexei.Robust stability of time-delay systems.IEEE Trans.Autom.Contr.,1994,39(12):2388-2397.
    [71]V.L.Kharitonov and D.Melchor-Aguilar.On delay-dependent stability conditions.Systems and Control Letters,2000,40(1):71-76.
    [72]V.L.Kharitonov and A.Zhabkob.Lyapunov-Krasovskii approach to the robust stability analysis of time-delay systems,Automatica,2003,39:15-20.
    [73]V.B.Kolmanovskii and V.R.Nosov.Stability of functional differential equations.Mathematics in Science and Engineering,180,New York:Academic Press,1986.
    [74]V.B.Kolmanovskii and A.Myshkis.Applied theory of functional differential equations.Kluwei,Dordrecht,the Netherlands,1992.
    [75]V.B.Kolmanovskii and L.E.Shaikhet.Control of systems with aftereffect.In Trans.of Mathematical Monographs,Vol 157,Providence,RI:American Mathematical Society,1996.
    [76]V.B.Kolmanovskii,A.Myshkis.Introduction to the theory and applications of functional differential equations.Dordrecht:Kluwer Academy,1999.
    [77]N.Krasovskii.Stability of motion[Russian],Moscow,1959;[English translation]Stanford University Press,Stanford,CA,1963.
    [78]N.Krikelis and S.Barkas.Design of tracking systems subject to actuator saturation and integrator wind-up.Int.J.Control,1984,39(4):667-682.
    [79]Y.Kuang.Delay differential equations with applications to population dynamics.New York:Academic Press,1993.
    [80]R.L.Kosut.Design of linear systems with saturating linear control bounded state.IEEE Trans.Autom.Contr.,1983,28(1):121-124.
    [81]X.Li and de Souza C E.Delay-dependent robust stability and stabilization of uncertain linear delay systems:a linear matrix inequality approach.IEEE Trans.Autom.Contr.,1997,42(8):1144-1148.
    [82]C.H.Lien and J.D.Chen.Discrete-delay-independent and discrete delay dependent criteria for a class of neutral systems.J.Dynamic Systems and Measure Control,2003,125:33-41.
    [83]A.Saberi,Z.Lin and A.Teel.Control of linear systems with saturating actuators.IEEE Trans.Autom.Contr.,1996,41(3):368-378.
    [84]Z.Lin,A.Saberi and A.R.Teel.The almost disturbanced ecoupling within ternal stability for linear systems subject to input saturation.Automatica,1996,32:619-624.
    [85]Z.Lin,A.Saberi,P.Samtuti and Y.A.Shamash.Perfect regulation of linear discrete time systems:a low-gain-based design approach.Automatica,1996,32:1085-1091.
    [86]Z.Lin.Semi-global stabilization of linear systems with position and rate-limited actuators.Systems and Control Leters,1997,30(1):1-11.
    [87]Z.Lin.Robust semi-global stabilization of linear systems with imperfect actuators.Systems and Control Letter,1997,29:215-221.
    [88]Z.Lin.Global control of linear systems with saturating actuators.Automatica,1998,34:897-905.
    [89]Z.Lin and H.Fang.On asymptotic stabilizability of linear systems with delayed input.IEEE Trans.Auto.Contr.,2007,52(6):998-1013.
    [90]W.Liu,Y.Chitour and E.Sontag.On finite gain stabilizability of linear systems subject to input saturation.SIAM J.Control Optim.,1996,34:1190-1219.
    [91]Q.Lu and Y.Sun.Nonlinear stabilization control of multi-machine systems.IEEE Trans.Power Sys.,1989,4:236-241.
    [92]Q.Lu and Y.Sun,Nonlinear Control Systems and Power System Dynamics.Dordrecht:Kluwer Academic Publishers,2001.
    [93]J.R.Marti and K.W.Louie.A phase-domain synchronous generator model including saturation effects.IEEE Trans.Power Systems,1997,12(1):222-229.
    [94]B.Maschke,R.Ortega and A.J.van tier Schaft,Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation.Proc.37th IEEE Conf.Decision and Control,Tampa,FL,1998,pp.3599-3604.
    [95]B.Maschke,R.Ortega and A.J.van der Schaft.Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation.IEEE Trans.Auto.Contr.,2000,45(8):1498-1502.
    [96]F.Mazenc and S.I.Niculescu.Lyapunov stability analysis for nonlinear delay systems.Systems and Control letters,2001,42:245-251.
    [97]F.Mazenc and P.A.Bliman.Backstepping design for time-delay nonlinear systems,IEEE Trans.Autom.Contr.,2006,51(1):149-154.
    [98]A.Megretiski.BIBO output feedback stabilization with saturated control.13th World Congress of IFAC,SanFrancisco,CA,USA,1996,pp.435-440.
    [99]Y.S.Moon,P.Park,W.H.Kwon,et al.Delay-dependent robust stabilization of uncertain state-delayed systems.Int.J.Contr.,2001,74(14):1447-1455.
    [100]T.Mori and H.Kokame.Stability of(?)(t) =Ax(t)+Bx(t-τ).IEEE Trans.Aurora.Contr.,1989,34(4):460-462.
    [101]J.Mrdjan.Control Lyapunov-Razumikhin functions and robust stabilization of time delay systems.IEEE Trans.Aurora.Contr.,2001,46(7):1048-1060.
    [102]S.Nguang.Robust stabilization of a class of time-delay nonlinear systems.IEEE Trans.Aurom.Contr.,2000,45(4):756-762.
    [103]S.Nguang,P.Shi and S.Ding.Delay dependent fault estimation for uncertain time delay nonlinear systems:an LMI approach.Proc.2006 Amer.Contr.Conf,Minneapolis,Minnesota,USA,June,2006,pp.5135-5130.
    [104]T.Nguyen and F.Jabbari.H_∞ design for systems with input saturation:an LMI approach.Proc.American Control Conference,Albuquerque,NM.
    [105]年晓红.Lur'e控制系统的时滞相关绝对稳定性判据.自动化学报,1999,25(4):564-566.
    [106]S.I.Niculescu,J.Dion and L.Dugard.Robust stabilization for uncertain time-delay systems containing saturating actuators.IEEE Trans.Autom.Contr.,41(5):742-747.
    [107]S.I.Niculescu.Delay Effects on Stability:A Robust Control Approach.Heidelberg:Springer-Verlag,Germany,2001.
    [108]S.I.Niculescu and K.Gu.Advances in Time-Delay Systems.Springer:Berlin,2004.
    [109]R.Ortega,A.J.vander Schaft,B.Maschke,et al.Interconnection and damping assignment passitivity-based control of port-controlled Hamiltonian systems.Automatica,2002,38(4):585-596.
    [110]R.Ortega,M.Galaz,A.Astolf,et al.Transient stabilization of multimachine power systems with nontrivial transfer conductances.IEEE Trans.Autom.Contr.,2005,50(1):60-75.
    [111]S.Oucheriah.Global stabilization of a class of linear continuous time-delay systems with saturating controls.IEEE Trans.on Circuits and Systems Ⅰ:Fundamental Theory and Applications,1996,43(12):1012-1015.
    [112]H.Ozbay.Tutorial Review H_∞ Optimal Controller Design for a Class of Distributed Parameter Systems.Int.J.Contr.,1993,58(4):739-782.
    [113]N.Ozcan and S.Arik,Global robust stability analysis of neural networks with multiple time delays,IEEE Trans.Circuits and Systems,2006,53(1):166-176.
    [114]C.Paim,S.Tarbouiech,J.Silva and E.Castelan.Control design for linear systems with saturating actuators and L-bounded disturbances.Proc.41st IEEE Conf.Decision Control,2002,pp.4148-4153.
    [115]J.K.Park,C.Chou and H.Choo.Dynamic anti-windup method for a class of time-delay control systems with input saturation.Int.J.Robust and Nonlinear Control,2000,10:457-488.
    [116]J.H.Park.A new delay-dependent criterion for neutral systems with multiple delays.J.Computational and Applied Mathematics,2001,136(1):177-184.
    [117]P.Park.A delay-dependent stability criterion for systems with uncertain time-invariant delays.IEEE Trans.Autom.Contr.,1999,44(4):876-877.
    [118]I.R.Petersen and C.V.Hollor.A Riccati equation approach to the stabilization of uncertain linear systems.Automatica,1986,22(3):397-411.
    [119]秦元勋,刘永清,王联,郑祖庥.带有时滞的动力系统的运动稳定性.北京:科学出版社,1989.
    [120]B.S.Razumikhin.On stability of systems with delays.Prikl.Math.Mech.,1956,20.
    [121]B.S.Razumikhin.The application of Lyapunov's method to problem in the stability of sys-tems with delays.Automatica,Remote Control,1960,21.
    [122]J.P.Richard,A.Goubet,A.Tchangani,et al.Nonlinear delay systems:tools for a quantitative approach to stabilization.Lecture notes in control and information sciences,London:Springer,1997,228:218-240.
    [123]J.P.Richard.Time-delay systems:an overview of some recent advances and open problems.Automatica,2003,39(10):1667-1694.
    [124]T.Shen,R.Ortega,Q.Lu,S.Mei and K.Tamura,Adaptive L_2 disturbance attenuation of Hamiltonian systems with parameter perturbations and application to power systems.Proc.39th IEEE Conf.Decision and Control,Sydney,Australia,2000,5:4939-4944.
    [125]T.Shen,S.Mei,Q.Lu,W.Hu and K.Tamura.Adaptive nonlinear excitation control with L_2 distrbance attenuation for power systems.Automatica,2003,39:81-89.
    [126]Y.Sim and J.Hsieh.On a stability criteria of nonlinear systems with multiple time delays.J.Franklin Institute,1998,335,B(4):605-705.
    [127]J.E.Slotine and W.Li.Applied Nonlinear Control.New Jersey:Prentice Hall,1991.
    [128]A.F.Snyder.A robust damping controller for power system using linear matrix inequalities.Proc.IEEE Power Engineering Society Winter Meeting,New York,USA,1999,1:519-523.
    [129]E.D.Sontag and H.J.Sussmann.Nonlinear output feedback design for linear systems with saturating controls.Proc.29th IEEE Conf.Decision and Control,1990,3414-3416.
    [130]C.E.de Souza and X.Li.Delay-dependent robust H_∞ control uncertain linear state-delayed systems.Automatica,1999,22(7):1313-1321.
    [131]苏宏业,楮健.一类非线性时滞系统的稳定化控制器设计研究.自动化学报,1998,24(1):35-40.
    [132]H.Su,J.Chu.Stabilization of a class of uncertain time-delay systems containing saturating actuators.Int.J.Syst.Sci.,1999,30(11):1193-1203.
    [133]H.Su,X.Ji and J.Chu.New results of robust quadratically stabilizing control for uncertain linear time-delay systems.Int.J.Syst.Sci.,2005,36(1):27-37.
    [134]Y.Sun,Y.H.Song and X.Li.Novel energy-based Lyapunov function for controlled power systems.IEEE Power Engineering Review,2000,2:55-57.
    [135]W.Sun and Y.Wang.Stabilizability analysis of Hamiltonian control systems subject to actuator saturation.J.Electric Machines and Control,2009,13(2):252-257.
    [136]S.Tarbouriech,P.Peres and G.Garcia,et al.Delay-dependent stabilisation and disturbance tolerance for time-delay systems subject to actuator saturation.IEE Proc.Control Theory Appl.,2002,387-393.
    [137]S.Tarbouriech,D.S.Gomes,J.M.Jr and G.Garcia.Delay-dependent anti-windup loops for enlarging the stability region of time delay systems with saturating inputs.Proc.Trans.ASME,2003,265-267.
    [138]A.R.Teel.A nonlinear small gain theorem for the analysis of control system with saturation.IEEE Trans.Autom.Contr.,1996,41(9):1256-1271.
    [139]A.R.Teel.Connections between Razumikhin-type theorems and the ISS nonlinear small gain theorems.IEEE Trans.Autom.Contr.,1998,43(7):960-964.
    [140]A.J.vander Schaft.L_2-gain and Passivity Techniques in Nonlinear Control.2nd revised and enlarged,Berlin:Springer,2000.
    [141]M.Vassilaki,J.Hennet and G.Bitsoris.Feedback control of linear discrete-time systems under state and control constraints.Int.J.Contr.,1988,47(6):1717-1735.
    [142]C.VijaySekhar,W.M.Haddad and A.Kamath.A dissipative dynamical systems approach to stability analysis of time delay systems.Int.J.Robust Nonlinear Contr.,2005,15:25-33.
    [143]R.Wamkeue,I.Kamwa,F.Baetscher,J.El Hayek.A new and efficient approach for analysis of a saturated synchronous generator under the load rejection test.Electric Power Components and Systems,2006,34(5):539-563.
    [144]S.Wang,B.Chen and T.Lin.Robust stability of uncertain time delay systems.Int.J.Contr.,1987,46(3):963-976.
    [145]Y.Wang,D.Cheng and Y.Hong.Stabilization of synchronous generators with Hamiltonian function approach.Int.J.Syst.Sci.,2001,32(8):971-978.
    [146]Y.Wang,D.Cheng,C.Li,Y.Ge.Dissipative Hamiltonian realization and energy-based L_2-disturbance attenuation control of multimachine power systems.IEEE Trans.Autom.Contr.,2003,48(8):1428-1433.
    [147]Y.Wang,C.Li and D.Cheng.Generalized Hamiltonian realization of time-invariant nonlinear systems.Automatica,2003,39:1437-1443.
    [148]Y.Wang,C.Li and D.Cheng.New approaches to generalized Hamiltonian realization of nonlinear systems.Science in China,Series F,2003,46(6):431-444.
    [149]Y.Wang,D.Cheng,Y.Liu,et al.Adaptive H_∞ excitation control of multimachine power systems via Hamiltonian function method.Int.J.Contr.,2004,77(4):336-350.
    [150]Y.Wang,D.Cheng and X.Hu.Problems on time-varying Hamiltonian systems:geometric structure and dissipative Hamiltonian realization.Automatica,2005,41(5):717-723.
    [151]Y.Wang,G.Feng and D.Cheng.Adaptive L_2 disturbance attenuation control of multimachine power systems with SMES units.Automatica,2006,42:1121-1132.
    [152]Y.Wang,Y.Cao and Y.Sun.Anti-windup compensator gain design for time delay systems with constraints.Acta Automatica Sinica,2006,32(1):1-8.
    [153]王玉振.广义Hamilton控制系统理论——实现、控制与应用.科学出版社.2007.
    [154]Y.Wang and S.S.Ge.Augmented Hamiltonian formulation and energy-based control design of uncertain mechanical systems.IEEE Trans.Autom.Contr.Sys.Tech.,2008,16(2):202-213.
    [155]Z.Wang,B.Huang and H.Unbehauen.Robust H_∞ reliable control for a class of uncertain nonlinear state-delayed systems.Automatica,1999,35(5):955-963.
    [156]K.Watanabe,E.Nobuyama,et al.A new algorithm for finite spectrum assignment of single input sytems with time delay.IEEE Trans.Autom.Contr.,1992,37(9):1377-1383.
    [157]A.Wei and Y.Wang.Parallel simultaneous stabilization of two nonlinear port-controlled Hamiltonian systems subject to actuator saturation,Proc.of the 27th Chinese Control Conference,Kunming,Yunnan,China,July 16-18,2008,pp.388-392.
    [158]M.Wu,Y.He,J.She,et al.Delay-dependent criteria for robust stability of time-varying delay systems.Automatica,2004,40(3):1435-1439.
    [159]F.Wu.and B.Lu.Anti-windup control design for exponentially unstable LTI system with actuator saturation.Systems and Control Letters,2004,34(5):313-322.
    [160]W.Wu.Robust linearizing controllers for nonlinear time-delay systems,IEE Pro.Control Theory Appli.,1999,146(1):91-97.
    [161]Z.Xi and D.Cheng.Passivity-based stabilization and H_∞ control of the Hamiltonian control systems with dissipation and its application to power systems.Int.J.Contr.,2000.73(18):1686-1691.
    [162]S.Xu,P.V.Dooren,R.Stefan,et al.Robust stability and stabilization for singular systems with state delay and parameter uncertainty.IEEE Trans.Aurom.Contr.,2002,47(7):1122-1128.
    [163]S.Xu and J.Lam.Improved delay-dependent stability criteria for time-delay systems.IEEE Trans.Aurom.Contr.,2005,50(3):384-387.
    [164]S.Xu,J.Lam and Y.Zou.New results on delay-dependent robust H_∞ control for systems with time-varying delays.Automatica,2006,42(2):343-348.
    [165]K.Yakoubi and Y.Chitour.Linear systems subject to input saturation and time-delay:global asymptotic stabilization.IEEE Trans.Autom.Contr.,2007,52(5):874-879.
    [166]J.J.Yan,S.H.Tsai Jason and F.C.Kung.A new result on the robust stability of uncertain systems with time-varying delay.IEEE Trans.Circ.Syst(1):Fundamental Theory and Application,2001,48(7):914-916.
    [167]L.Yu and J.Chu.An LMI approach to guaranteed cost control of linear uncertain time delay systems.Automatica,1999,35(6):1155-1159.
    [168]俞立.鲁棒控制——线性矩阵不等式处理方法.北京:清华大学出版社,2002.
    [169]D.Yue,Q.Han and J.Lam.Network-based robust H_∞ control of systems with uncertainty.Automatica,2005,41(6):999-1007.
    [170]J.Zhang,R.Carl,Knopse,et al.Stability of time-delay systems:equivalence between Lyapunov and scaled small-gain conditions.IEEE Trans.Autom.Contr.,2001,46(3):482-486.
    [171]H.Zhang,L.Xie and G.Duan.H_∞ full information control of discrete-time systems with multiple input delays,Proc.44th IEEE Conf.Decision and Control & European Control Conf.,Seville,Spain,Dec.2005,pp.7163-7168.
    [172]A.Zheng,M.V.Kothare and M.Morari.Anti-windup design for internal model control.Int.J.Contr.,1994,60:1015-1024.
    [173]M.Zhong,S.X.Ding,C.Zhang,et al.Fault detection filter design for LTI systems with time delays.Proc.42th IEEE Conf.Decision and Control,Hawaii:IEEE Press,2003,1467-1472.
    [174]Q.Zhong.Robust control of time-delay systems.Berlin:Springer,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700